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Abstract

Let P be a polynomial over the ring of mod m integers. P weaklyAbstract-1

represents Boolean function f : {0, 1}n → {0, 1} if there is a subset
S ⊆ {0, 1, . . . , m − 1} such that f(x) = 0 if and only if P (x) ∈ S. The
smallest degree of polynomials P weakly representing f is called the
weak mod m degree of f . We give here an Ω(log n) lower bound for the
weak degree of the generalized inner product function (GIP) of Babai,
Nisan, and Szegedy [BNS92]. This is the first lower-bound result for
the weak degree of a Boolean function that does not deteriorate if the
number of prime divisors of m increases.

In the second part of the paper, we give superpolynomial lowerAbstract-2

bounds for the number of monomials with nonzero coefficients in poly-
nomials weakly representing the OR and the GIP◦PARITY functions.

1 Introduction

One of the central problems of theoretical computer science is the estimation1-1

of the computational complexity of Boolean functions. One well studied mea-
sure of the complexity of Boolean function f is the degree of a polynomial P ,
which best approximates or represents f in some sense (see [Raz87], [Smo87],
[NS94], [ABFR91], or [Bei93] for a survey). According to this approach, a
Boolean function is considered “hard” if the polynomial that represents or
best approximates it has a high degree.

Barrington, Beigel, and Rudich [BBR94] defined the mod m degree of1-2

Boolean function f to be the smallest degree of any polynomial P over the

1
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Grolmusz Weak mod m Representation of Boolean Functions §1

ring of mod m integers such that, for all 0–1 assignments of x, f(x) = 0 if and
only if P (x) = 0. They obtained the following surprising result: The mod m
degree of the n-variable OR function is O(n1/r), where r is the number of
distinct prime factors of m.

Since some computationally very similar functions, including OR and1-3

AND, as well as mod m and ¬ mod m, have different mod m degrees, the
weak mod m degree, a more robust measure, is defined in [BBR94]:

Definition 1 Let f : {0, 1}n → {0, 1} be a Boolean function, and let P be
defined as a polynomial of n variables over Zm (the integers mod m),

P (x1, x2, . . . , xn) =
∑

H∈H
aH

∏
i∈H

xi

where H ⊆ 2{1,2,... ,n} and 0 6= aH ∈ Zm. We say that P weakly represents f
if there is a set S ⊆ {0, 1, . . . , m − 1} such that, for every x ∈ {0, 1}n,

f(x) = 0 ⇐⇒ P (x) ∈ S

Let ∆(f, m) be the minimum degree of polynomials mod m that weakly rep-
resent f . The size of polynomial P is defined to be |H|. Let Σ(f, m) denote
the minimum size of polynomials mod m that weakly represent f .

Note that the mod m degree and the weak mod m degree of the OR function
are the same.

Tardos and Barrington [TB95] proved an Ω(log n) lower bound for the1-4

weak mod m degree of the OR function, if m has only two distinct prime
divisors. More generally, if the number of distinct prime divisors of m is r,
and the smallest prime divisor is q, then their lower bound is

∆(OR, m) ≥
(
1/(q − 1) − o(1)

)
(log n)1/(r−1) (1)

The following function was first defined by Babai, Nisan, and Szegedy1-5

[BNS92]:

Definition 2 Let A ∈ {0, 1}l×k. Let GIPl,k(A) denote the number of all-1
rows in matrix A, mod 2.

This is the mod 2 generalized inner product of the columns of A.
Here we show an Ω(log n) lower bound for ∆(GIPl,k, m), where m is an1-6

arbitrary integer (i.e., our lower bound does not deteriorate when the number
of different prime divisors of m increases):

2
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Theorem 1 Let l and k be positive integers that satisfy c log l < k ≤ (1/3) log l
for some 0 < c < 1/3, and let n = kl. Then for every integer m that satisfies
1 < m ≤ exp(n1/4),

∆(GIPl,k, m) ≥ k = Ω(log n)

This is the tightest possible lower bound that holds for m = 2, since the
definition of GIPl,k is just a polynomial mod 2 of degree k: the sum mod 2
of the product of each row.

Unfortunately, our degree lower bound method does not apply to the1-7

theoretically interesting case when f is the OR function. However, we can
prove that the size of the polynomials weakly representing OR must be large:

Theorem 2

1. Let m be the product of two different primes. Then there exists a con-
stant cm > 0 such that

Σ(OR, m) ≥ ncm log n

2. Suppose that m has r different prime divisors. Then there exists a
constant cm > 0 such that

Σ(OR, m) ≥ ncm(log n)1/(r−1)

The proof of Theorem 2 is based on the method of Razborov and Wigder-1-8

son [RW93] and the degree lower bound (1) of Tardos and Barrington [TB95].
Consequently, the bound depends on the number of prime divisors of m. Us-
ing the degree lower bound of our Theorem 1, we give a lower bound for
the size, which does not deteriorate if the number of prime divisors of m
increases.

Razborov and Wigderson [RW93] used the function1-9

fn(x) =
h⊕

i=1

b 1
3 log hc∧
j=1

h⊕
k=1

xijk

to prove an Ω(nlog n) lower bound on size for some depth-3 circuits, where
n = h2b(1/3) log hc. Observe that fn is the composition of the GIP and the
PARITY functions.

