
Chicago Journal of Theoretical
Computer Science

The MIT Press

Volume 1995, Article 4
19 October 1995

ISSN 1073–0486. MIT Press Journals, 55 Hayward St., Cambridge, MA
02142 USA; (617)253-2889; journals-orders@mit.edu, journals-info@mit.edu.
Published one article at a time in LATEX source form on the Internet. Pag-
ination varies from copy to copy. For more information and other articles
see:

• http://www-mitpress.mit.edu/jrnls-catalog/chicago.html

• http://www.cs.uchicago.edu/publications/cjtcs/

• gopher.mit.edu

• gopher.cs.uchicago.edu

• anonymous ftp at mitpress.mit.edu

• anonymous ftp at cs.uchicago.edu



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems (Info)

c©1995 The Massachusetts Institute of Technology. Subscribers are licensed
to use journal articles in a variety of ways, limited only as required to insure
fair attribution to authors and the journal, and to prohibit use in a competing
commercial product. See the journal’s World Wide Web site for further
details. Address inquiries to the Subsidiary Rights Manager, MIT Press
Journals; (617)253-2864; journals-rights@mit.edu.

The Chicago Journal of Theoretical Computer Science is a peer-reviewed
scholarly journal in theoretical computer science. The journal is committed
to providing a forum for significant results on theoretical aspects of all topics
in computer science.

Editor in chief: Janos Simon

Consulting editors: Joseph Halpern, Stuart A. Kurtz, Raimund Seidel

Editors: Martin Abadi Greg Frederickson John Mitchell
Pankaj Agarwal Andrew Goldberg Ketan Mulmuley
Eric Allender Georg Gottlob Gil Neiger
Tetsuo Asano Vassos Hadzilacos David Peleg
Laszló Babai Juris Hartmanis Andrew Pitts
Eric Bach Maurice Herlihy James Royer
Stephen Brookes Stephen Homer Alan Selman
Jin-Yi Cai Neil Immerman Nir Shavit
Anne Condon Paris Kanellakis Eva Tardos
Cynthia Dwork Howard Karloff Sam Toueg
David Eppstein Philip Klein Moshe Vardi
Ronald Fagin Phokion Kolaitis Jennifer Welch
Lance Fortnow Stephen Mahaney Pierre Wolper
Steven Fortune Michael Merritt

Managing editor: Michael J. O’Donnell

Electronic mail: chicago-journal@cs.uchicago.edu

[ii]

Chicago Journal of Theoretical Computer Science 1995-4



Probabilistically Checkable Debate Systems
and Nonapproximability of
PSPACE-Hard Functions

Anne Condon Joan Feigenbaum Carsten Lund
Peter W. Shor

19 October, 1995

Abstract

We initiate an investigation of probabilistically checkable debateAbstract-1

systems (PCDS), a natural generalization of probabilistically check-
able proof systems (PCPS). A PCDS for a language L consists of a
probabilistic polynomial-time verifier V and a debate between player
1, who claims that the input x is in L, and player 0, who claims that
the input x is not in L. We show that there is a PCDS for L in which
V flips O(log n) random coins and reads O(1) bits of the debate if and
only if L is in PSPACE. This characterization of PSPACE is used to
show that certain PSPACE-hard functions are as hard to approximate
closely as they are to compute exactly.

These results first appeared in our Technical Memorandum [CFLS93a]. They
were presented in preliminary form at the 25th Annual ACM Symposium on
Theory of Computing, San Diego, CA, May 1993, titled “Probabilistically
Checkable Debate Systems and Approximation Algorithms for PSPACE-
Hard Functions” [CFLS93b].

1 Introduction

Suppose that two candidates, B and C, agree to a debate format. Voter V1-1

is too busy to catch more than a very small number of bits of the debate.

1

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §1

How does V decide whether B or C won the debate? In this paper, we show
that if B and C choose the right debate format, V ’s problem is solved. By
listening to a few randomly chosen sound bites of the debate, V can with
near certainty figure out who won.

Similarly, suppose that B or C is giving a speech to a set of voters1-2

V1, . . . , Vn, represented by finite automata. He would like to give the speech
that results in acceptance (votes) by the greatest number of voters Vi. We
show that not only can he not compute this maximum exactly, but he cannot
come within an arbitrary constant factor, unless he has access to an oracle
(political consultant) with the full power of PSPACE.

Our work builds on recent progress in the theory of probabilistically check-1-3

able proof systems (PCPS). Results about the language-recognition power of
PCPSs have led to lower bounds on the difficulty of approximating NP-hard
functions. In this paper, we define probabilistically checkable debate systems
(PCDSs). We prove several results about the language-recognition power
of PCDSs and then use them to obtain lower bounds on the difficulty of
approximating PSPACE-hard functions.

Let us describe the background for this work in more detail. Loosely1-4

speaking, a language L has a PCPS if, for every x ∈ L, there is a string π
such that a probabilistic verifier V taking x and π as input can be convinced
with high probability that x ∈ L. The class PCP(r(n), q(n)) consists of
those languages recognizable by PCPSs in which the verifier uses O(r(n))
coin flips and looks at O(q(n)) bits. It is known that PCP(log n, 1) = NP
(cf. [ALM+92] and [AS92]).

Results on the power of classes PCP(r(n), q(n)) can be used to show that1-5

many approximation problems are hard, unless there is some unexpected
collapse of complexity classes. The first result along these lines was proven
by Condon [Con93]. Additional results concern the MAX-CLIQUE prob-
lem [GJ79]—given an undirected graph, find a maximal-size set of nodes
with an edge between every pair in the set. In a seminal paper, Feige et
al. [FGL+91] showed that MAX-CLIQUE is difficult to approximate. The
result of [FGL+91] has been improved several times, and it is now known
that there is an ε such that approximating MAX-CLIQUE within a factor of
nε is as difficult as solving NP-complete problems exactly [ALM+92]. Fur-
thermore, there is a large class of natural optimization problems, those hard
for the class MAX-SNP defined in [PY91], that do not have polynomial-time
approximation schemes unless P = NP; that is, for each of these problems,
there is an ε such that approximating the optimal solution within ratio ε is

2

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §1

as hard as solving NP-complete problems exactly [ALM+92]. This result on
MAX-SNP shows that many well-known optimization problems are hard to
approximate closely, including Traveling Salesman with Triangle Inequality,
MAX-SAT, and MAX-CUT.

A PCDS is a generalization of a PCPS. In a PCDS for L, there are two1-6

computationally powerful players, 1 and 0 (called B and C at the beginning
of this section) and a probabilistic polynomial-time verifier V . Players 1 and
0 play a game in which they alternately write out strings on a debate tape π.
Player 1’s goal is to convince V that an input x ∈ L, and player 0’s goal is
to convince V that x /∈ L. When the debate is over, V looks at x and π and
decides whether x ∈ L (player 1 wins the debate) or x /∈ L (player 0 wins
the debate). Suppose V flips O(r(n)) random coins, and reads O(q(n)) bits
of π. If, under the best strategies of players 1 and 0, V ’s decision is correct
with high probability, then we say that L is in PCD(r(n), q(n)).

Specifically, we say that a language L is in PCD(r(n), q(n)) if it has a1-7

nonadaptive PCDS with one-sided error in which players 1 and 0 write on a
debate tape, and then V makes O(r(n)) coin flips and queries O(q(n)) bits
based on these coin flips. By “nonadaptive,” we mean that the choice of bits
queried by V is based solely on the input and the coin flips. By “one-sided
error,” we mean that whenever x ∈ L, V must correctly decide that x ∈ L,
no matter which sequence of O(r(n)) coins are flipped (assuming correct play
on the part of player 1). When x /∈ L, V is allowed to conclude incorrectly
that x ∈ L with probability at most ε, for some fixed ε < 1.

Note that we defined PCDSs so that the two players must be determin-1-8

istic, whereas the verifier can use randomization. Allowing the players to
use randomization would not change the class PCD(r(n), q(n)); this follows
from the standard game-theoretic result that, in perfect information games,
players always have deterministic strategies that are optimal [AH92].

With the above definition in hand, we can state our main results about1-9

the language-recognition power of PCDSs.