Theorem 3 Let m > 1 be an arbitrary integer. Then

Σ(fn, m) = nΩ(log n)

3
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2 Communication Complexity

Our main tool in proving Theorem 1 is a multiparty communication game.2-1

In a multiparty communication game [CFL83], k players, p1,p2, . . . ,pk,
intend to compute the value of g(A1, A2, . . . , Ak) cooperatively, where
g : {0, 1}l×k → {0, 1} and Ai ∈ {0, 1}l, for i = 1, 2, . . . , k. Player pi knows the
value of each variable, except Ai. The players have unlimited computational
power, and they communicate with the help of a blackboard viewed by all
players. Only one player may write on the blackboard at a time. The goal is
to compute g(A1, A2, . . . , Ak) in such a way that at the end of the computa-
tion, all players know this value. The cost of the computation is the number of
bits written on the blackboard for the given A = (A1, A1, . . . , Ak) ∈ {0, 1}l×k.

The cost of a multiparty protocol is the maximum number of bits com-2-2

municated for any A in {0, 1}l×k. The k-party communication complexity of
a function g, C(k)(g), is the minimum of the costs of those k-party protocols
that compute g. Babai, Nisan, and Szegedy examined the multiparty com-
munication complexity of the GIP function in [BNS92], and they proved the
following theorem.

Theorem 4 ([BNS92], Theorem 2)

C(k)(GIPl,k) = Ω(l/4k)

3 Proving the Degree Bound

The proof is based on Theorem 4 and on an idea from [GH90].3-1

Proof of Theorem 1 From Theorem 4, with k < (1/2 − ν) log n players,Proof of Theorem 1-1

for some ν > 0,
C(k)(GIPl,k) ≥ cl/4k = nΩ(1)

On the other hand, suppose that some mod m polynomial P of degree k − 1
weakly represents GIPl,k. Then the following k-player protocol can evaluate
P with a small number of communicated bits. P is the sum of several mono-
mials of degree at most k − 1. Since for each variable of a monomial there
is at most one player who does not know it, for every monomial there exists
a player who knows all of its variables. Before starting the communication
game for P , the players agree on who computes each monomial. Then each
player—without any communication—privately computes the mod m sum of

4
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Grolmusz Weak mod m Representation of Boolean Functions §4

their assigned monomials. Next, communicating kdlog(m + 1)e bits, each
player announces this mod m sum, and every player privately adds up the
numbers seen. Now, if the result is in the set S, then GIPl,k = 0; otherwise,
it is 1.

From the preceding paragraph and Theorem 4,Proof of Theorem 1-2

kdlog(m + 1)e ≥ C(k)(GIPl,k) = nΩ(1)

which leads to a contradiction.

Proof of Theorem 1 2

4 Random Restrictions and the Size Bounds

Proof of Theorem 2 To prove part 1, letProof of Theorem 2-1

P (x1, x2, . . . , xn) =
∑

H∈H
aH

∏
i∈H

xi

be a mod m polynomial, weakly representing the OR of n variables, where
H ⊆ 2{1,2,... ,n} and 0 6= aH ∈ Zm. We apply random restrictions inde-
pendently to each variable xi, for i = 1, 2, . . . , n, in a similar fashion to
Ajtai [Ajt83], Furst, Saxe, and Sipser [FSS84] and Razborov and Wigderson
[RW93]. Let

ρ(xi) =
{

0 with probability 1 − p
∗ with probability p

where ρ(xi) = ∗ means that xi remains unrestricted, and p = (1/2)n−1/2.
For every c > 0 and |H| ≥ (c/2) log n,Proof of Theorem 2-2

Pr
(∏

i∈H

ρ(xi) 6= 0
)

≤ p
c
2 log n ≤ n− c

4 log n (2)

Suppose that |H|, the size of P , satisfies |H| ≤ nε log n, for a small enough
ε > 0. Then, because of (2), the degree of the polynomial after the restriction
will be small with high probability:

Pr
(
deg(P ◦ ρ) < (c/2) log n

)
= 1 − o(1)

5
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while P ◦ ρ still represents the OR of at least
√

n variables with probability
1 − o(1). So, from (1), setting c =

(
1/(q − 1) − o(1)

)
, where q is the smallest

prime divisor of m, we arrive at a contradiction.
Part 2 can be proved in similar fashion, using inequality (1) with r ≥ 2Proof of Theorem 2-3

instead of r = 2. The details are left to the reader.

Proof of Theorem 2 2

Proof of Theorem 3 Let

P (x1, x2, . . . , xn) =
∑

H∈H
aH

∏
i∈H

xi

be a mod m polynomial, weakly representing fn. We apply random restric-
tions independently to each variable xi, for i = 1, 2, . . . , n, as in the proof of
Theorem 2, or as in [Ajt83], [FSS84], or [RW93]. Let

ρ(xi) =




0 with probability (1 − p)/2
1 with probability (1 − p)/2
∗ with probability p

where p = (2 ln h)/h. Then, as in the proof of Theorem 2, or as in the proof
of Theorem 3 in [RW93], if

|H| ≤ nε log n

for a sufficiently small ε > 0, then

Pr
(
deg(P ◦ ρ) < b(1/3) log hc

)
≥ 1 − o(1) (3)

while

Pr
(

h⊕
k=1

ρ(xijk) is a constant
)

= (1 − p)h ≤ 1/h2

So, from (3) we conclude that—after fixing some more variables—there exists
a mod m polynomial that weakly represents GIPl,k with degree less than
b(1/3) log hc, and this contradicts our Theorem 1.

Proof of Theorem 3 2
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