Theorem 3 (Section 3) PSPACE = PCD(log n, 1).

This result is the best possible, because one can show that PCD(log n, q(n))
is contained in PSPACE, for every function q.

The following is a technical building block, interesting in its own right,1-10

that is used in the proof that PSPACE = PCD(log n, 1): If r(n) = Ω(log n),
then PCD(r(n), q(n)) contains the same languages if the verifier reads O(q(n))
rounds of the debate as it does if the verifier reads O(q(n)) bits of the debate.

3

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §2

We use our main result about the language-recognition power of PCDSs to1-11

prove lower bounds on the difficulty of approximating PSPACE-hard func-
tions. Let MAX-Q3SAT be the following natural optimization version of
the canonical PSPACE-complete language QBF (the set of true quantified
Boolean formulae). Suppose

Φ = Q1x1Q2x2 · · ·Qnxnφ(x1, x2, . . . , xn)

is a quantified Boolean formula, with Qi ∈ {∃, ∀}, and φ in 3CNF. Suppose
that the variables of the formula are chosen, in order of quantification, by
two players 0 and 1, where player 0 chooses the universally quantified vari-
ables and player 1 chooses the existentially quantified variables. If player 1
can guarantee that k clauses of φ will be satisfied by the resulting assign-
ment, regardless of what player 0 chooses, we say that k clauses of Φ are
simultaneously satisfiable. We let MAX-Q3SAT be the function that maps
a quantified 3CNF formula Φ to the maximum number of simultaneously
satisfiable clauses.

Theorem 4 (Section 4) There is a constant 0 < ε < 1 such that approxi-
mating MAX-Q3SAT within ratio ε is PSPACE-hard.

Thus MAX-Q3SAT is as hard to approximate closely as it is to compute
exactly.

We use reductions to prove that certain other PSPACE-hard functions are1-12

PSPACE-hard to approximate in a stronger sense. These include maximiza-
tion versions of the Finite Automata Intersection problem, shown PSPACE-
complete by Kozen [Koz77], and the Generalized Geography problem, shown
PSPACE-complete by Schaefer [Sch78]. We show that there is a constant ε
such that approximating these problems within ratio nε is PSPACE-hard.

The rest of this paper is organized as follows. We define PCDSs, and1-13

all of our other terms, precisely in Section 2. Our results on the language-
recognition power of PCDSs are given in Section 3. Those on approximation
of PSPACE-hard functions are given in Section 4. Section 5 contains open
questions and a discussion of subsequent related results.

2 Preliminaries

We first review the definition of a PCPS (probabilistically checkable proof2-1

system). A verifier is a probabilistic polynomial-time Turing machine that
4

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §2

takes as input a pair x, π, where π ∈ {0, 1}∗, and either accepts or rejects.
A language L has a probabilistically checkable proof system, or PCPS, with
error probability ε if there is a verifier V with the following properties:

• for all x in L, there is a string π such that V accepts with probability
1 on input x, π; and

• for all x not in L, on all strings π, V accepts with probability at most
ε on input x, π.

We say that the verifier makes q(n) queries if the number of bits of π read2-2

by the verifier is at most q(n), when the input is of size n. PCP(r(n),q(n))
is the class of languages that have probabilistically checkable proof systems
with error probability 1

2 in which the verifier uses O(r(n)) random bits and
makes O(q(n)) queries.

We next extend this to define PCDSs. A probabilistically checkable de-2-3

bate system, or PCDS, consists of a verifier V and a debate format D. As
before, the verifier is a probablistic polynomial-time Turing machine that
takes as input a pair x, π, where π ∈ {0, 1}∗, and outputs 1 or 0. We inter-
pret these outputs to mean “player 1 won the debate” and “player 0 won the
debate,” respectively.

A debate format is a pair of functions f(n), g(n). Informally, for a fixed2-4

n, a debate between two players, 0 and 1, consistent with format f(n), g(n),
contains g(n) rounds. At round i ≥ 1, player i mod 2 chooses a string of
length f(n).

For each n, corresponding to the debate format D is a debate tree. This2-5

is a complete binary tree of depth f(n)g(n) such that, from each node, one
edge is labeled 0 and the other is labeled 1. A debate is any string of length
f(n)g(n). Thus, there is a one-to-one correspondence between debates and
the paths in the debate tree. Moreover, a debate is the concatenation of g(n)
substrings of length f(n). Each substring is called a round of the debate,
and each debate of this debate tree has g(n) rounds.

Again for a fixed n, a debate subtree is a subtree of the debate tree of2-6

depth f(n)g(n) such that each node at level i (the root is at level 0) has
one child if i div f(n) is even, and it has two children if i div f(n) is odd.
Informally, a debate subtree corresponds to a list of “responses” of player 1,
against all possible “arguments” of player 0 in the debate. For this reason, we
also refer to a debate subtree as a strategy of player 1. A strategy of player
0 can be defined in a similar way (where the definition of debate subtree is

5

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §2

modified so that each node at level i has one child if i div f(n) is odd, and
two children if i div f(n) is even). Thus, a pair of strategies, one for each
player, defines a unique debate—namely, the unique path in the intersection
of the strategies (represented as trees) of the players.

A strategy of player 1 could also be defined as a function from nodes of the2-7

complete binary tree on levels i where i div f(n) is even into {0, 1}, i.e., into
responses of player 1. The debate subtree corresponding to such a function is
simply the subtree of the complete binary tree that is reachable from the root
via paths of the following form: At nodes on level i where i div f(n) is even,
follow the outgoing edge selected by the strategy function; at nodes on level
j where j div f(n) is odd, follow either outgoing edge. However, representing
a strategy as a function requires determining responses for many nodes of
the game tree that can never be reached with that strategy. Furthermore,
the proof of our main result is more naturally expressed in terms of subtrees
than functions. For these reasons, we define strategies as subtrees.

A language L has a PCDS with error probability ε if there is a pair (D, V )2-8

where D = (f(n), g(n)), with the following properties:

• For all x in L, there is a debate subtree such that, for all debates π
labeling a path of this subtree, V outputs 1 with probability 1 on input
x, π. In this case, we say that x is accepted by (D, V ).

• For all x not in L, on all debate subtrees, there exists a debate π labeling
some path of the subtree such that V outputs 1 with probability at most
ε on input x, π. In this case, we say that x is rejected by (D, V ).

Equivalently, the first condition states that on all x in L, player 1 has a
strategy such that, for every strategy of player 0, V outputs 1 with probability
1 on the debate defined by the pair of strategies. The second condition states
that on all x not in L, player 0 has a strategy such that, for every strategy
of player 1, V outputs 1 with probability at most ε on the debate defined by
the pair of strategies.

This definition allows “one-sided error,” analogous to the type of errors2-9

that are allowed in the complexity class coRP. We could also define a class of
PCDSs with “zero-sided error,” with three possible outputs, 1, 0, and Λ, for
“player 1 won,” “player 0 won,” and “I don’t know who won,” respectively.
In this case, the verifier must never declare the losing player to be a winner,
but it may, both in the case that x ∈ L and in the case that x /∈ L, say that

6

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §2

it doesn’t know who won. We will see in Corollary 2 that this definition also
gives the class PSPACE.

As in the theory of PCPSs, we say that the verifier makes q(n) queries if2-10

the number of bits of π read by the verifier is at most q(n) when the input
is of size n. The verifier V in a PCDS is required to be nonadaptive (the
bits of π read by V depend solely on the input and the coin flips). If L has
a PCDS with error probability 1

2 in which V flips O(r(n)) coins and reads
O(q(n)) bits of π, we say that L ∈ PCD(r(n), q(n)).

It will be convenient in later proofs to reason about a generalized class,2-11

GPCD(r(n), q(n)). This class is defined exactly as PCD(r(n), q(n)), except
that the verifier of a GPCDS (Generalized Probabilistic Debate System)
nonadaptively queries O(q(n)) rounds of the debate π (rather than O(q(n))
bits of the debate). Thus, in a GPCDS, there is no restriction on the number
of bits queried by the verifier in each round.

Next, we give some definitions relating to approximability of PSPACE-2-12

hard functions. Let f be any real-valued function with domain D ⊆ {0, 1}∗.
Let A be an algorithm that, on input x ∈ {0, 1}∗, produces an output A(x).
We say that A approximates f within ratio ε(n), 0 < ε(n) < 1, if for all
x ∈ D, ε(|x|) ≤ A(x)/f(x) ≤ 1/ε(|x|). If ε(n) > 1, then “A approximates f
within ratio ε(n)” means that 1/ε(|x|) ≤ A(x)/f(x) ≤ ε(|x|). If algorithm A
computes the function g, we also say that g approximates f within ratio ε.

The function f has a polynomial-time approximation scheme, or PTAS, if2-13

for each ε, ε > 0, there is a polynomial-time algorithm A that approximates
f within ratio ε [GJ79].

We say that a function g is PSPACE-hard if PSPACE ⊆ Pg, i.e., if every2-14

language in PSPACE is polynomial-time reducible to g. By “approximating
f within ratio ε(n) is PSPACE-hard,” we mean that, if g approximates f
within ratio ε(n), then g is PSPACE-hard.

Finally, we review some facts about algebraic techniques for encoding2-15

strings. We will use them to prove that PCD(log n, q(n)) = GPCD(log n, q(n)),
which is Theorem 2 below. Let x be an element of {0, 1}n. The robust en-
coding ER(x) of x is an element of {0, 1}2n , indexed by elements v of {0, 1}n,
such that the vth bit of ER(x) is

∑n
i=1 vixi mod 2. Let l be dlog n/ log log ne

and p be a prime in the interval [logc n, 2 logc n], where c is a constant de-
termined in the proof of Lemma 1. Let I = {1, 2, . . . , dlog ne} ⊂ Zp. Since
|I l| ≥ n, we can fix an injective map from {0, 1}n to the set of functions
that map I l to {0, 1}. Regard x as one of these functions I l → {0, 1}. There
exists an l-variable polynomial X over Zp, of degree at most l(|I| − 1), that

7

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §3

agrees with x on all α ∈ I l. The low-degree encoding EP (x) of x is any such
function X: Z l

p → Zp. Let (y1, y2, . . . , ypl) denote EP (x).
The encoding E that is used in the proofs of Theorems 1 and 2 is given2-16

by the formula:

E(x) ≡ (ER(y1), ER(y2), . . . , ER(ypl))

Note that |E(x)| = poly(|x|).
The following expression ∆E′ is defined for every function E ′: S → Σn′ ,2-17

every set S, and every alphabet Σ. Typically, E ′ will be an error-correcting
code, and ∆E′(y) measures the fraction of symbols of y that must be changed
to transform y into a code word. Let y be an element of Σn′ . Then

∆E′(y) ≡ minx∈S(Ham(y, E ′(x)))
n′

where, if yi = σi1 · · ·σin′ , 1 ≤ i ≤ 2, σij ∈ Σ, then Ham(y1, y2) is the
Hamming distance between y1 and y2, i.e., the number of j for which σ1j 6=
σ2j. Also, we define ∆(y1, y2) as the fractional Hamming distance between
y1 and y2, defined on pairs in which y1 and y2 have the same length. That
is, ∆(y1, y2) = Ham(y1, y2)/n where |y1| = |y2| = n.

3 Complexity-Theoretic Results

Our first theorem on the language-recognition power of PCDSs addresses3-1

the question of whether verifiers that read O(q(n)) rounds of the debate tape
have more power than verifiers that read O(q(n)) bits of the debate tape.
Surprisingly, for r(n) = Ω(log n), the answer is no. This result relies heavily
on the following fact about probabilistically checkable proofs.

Theorem 1 (Arora et al. [ALM+92]) Let k, n1, n2, . . ., and nk be inte-
gers and ϕ(x1, x2, . . . , xk) be an NP predicate, where |xi| = ni, for i = 1, 2,
. . . , k. Let n =

∑k
i=1 ni. Then there exists a verifier V that uses O(log n)

random bits and reads O(k) bits of a proof π = (π1, π2, . . . , πk, y) of length
poly(n) with the following properties:

• If ϕ(x1, x2, . . . , xk) = 1, there is a y such that, with probability 1,
V accepts π = (E(x1), E(x2), . . . , E(xk), y).

8

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §3

• For every π = (π1, . . . , πk, y), if V accepts with probability greater than
1
2 , then ϕ(E−1(π1), E−1(π2), . . . , E−1(πk)) = 1.

In the next theorem, given an NP predicate ϕ of arity Θ(q(n)), we will3-2

need to refer to the string y whose existence is guaranteed by the first bul-
let above. Thus, we say y is a PCP(log n, q(n)) proof for the predicate
ϕ(x1, x2, . . . , xΘ(q(n))), and we refer to E(x1), E(x2), . . . , E(xΘ(q(n))) as the
inputs to the PCP(log n, q(n)) proof y.

Theorem 2 For every q(n), PCD(log n, q(n)) = GPCD(log n, q(n)).

Proof of Theorem 2 The direction PCD(log n, q(n)) ⊆ GPCD(log n, q(n))Proof of Theorem 2-1

is immediate; we consider the other direction. Given a GPCDS (D, V ) with
players 1 and 0, we construct an equivalent PCDS (D′, V ′) with players 1′

and 0′. Suppose that D has N rounds on a given input and assume without
loss of generality that N is even. Then D′ has N + 1 rounds. Roughly, the
idea is that in rounds 1 through N , the players 0′ and 1′ play as in debate D,
except they encode their moves using the encoding E defined in Section 2.
In round N + 1, player 1′ writes additional information, in order to convince
V ′ that V would have accepted on the decoded debate in rounds 1 through
N , or that player 0′ has not properly encoded some of its moves.

We first describe a strategy of player 1′ on input x ∈ L that causes V ′ toProof of Theorem 2-2

accept with probability 1. Since x ∈ L, there exists a strategy for 1 on x such
that V accepts with probability 1. This induces the following strategy for 1′

in D′ in the first N rounds. At the ith round, player 1′ first “decodes” each
of the previous rounds 1 through i − 1. Then, with respect to this sequence
of moves, 1′ finds the move m that 1 would write in round i according to its
winning strategy in D. Player 1′ plays E(m) in round i. Here, by “decoding”
a given move, we mean finding the move M that minimizes the Hamming
distance from E(M) to the given move.

The string written by 1′ in round N + 1 is constructed so that V ′ canProof of Theorem 2-3

check that, for each random string R of V , either V outputs 1 if it is given
this random string and the decoded debate of rounds 1, . . . , N or that some
move of 0′ read by V on random string R is a bad encoding. We say that
a string y is a bad encoding if ∆E(y) > ε, where ε > 0 is a parameter that
is determined in Lemma 1 below, and ∆E(y) is as defined at the end of
Section 2. Let V (R) denote the execution of verifier V with random string
R.

9

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §3

More precisely, the move of 1′ in round N + 1 contains the followingProof of Theorem 2-4

strings. First, it contains the encoding of each move of player 0′. Let xi be
the encoding of the move player 0′ in the ith round. Note that if, in round
i, player 0′ writes an encoding of a move of debate system D, then xi is
the encoding of the encoding of a move in the debate system D. Second, it
contains a PCP(log n, 1) proof πij for each bit of each move that 0′ played.
The (i, j)th of these proofs proves that the string encoded by 1′ has the
same value as the jth bit of the ith move played by 0′. (These proofs enable
the verifier V ′ to check that 1′ properly encoded 0′’s moves.) Note that all
these proofs have as input only one string encoded by 1′ and one bit played by
player 0′; therefore PCP(log n, 1) proofs exist, by Theorem 1. Lastly, for each
random seed R, the move of 1′ in round N + 1 contains a PCP(log n, q(n))
proof πR that has one of the following properties:

• when the moves played by 1′ and 0′ are decoded and used as the debate
tape in D, V (R) outputs 1, or

• at least one of the moves corresponding to moves of player 0 that V (R)
reads is a bad encoding.

The inputs to the above statement are O(q) moves by 1′, corresponding to
the O(q) moves of player 1 read by V (R), and also the encoding of the moves
of player 0′ that are in the last move of player 1′. Observe that all the inputs
are encoded by 1′. Lemma 1 shows that the problem of recognizing a bad
encoding is in NP. Thus, by Theorem 1, the PCP(log n, q(n)) proof needed
in the second case exists.

To summarize, in the last round player 1′ writes a string of the formProof of Theorem 2-5

((xi)i, (πij)ij, (πR)R)

where R ranges over random seeds of V , i ∈ {2, 4, . . . , N} and j ∈ {1, 2, . . . , li},
where li is the number of bits in the ith move of player 0′. See Figure 1.

Now we can describe the verifier V ′. First V ′ chooses a random seed RProof of Theorem 2-6

and computes the indices i1, i2, . . . , iq(n) of rounds that V queries using the
random seed R. It then probabilistically checks πR with encoded inputs mik

for each even ik, and xik for each odd ik, where mi is the move in round
i. Additionally, for all odd ik, V ′ chooses a j ∈ {1, 2, . . . , lik} uniformly at
random and probabilistically checks πikj with input xik and the j bit of mik .

Let us show that the debate system (D′, V ′) is a PCDS for L with er-Proof of Theorem 2-7

ror probability 1 − ε
2 . (Note that this implies the theorem since the error

10

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §3

xN

x2

π23π22π21

πR1 πR2

N − 1

N

N + 1

4

3

2

1

D D′

x4

Figure 1: The debate transformation. Everything within the dashed contour
is part of move N + 1 of 1′.

11

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §3

probability can be made less than 1
2 by repeating the verification a constant

number of times in parallel.)
In the case that x ∈ L, it follows easily from the construction that V ′Proof of Theorem 2-8

accepts with probability 1, on the strategy for player 1′ described above.
If x /∈ L, then 0 has a strategy such that V rejects with probability atProof of Theorem 2-9

least 1
2 . Consider the strategy for 0′ induced by this strategy of player 0

(defined in the same way as the induced strategy for player 1′ was defined
for rounds 1 through N). Note that player 0 is declared the winner on input
x for at least half of the random seeds R. Fix some such R. Then, one of
two events must be true. The first is that the proof πR causes the verifier
V ′ to reject with probability at least 1

2 (by Theorem 1). The second is that,
for some i such that round i is read by V (R), the string xi written by player
1 in round N + 1 is not the encoding of the string m actually played by 0′

in round i, but of another string, say x, where ∆(x, m) > ε (where ∆ is the
fractional Hamming distance function defined at the end of Section 2).

Thus, with probability at least ε, V ′ chooses a j such that xj 6= mj, andProof of Theorem 2-10

the proof πij causes V ′ to accept with probability at most 1
2 . Thus V ′ rejects

in the second event with probability at least ε
2 .

Proof of Theorem 2 2

We now prove a technical lemma that was used in the previous argument.3-3

Lemma 1 For some ε > 0, there exists a polynomial-time predicate F with
the following property. For every y, there exists a z such that F (y, z) = 1 if
and only if ∆E(y) ≥ ε.

Proof of Lemma 1 The code E is efficiently decodable in the followingProof of Lemma 1-1

sense: There exists a polynomial-time computable function G such that, for
every z, x:

∆(z, E(x)) ≤ 1
12

⇒ G(z) = x

Let F (z) be the polynomial-time computable predicate ∆(z, E(G(z))) > 1
12 .

The decoding function G is constructed from the decoding functions forProof of Lemma 1-2

the two codes that E is composed of. Let z = (z1, z2, . . . , zpl). First note
that for each i ∈ {1, 2, . . . , pl}, we can find, by exhaustive search, yi that
minimizes ∆(zi, ER(yi)), with ties broken arbitraily. This defines a function
g: Z l

p → Zp.

12

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §3

It is easy to see that the multivariate polynomial self-corrector due toProof of Lemma 1-3

Gemmell and Sudan [GS92] can be used to construct a decoding function H
such that, for every g, x:

∆(g, EP (x)) ≤ 1
3

⇒ H(g) = x (1)

The self-corrector in [GS92] is randomized, but in our context it uses O(log n)
random bits and can therefore be made deterministic at the expense of a
polynomial factor in running time.

Assume that ∆E(z) ≤ 1
12 . Thus there exists x such that ∆(z, E(x)) < 1

12 .Proof of Lemma 1-4

Let f be the multivariate polynomial EP (x). Note that, for every a 6= a′,
∆(ER(a), ER(a′)) = 1

2 . This implies that for each i such that g(αi) 6= f(αi),
∆(zi, ER(f(αi))) ≥ 1

4 . Hence ∆E(z) ≥ 1
4∆(f, g). Thus ∆(f, g) ≤ 1

3 , and
Equation 1 implies that H(g) = x.

Proof of Lemma 1 2

If r(n) = o(log n), then it is not necessarily true that GPCD(r(n), q(n)) ⊆3-4

PCD(r(n), q(n)). For example, it is clear that GPCD(0, 1) is the entire
polynomial-time hierarchy, whereas PCD(0, 1) is just P.

We now turn to the proof of our main theorem: Every language in3-5

PSPACE is recognized by a debate system in which the verifier uses O(log n)
random bits and reads O(1) rounds (equivalently, by Theorem 2, O(1) bits)
of the debate. The following notation is used in the proof. Let Φ =
∃x1∀x2 . . .∃xnφ(x1, . . . , xn) be an instance of the problem (QBF); without
loss of generality, we assume that quantifiers alternate strictly. This instance
Φ of QBF can be thought of as a game between two players, an “existential”
player (player 1) who sets the odd-numbered variables, and a “universal”
player (player 0) who sets the even-numbered variables. This view of the
QBF problem as a game motivates the following definitions. The assignment
tree A for Φ is the complete binary tree of depth n, where one edge from
every internal node is labeled “true” and the other “false.” Each path P
in the tree corresponds to an assignment of the variables; we say P satis-
fies φ if this assignment satisfies φ. Call edges at odd-numbered levels (that
is, corresponding to existentially quantified variables) 1-edges and edges at
even-numbered levels 0-edges. An ∃-strategy subtree A1 is a subtree of A
that has two 0-edges from each node at each even level and one 1-edge from
each node at each odd level. Similarly, a ∀-strategy subtree A0 is a subtree

13

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §3

of A that has two 1-edges from each node at each odd level and one 0-edge
from each node at each even level. An ∃-strategy subtree A1 is optimal if
it maximizes (over all ∃-strategy subtrees) the number of paths that satisfy
φ. Similarly, a ∀-strategy subtree A0 is optimal if it maximizes (over all
∀-strategy subtrees) the number of paths that do not satisfy φ. Note that
if Φ ∈ QBF, all paths of an optimal ∃-strategy subtree satisfy φ, whereas if
Φ /∈ QBF, then no path of an optimal ∀-strategy subtree satisfies φ.

3-6

Theorem 3 PSPACE = GPCD(log n, 1).

Proof of Theorem 3 The direction GPCD(log n, 1) ⊆ PSPACE is straight-Proof of Theorem 3-1

forward. To prove the other direction, we show that QBF ∈ GPCD(log n, 1).
Let Φ = ∃x1∀x2 . . .∃xnφ(x1, . . . , xn) be an instance of QBF in which quan-
tifiers alternate strictly. Let A0, A1 be optimal ∀- and ∃-strategy subtrees
of Φ, respectively. Note that Φ ∈ QBF if and only if the unique path P of
length n that is in both A0 and A1 satisfies φ.

We give a debate format and a protocol of players 0 and 1 that enableProof of Theorem 3-2

the players to record parts of the strategy subtrees A0 and A1 in such a way
that a verifier can efficiently check whether or not path P satisfies φ.

In the debate, the players alternately play rounds, starting with playerProof of Theorem 3-3

1. Roughly, in one round, player i does two things: presents a challenge to
player 1 − i and responds to previous challenges written by player 1 − i. A
challenge by player 1 − i to player i is simply a path of the strategy subtree
Ai that ends in a (1 − i)-edge. The response of player i to this challenge is
the edge that extends this path in Ai (if the path is not already of length n).

Note that a challenge to player 1 (respectively 0) has to be a path of A1Proof of Theorem 3-4

(respectively A0). How can player 0 write down such a path without knowing
A1? Essentially, in round t, player 0 must present paths that are consistent
with what player 1 wrote in rounds 1 through t − 1. We will elaborate on
this point below.

Play proceeds as follows: In round t, one of the players writes a tree Tt.Proof of Theorem 3-5

If player i is honest, then in round t ≡ i mod 2, player i writes the (unique)
smallest subtree Tt of Ai such that Tt contains all challenges by player 1−i at
rounds j < t. The debate format is thus (f(n), g(n)), where g(n) is chosen to
make the error probability small enough and f(n) is chosen to allow encoding
of binary trees of the appropriate form; we will explain in detail how to choose
f and g when we prove correctness of the protocol.

14

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §3

Before specifying the algorithm of the verifier V , we give some examplesProof of Theorem 3-6

of debates in which player 1 is honest. The values assigned to the variables
depend on the input formula and are unimportant for the purposes of this
discussion.

Example 1 Suppose that player 0 is honest as well (see Figure 2). In round
t, 1 ≤ t ≤ n, player i ≡ t mod 2 assigns a value to xt by writing down a path
of length t that extends the path written in round t−1. The path written in
round n is P , the intersection of A1 and A0. In rounds n + 1 through g, the
path P is repeated in each round. Verifier V will declare player 1 the winner
(i.e., accept the input) if and only if P satisfies φ.

Example 2 Suppose that Φ ∈ QBF and that player 0 cheats in an effort to
convince V to reject (see Figure 3). One way player 0 may do this is to play
a move that is not a subtree of A1—that is, to lie about player 1’s previous
moves.

Note that, in round 3, the honest player 1 need only extend the FF path of
the tree played by 0 in round 2. Because the TT path that appears in round
2 is not in A1, i.e., because it is not consistent with player 1’s move in round
1, it does not satisfy the definition of a challenge.

Example 3 Once again, suppose that Φ is true and that player 0 cheats.
This time, player 0 does so by lying about player 0’s own moves, rather than
those of player 1 (see Figure 4).

In this example, both the FF path of round 4 and the FT path of round
2 require a response by player 1 in round 5, because both are legitimate
challenges, i.e., neither is inconsistent with player 1’s previous moves.

A move Tt by an honest player i must have the following properties: (i) atProof of Theorem 3-7

most one edge from every node is an i-edge (because Tt is a subtree of Ai);
and (ii) the edge to every leaf of depth < n + 1 is an i-edge (because player
i responds to each recorded challenge by player 1 − i). A tree Tt satisfying
these two properties is valid . (In Example 3 above, player 0 should choose
which of the paths FTT or FFF of round 5 to extend in round 6, because
extending both of them would result in an invalid move T6.) Also, we define
a valid challenge by player 1 − i to player i at round j to be the (unique)
longest challenge that lies in Tj, if Tj is valid.

Note that if player i is honest, then Tt−2 is a subtree of Tt. This is becauseProof of Theorem 3-8

both Tt−2 and Tt respond to all valid challenges from rounds j < t− 2. Also,
15

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §3

tt

x1 = T

tt

tt

�
�

�

�
�

�x1 = T

rr

rr

rr

rr

rr

rr

tt

tt

tt

tt

rr

rr

rr

tt

tt

tt

tt

tt

tt

xn = T

tt

tt

�
�

�
�

�
�

@
@

@

@
@

@

�
�

�
�

�
�

@
@

@

@
@

@

�
�

�
�

�
�

�
�

�

�
�

�

Round 1:

Round 2:

Round 3:

x3 = F

x1 = T

x2 = T

x2 = T

x3 = F

x1 = T

Same as round n.

Same as round n.

Round n:

Round g:

Round n + 1:

x2 = T

Figure 2: Both player 1 and player 0 are honest.
16

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §3

rr

rr

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

@
@

@

@
@

@

@
@

@

@
@

@

rr

@
@

@

@
@

@

Round 3:

�
�

�

�
�

�
�

�
�

�
�

�

@
@

@

@
@

@
@

@
@

@
@

@

�
�

�

�
�

�

x1 = F

x1 = F

x2 = F

x1 = T

x2 = T

x1 = F

x2 = F

x3 = T

Round 1:

Round 2:

Figure 3: Player 1 is honest and player 0 is lying about player 1’s moves.

17

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §3

rr

rr

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

tt

@
@

@

@
@

@

@
@

@

@
@

@

�
�

�

�
�

�

rr

@
@

@

@
@

@

x3 = T

�
�

�

�
�

�

�
�

�

�
�

�

@
@

@
@

@
@

@
@

@

@
@

@

@
@

@

�
�

��

�
�

��

�
�

�

�
�

�

x1 = F
Round 1:

Round 2:
x1 = F

x2 = T

Round 3:
x1 = F

x3 = T

Round 4:
x1 = F

x2 = F

x1 = F

x2 = F

x3 = F

x2 = T

Round 5:

x2 = T

Figure 4: Player 1 is honest and player 0 is lying about player 0’s own moves.

18

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §3

Tt has at most one more leaf than Tt−2, namely, the leaf of the path that
contains the valid challenge at round t − 1, if it lies on a different path from
previous valid challenges.

We take the number of rounds to be g = g(n) > 4n; this will ensure thatProof of Theorem 3-9

the error probability is no more than 2(n − 1)/(g − 3), as explained below.
We let f(n), the length of a round, be such that every binary tree of depth at
most n with at most g(n) leaves can be described using f(n) bits, via some
simple encoding of trees to strings. This is sufficient, since the number of
leaves of Tg(n) is at most g(n).

Below, we state V ’s algorithm formally and prove it correct, but first weProof of Theorem 3-10

explain intuitively how V can catch a cheating player by examining only a
constant number of rounds of the debate. Suppose that the input formula is
true and hence that player 1 follows the protocol honestly. If they are valid,
the trees Tg (player 1’s last move) and Tg−1 (player 0’s last move) intersect in
a unique path, say P (g). If it is of length n, then P (g) satisfies φ, and V will
certainly declare player 1 the winner. Thus player 0 must try to “stall” and
prevent P (g) from growing to length n. Consider a move Tt, where t < g − 1
is even. The move Tt contains a (unique) longest prefix of P (g), say P (t).
Informally, we say that player 0 “cooperates” if |P (t)| > |P (t − 1)|. Player 0
can cooperate in fewer than n rounds, or else P (g) is of length n. Essentially,
our formal proof shows that, if player 0 indeed cooperates in fewer than n
rounds, then many intermediate moves Tt are either invalid or not subtrees
of the final move Tg−1. Either way, V can detect with constant probability
that player 0 is cheating by examining only a constant number of randomly
chosen moves.

We now give a formal statement of V ’s algorithm and a proof of itsProof of Theorem 3-11

correctness. Verifier V first examines the last subtrees, Tg−1 and Tg, written
by players 0 and 1 respectively. If Tg−1 is not valid, V accepts; if Tg is not
valid, V rejects. Otherwise, let P (g) be the (unique) path in both Tg−1 and
Tg. If the length of P (g) is n and P (g) satisfies φ, V accepts. If the length
of P (g) is n and P (g) does not satisfy φ, then V rejects.

Otherwise, the length of P (g) is less than n. In this case, V chooses aProof of Theorem 3-12

random round t, 1 < t < g, in which player 1 plays, and examines rounds t
and t − 1. If Tt is not valid or is not a subtree of Tg, V rejects. Similarly, if
Tt−1 is not valid or is not a subtree of Tg−1, V accepts. Otherwise, let P ′ be
the longest path in both Tt−1 and Tt. If the last edge of P ′ is not a 0-edge,
then V rejects. Otherwise, V accepts. This completes the statement of V ’s
algorithm.

19

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §3

Now, suppose that Φ ∈ QBF and that player 1 is honest. We show thatProof of Theorem 3-13

V accepts with probability 1. This is true if the length of P (g) is n, since
in this case P (g) is a path in A1 and hence satisfies φ. If the length of P (g)
is less than n, then for all rounds t in which player 1 plays, Tt is valid and
a subtree of Tg. Suppose that Tt−1 is also valid and a subtree of Tg−1. It
remains to show that the longest path P ′ in both Tt−1 and Tt must end in a
0-edge.

First, note that the length of P ′ must be < n; otherwise P ′ is contained inProof of Theorem 3-14

both Tg−1 and Tg and therefore P ′ = P (g), which contradicts our assumption
that the length of P (g) is < n. Also, since Tt−1 is valid, all paths of Tt−1 of
length < n that end in a 1-edge are followed by a 0-edge. Furthermore, if
P ′ ends in a 1-edge, the 0-edge following P ′ in Tt−1 must also be in Tt, since
the path formed by P ′ and this 0-edge is a prefix of the valid challenge of
player 0 to player 1 at round t − 1, and player 1 is honest. This contradicts
the fact that P ′ is the longest path in both Tt−1 and Tt. Hence P ′ must end
in a 0-edge.

We next show that if Φ /∈ QBF and player 0 is honest, then V acceptsProof of Theorem 3-15

with probability at most 2(n − 1)/(g − 3). If the length of P (g) is n, V
rejects, since in this case P (g) is a path in A0, and therefore does not satisfy
φ. Hence suppose that the length of P (g) is less than n; thus player 1 cannot
be honest. We claim that in this case, there can only be n − 1 values of t
such that V accepts when rounds t and t − 1 are examined. Since V chooses
t randomly and uniformly from (g − 3)/2 choices, the error probability is at
most 2(n − 1)/(g − 3). The number of choices for t is (g − 3)/2, because
V never chooses player 1’s first move, since it is not preceded by a move of
player 0.

If Tt is valid, let p(t) be the length of P (t), where P (t) is the longestProof of Theorem 3-16

prefix of P (g) in Tt. For every t such that player 1 plays in round t, we show
that, if V accepts on examining rounds t and t − 1, then p(t) > p(j) for all
j < t such that Tj is valid. This implies the claim, since then V accepts only
the first round for which p(i) = 1, p(i) = 2, . . . , p(i) = n − 1, and there are
at most n − 1 such rounds.

Suppose, then, that V accepts on examining rounds t and t− 1. SupposeProof of Theorem 3-17

that j < t is a round of player 1, where Tj is valid. We need to show
p(j) < p(t). We first show that P (j) is a prefix of P (t − 1), which implies
that p(j) ≤ p(t − 1). This is because P (j), with the last edge removed if it
is a 0-edge, is the prefix of a valid challenge of player 1 to player 0 at round
j, and since player 0 is honest, player 0 responds to this challenge at round

20

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §4

t−1. To complete the proof, we show that p(t−1) < p(t). Note that it must
be the case that P ′, the longest path in both Tt−1 and Tt, ends in a 0-edge,
since V accepts. Also, this path must be a prefix of P (t − 1) and P (t). In
fact, this path must equal P (t − 1). (Otherwise, the 1-edge following P ′ in
P (t − 1) must be in Tg. Since Tt is a subtree of Tg, this 1-edge must be the
1-edge of Tt following P ′, contradicting the fact that P ′ is the longest path
in both Tt−1 and Tt.) Finally, the 1-edge following P ′ in Tt must be in Tg

(since V checks for this) and also in Tg−1 (since player 0 is honest). Thus
P (t) contains P (t − 1) as a prefix, and it also contains an additional 1-edge.
This implies that p(t) > p(t − 1) ≥ p(j), as required.

Proof of Theorem 3 2

Combining Theorem 3 with Theorem 2, we obtain the following result.

Corollary 1 PSPACE = PCD(log n, 1).

We can also obtain a characterization of debate systems that allow “zero-3-7

sided” error. Let a ZPCDS be a PCDS for which the verifier returns one of
the three possibilities “player 1 wins,” “player 0 wins,” and “I don’t know
who wins,” in which the verifier is always right in the first two cases, and the
probability of the third case is at most ε < 1

2 .

Corollary 2 PSPACE = ZPCD(log n, 1).

Proof of Corollary 2 This follows from the fact that PSPACE is closed
under complement. Given an L ∈ PSPACE, our main result shows that L
and the complement of L have one-sided PCDSs (D, V ) and (D, V ), respec-
tively, with error probability 1

2 . Now consider the debate in which both D
and D are performed, and the verifier declares 0 the winner if V rejects,
declares 1 the winner if V rejects, and otherwise says that it does not know
the winner. It is easy to see that this verifier will have zero-sided error and
will declare a winner with probability at least 1

2 .

Proof of Corollary 2 2

4 Functions that are PSPACE-Hard
to Approximate

In this section, we give many examples of PSPACE-hard functions that are4-1

hard to approximate. We consider maximization versions of the problem of
21

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §4

deciding whether a quantified Boolean formula is true and show that one
version can be approximated within a ratio of 1

2 , yet there is some constant
ε < 1 such that approximating the function within a ratio of ε is PSPACE-
hard. We prove even stronger results for the maximization versions of several
other PSPACE-complete problems. For example, there is a constant ε > 0
such that approximating Finite Automata Intersection (cf. Kozen [Koz77])
and Generalized Geography (cf. Schaefer [Sch78]) within ratio nε is PSPACE-
hard.

We first consider variants of a well-known PSPACE-complete problem,4-2

that of deciding whether a quantified Boolean formula is satisfiable. In what
follows, we consider quantified (Boolean) formulas in CNF (conjunctive nor-
mal form); that is, quantified formulas of the form:

Φ = Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn)

where each Qi ∈ {∃, ∀}, each xi is a Boolean variable, and φ is in conjunctive
normal form. If each clause of φ has exactly three literals, we say the quan-
tified formula is in 3CNF. Let QSAT and Q3SAT be the sets of satisfiable
quantified formulas in CNF and 3CNF, respectively.

Suppose that the variables of the formula are chosen, in order of quan-4-3

tification, by two players 0 and 1, where player 0 chooses the universally
quantified variables and player 1 chooses the existentially quantified vari-
ables. If player 1 can guarantee that k clauses of φ will be satisfied by
the resulting assignment, regardless of what player 0 chooses, we say that k
clauses of Φ are simultaneously satisfiable. We let MAX-QSAT (respectively
MAX-Q3SAT) be the function whose domain is the set of quantified formu-
las that maps a quantified formula (respectively quantified 3CNF formula)
Φ to the maximum number of simultaneously satisfiable clauses. The results
in [ALM+92] and [AS92] show that MAX-QSAT is NP-hard to approximate
within certain ratios.

Theorem 4 There is a constant 0 < ε < 1 such that approximating
MAX-Q3SAT within ratio ε is PSPACE-hard.

Proof of Theorem 4 Let L be a language in PSPACE. We showed inProof of Theorem 4-1

Section 3 that L is in PCD(log n, 1). We reduce the problem of deciding
whether a string x is in L to the problem of approximating the number of
simultaneously satisfiable assignments of a quantified 3CNF formula.

22

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §4

Let (D, V ) be a PCDS for L, where V is polynomial-time bounded andProof of Theorem 4-2

uses r(n) = O(log n) random bits and O(1) queries. Let D = (f(n), g(n)).
Without loss of generality, we can assume that f(n) and g(n) are polynomials.

Given an instance x of L, say of length n, we construct a quantifiedProof of Theorem 4-3

formula from (D, V ) as follows. There are f(n)g(n) ordered variables, one
for each bit of a debate corresponding to the debate format. The first f(n)
variables, which correspond to the first round of a debate, are existentially
quantified, the next f(n) variables, which correspond to the second round,
are universally quantified, and so on.

For each sequence of random bits R of length r(n), there is a subformulaProof of Theorem 4-4

with s = O(1) clauses, with variables corresponding to the bits of a debate
that are queried on random sequence R. The subformula is satisfied by a
truth assignment to the variables if and only if the verifier outputs 1, when
the query bits are as in the truth assignment.

If x is accepted by (D, V ), then there exists a debate subtree such that,Proof of Theorem 4-5

on each debate (or path of the tree), V outputs 1 on all of the random strings.
Thus, player 1 can choose the values of the existential variables so that all
clauses of the subformulas are simultaneously satisfiable.

If the input x is not accepted by (D, V ), then in every debate subtree,Proof of Theorem 4-6

there is a debate on which V outputs 1 on at most 1
2 of the random strings.

Thus, no matter what truth assignment player 1 chooses for the existential
variables, there is a choice for the universal variables such that at most 1

2
of the subformulas are satisfied. Hence, at most 1

2 of the subformulas are
simultaneously satisfiable. Since each subformula contains O(1) clauses, it
follows that at most a constant fraction < 1 of the clauses are simultaneously
satisfiable.

Proof of Theorem 4 2

Let (log n)-MAX-Q-FORMULA be the function whose domain is the set4-4

of quantified formulas in which the “clauses” are general formulas with at
most log n variables instead of being in CNF. The above result can be ex-
tended to prove the following.

Theorem 5 There is a constant 0 < ε < 1 such that approximating
(log n)-MAX-Q-FORMULA within ratio nε is PSPACE-hard.

Proof of Theorem 5 Use standard pseudorandom sampling techniques
[CW89, IZ89].

2

23

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §4

We next consider a variant of Q3SAT called Balanced Q3SAT (QB3SAT).4-5

We say a quantified formula is balanced if every clause of the formula contains
some existentially quantified variable. Balanced Q3SAT consists of those true
quantified formulas in 3CNF form that are also balanced. This language is
easily seen to be PSPACE-complete, by the following reduction from Q3SAT.
An instance

Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn)

of MAX-QSAT, where φ has m clauses, is mapped to the instance

Q1x1Q2x2 . . . Qnxn∃w1 . . .∃wmφ′(x1, x2, . . . , xn, w1, . . . , wm)

where φ′ is obtained from φ by replacing each clause Cj = (l1 ∨ l2 ∨ l3) of φ
by the two clauses (wj ∨ l1 ∨ l2) and (w̄j ∨ l3 ∨ l3), 1 ≤ j ≤ m.

We define the corresponding function MAX-QB3SAT to be the function4-6

MAX-Q3SAT, restricted to the domain of balanced quantified formulas. This
provides an example of a function that can be approximated to within some
constant ratio but cannot be approximated to within an arbitrary constant
ratio, unless PSPACE = P.

Lemma 2 There is a polynomial-time algorithm that approximates
MAX-QB3SAT within ratio 1

2 .

Proof of Lemma 2 Let Φ = Q1x1 . . . Qnxnφ(x1, . . . , xn) be a balanced quan-Proof of Lemma 2-1

tified formula in 3CNF. Let φ′ be the formula obtained from φ by eliminating
all universally quantified variables. Since φ is balanced, note that the number
of clauses of φ′ is equal to the number of clauses of φ (however, clauses may
now have only one literal).

Johnson [Joh74] showed that a truth assignment to the variables of φ′ thatProof of Lemma 2-2

satisfies at least 1
2 of the clauses can be found in polynomial time. Player

1 can use this assignment to ensure that at least 1
2 of the clauses of φ are

satisfied, no matter what the values of the universally quantified variables
are.

Proof of Lemma 2 2

Lemma 3 There is a constant 0 < ε < 1 such that approximating
MAX-QB3SAT within ratio ε is PSPACE-hard.

24

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §4

Proof of Lemma 3 In Theorem 4, we reduced the problem of deciding
whether an input x is accepted by a PCDS (D, V ) to the problem of ap-
proximating a quantified formula Φ. The formula Φ can be converted into a
balanced subformula as described in the discussion preceding Lemma 2. It
is straightforward to show that the resulting balanced quantified formula Φ′

also has the property that, if x is accepted by (D, V ), then all clauses of Φ′

are simultaneously satisfiable, but if x is not accepted, at most a constant
fraction < 1 are simultaneously satisfiable.

Proof of Lemma 3 2

We next consider a problem from automata theory. Let FA-INT be the4-7

set of sequences A1, A2, . . . , Am of deterministic finite-state automata having
the same input alphabet Σ such that there exists a string w that is accepted
by all the automata. Kozen [Koz77] showed the problem to be PSPACE-
complete.

The function MAX-FA-INT has as its domain the set of all sequences4-8

A1, A2, . . . , Am of deterministic finite-state automata having the same input
alphabet Σ, and maps the sequence to the largest number k such that there
exists a string w that is accepted by k of the automata. We prove a non-
approximability result for MAX-FA-INT.

Theorem 6 There is a constant 0 < ε < 1 such that approximating
MAX-FA-INT within ratio nε is PSPACE-hard.

Proof of Theorem 6 We describe a reduction from a new variant ofProof of Theorem 6-1

MAX-Q3SAT. The function MAX-FIX-QSAT differs from MAX-Q3SAT
in two ways. First, the domain is the set of quantified formulas, where the
“clauses” are now the conjunction of O(log n) “subclauses,” each the disjunc-
tion of three literals. Second, given an instance of this domain, the function
outputs the maximum size k of a set of clauses that player 1 can guaran-
tee will be satisfied, regardless of what assignment player 0 chooses for the
universal variables. Thus for MAX-FIX-QSAT, the set of k satisfied clauses
must be fixed in advance, that is, the set must be the same for all assign-
ments of player 0. However, for MAX-Q3SAT, the set of k simultaneously
satisfied clauses may depend on the assignments of player 0. The proof of
Theorem 4 can be extended to show that there is some constant ε > 0 such
that approximating MAX-FIX-QSAT to within ratio nε is PSPACE-hard.

25

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §4

We now describe our reduction from MAX-FIX-QSAT to MAX-FA-INTProof of Theorem 6-2

such that an instance of MAX-FIX-QSAT has a set of k clauses that player
1 can guarantee will be satisfied, if and only if the instance of MAX-FA-INT
has k automata that accept the same string. Let

Φ = Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn)

be an instance of MAX-FIX-QSAT, where φ has m clauses. Moreover, assume
without loss of generality that each variable appears in some clause.

We first describe a set Valid of strings w; roughly, each string in this setProof of Theorem 6-3

describes possible choices of player 1 for the existentially quantified variables,
against all possible choices of player 0 for the universally quantified variables.
We will later construct m sets of automata, one set per clause, such that all
automata in each of k sets accept some string w, which happens to lie in
the set Valid, if and only if the quantified formula Φ has k simultaneously
satisfiable clauses.

Each string w in the set Valid is of the form $w1$w2$ . . . $wN$, whereProof of Theorem 6-4

each wi = wi1wi2 . . . win is a binary string of length n, corresponding to a
truth assignment to the variables of φ, and N = 2u, where u is the number
of universally quantified variables in Φ. Moreover, w must have properties
(1), (2), and (3) below.

Roughly, these properties are necessary and sufficient to ensure that w isProof of Theorem 6-5

in Valid if and only if the strings wi correspond to paths of an ∃-assignment
subtree that describes the assignments of player 1 against all possible as-
signments of player 0 (as explained in the paragraph preceding Theorem 3).
Note that such a tree has N leaves. Moreover, these paths are enumerated
in order, from left to right of the assignment subtree. We now list the three
properties.

1. Suppose that xj is universally quantified. Then, w1j = 0 and wNj = 1.
Moreover, if wi is such that wij = 1 for all j such that xj is universally
quantified, then i = N .

2. Suppose that xj is universally quantified and i > 1. Then, wij = w̄i−1,j

if for all j′ > j such that xj′ is universally quantified, wi−1,j′ = 1, and
wij = wi−1,j otherwise.

3. Suppose that xj is existentially quantified and i > 1. Then, wij =
wi−1,j, unless for all j′ > j such that xj′ is universally quantified,
wi−1,j′ = 1. In the latter case, there is no restriction on wij.

26

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §4

We say w is not valid at index j, if property (2) or (3) fails for j.
We consider two types of automata: “syntax checking” automata andProof of Theorem 6-6

“clause checking” automata. We will later use these automata to construct
the automata that are used in the MAX-FA-INT instance. For 1 ≤ j ≤ n,
automaton Sj checks that the jth bit of each wi has the property (2) or
(3) above, depending on whether j is universally or existentially quantified.
Automaton Sn+1 checks that the $s are separated by strings of length exactly
n, and that property (1) above holds. Clearly, a string is accepted by all n+1
of the automata if and only if it is in the set Valid. Moreover, each of these
automata can be constructed to have poly(n) states.

There are m clause-checking automata C1, . . . , Cm, each with poly(n)Proof of Theorem 6-7

states, such that a string w ∈ Valid is accepted by Cj if and only if on all
paths of the corresponding assignment subtree, the jth clause is satisfied.

We now construct m automata. The ith automaton Ai does the followingProof of Theorem 6-8

checks on its input string.

1. Perform the check done by automaton Sn+1.

2. If xj or x̄j is a literal of Ci, then perform the check of Sj. (In this case,
say that Ai examines bit xj.)

3. Perform the check done by automaton Ci.

Check (2) can be done by an automaton with poly(n) states. Roughly, for
each i, the automaton stores the the bits wi−1,j and wij, where bit xj is
examined by Ci. Also, the position of the rightmost universal index with
value 0 in wi is stored. This information is sufficient to perform the check of
Sj on the string wi. Since Ai performs the checks of three automata of size
poly(n), Ai is also of size poly(n).

If player 1 can guarantee that a fixed set of k clauses of φ are satisfiedProof of Theorem 6-9

for all assignments of player 0, then there is a corresponding string w that is
accepted by k automata.

Conversely, suppose that k > 0 automata all accept some string w. NoteProof of Theorem 6-10

that w may not be a member of Valid. However, w must pass check (1),
because k > 0. Hence, suppose that w is not valid at I indices. We prove by
induction on I that there exists a string w′ in Valid such k automata accept
w′. From this it follows that there is a set of k clauses of Φ that player 1 can
guarantee will be satisfied.

The base case, when I = 0, is immediate, for in that case w = w′.Proof of Theorem 6-11

Suppose I > 0, and let j be the smallest invalid index. In what follows,
27

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §4

if xj is existentially (universally) quantified, we say that j is an existential
(universal) index.

If j is an existential index, we define w′
i as follows for 1 ≤ i ≤ N : LetProof of Theorem 6-12

w′
ij = 0 and let w′

is = wis for s 6= j. The resulting string has I − 1 invalid
indices. Furthermore, it is still accepted by k automata. (This is because
none of the k accepting automata can possibly examine bit j.) We can now
apply induction to complete the proof.

Next, suppose that j is a universal index. The procedure to constructProof of Theorem 6-13

w′ from w is more complicated in this case. We do it in stages. For each
set of bits b1 . . . bj−1, we consider separately the (unique) longest contigu-
ous substring wr$ . . . $wr′$ of w (if any) such that b1 . . . bj−1 is a prefix
of each wi, r ≤ i ≤ r′. Call this substring w[b1 . . . bj−1]. In the next
paragraph, we describe a new substring w′[b1 . . . bj−1] that is obtained from
w[b1 . . . bj−1]. We then let w′ be the string obtained by concatenating the
substrings w′[b1 . . . bj−1] in the appropriate order. Our construction ensures
that w′ has I−1 invalid indices and is accepted by all k automata that accept
w.

Therefore, fix b1 . . . bj−1, and consider only the substring wr$ . . . $wr′$.Proof of Theorem 6-14

Note that, for all universal indices j′ > j, wrj′ = 0 if j′ is valid, and wr′j′ = 1.
(If this were not the case, it would contradict the facts that 1 . . . j − 1 are
valid indices and that wr$ . . . $wr′$ is the longest substring of w such that
b1 . . . bj−1 is a prefix of each wi.) Let l be the smallest number such that, for
all universal indices j′ > j, wlj′ = 1.

Let w′
r$ . . . $w′

l$ be such that, for 1 ≤ i ≤ l, w′
ij = 0, and, for s 6= j,Proof of Theorem 6-15

w′
is = wis. Similarly, let w′′

r$ . . . $w′′
l $ be such that, for 1 ≤ i ≤ l, w′′

ij = 1
and, for s 6= j, w′′

is = wis.
Then, the new string w′[b1 . . . bj−1] is w′

r$ . . . $w′
l$w

′′
r$ . . . $w′′

l $.Proof of Theorem 6-16

This completes the description of w′. The construction guarantees thatProof of Theorem 6-17

(i) w′ has I −1 invalid indices (namely, those invalid indices j′ > j of w) and
(ii) w′ is accepted by the k automata that accept w. Again, induction can
be applied to complete the proof.

Proof of Theorem 6 2

Generalized Geography is an abstraction of a popular car game in which4-9

two players alternately list the names of countries, each beginning with the
last letter of the previous country, until one player cannot list a new country.
A corresponding game can be played on a directed graph G that has a dis-
tinguished start node s. A marker is initially placed on s, and two players,

28

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §4

0 and 1, alternately move it along an edge, with the constraint that player 1
starts and each edge can be used only once. The first player unable to move
loses. Schaefer [Sch78] defines GGEOG to be the set of pairs (G, s) such that
player 1 has a winning strategy.

Informally, a natural optimization version of GGEOG is to compute how4-10

long player 1 can keep the game going, even if player 1 does not eventually
win the game. We say (G, s) can be played for k rounds if player 1 has a
strategy that causes the marker to move along k edges of the graph before
the game ends. We define MAX-GGEOG to be the function whose domain
is the set of pairs (G, s), where G is a directed graph with node s, that maps
a pair (G, s) to the maximum number k of rounds that (G, s) can be played.

Theorem 7 There is a constant 0 < ε < 1 such that it is PSPACE-hard to
approximate MAX-GGEOG within ratio nε.

Proof of Theorem 7 We first modify Schaefer’s reduction [Sch78] to ob-Proof of Theorem 7-1

tain a reduction from MAX-Q3SAT to MAX-GGEOG. We later describe
a simple modification of our construction, to obtain a reduction from
(log n)-MAX-Q-FORMULA to MAX-GGEOG.

Let Φ = Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn) be an instance of MAX-Q3SAT,Proof of Theorem 7-2

where φ contains m clauses. In what follows, we assume that n is even and
that Qn = ∀; the reduction can easily be modified to handle the other cases.

We construct from Φ an instance (G, s) of MAX-GGEOG such that, ifProof of Theorem 7-3

a maximum of k clauses of Φ are simultaneously satisfiable, then (G, s) can
be played for a maximum of 4n + kn2 + O(1) steps. From this property, it
follows that, given an approximate value for the length of the generalized
geography game, an approximate value for the number of satisfiable clauses
can be deduced. The graph G is composed of a “variable-setting” compo-
nent, a “clause-testing” component and a “line.” We describe each of these
components in turn and also describe how they are interconnected.

We first describe the variable-setting component. The node set is:Proof of Theorem 7-4

V1 = { xi, x̄i, ui, vi | Qi = ∃, 1 ≤ i ≤ n }
∪ {xi, x̄i, ui, vi, wi, w̄i, zi | Qi = ∀, 1 ≤ i ≤ n }
∪ {un+1}

Node u1 is the start node s. The nodes xi, x̄i, 1 ≤ i ≤ n are referred toProof of Theorem 7-5

29

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §4

below as “literal” nodes. The edge set is:

E1 = { (ui, xi), (ui, x̄i), (xi, vi), (x̄i, vi), (vi, ui+1) | Qi = ∃, 1 ≤ i ≤ n }
∪

{
(ui, wi), (ui, w̄i), (wi, xi), (w̄i, x̄i)
(xi, vi), (x̄i, vi), (vi, zi), (zi, ui+1)

∣∣∣∣∣ Qi = ∀, 1 ≤ i ≤ n

}

Thus, the variable-setting component consists of n diamond-shaped gad-Proof of Theorem 7-6

gets that are strung together. The construction ensures that for each i, the
choice of whether to follow the path through xi or x̄i is made by player 0 if
xi is a universally quantified variable, and by player 1 if xi is an existentially
quantified variable. Informally, this choice determines a truth assignment to
the variable xi.

We next describe the clause-testing component. The node set is:Proof of Theorem 7-7

V2 = { yk, y
′
k, y

′′
k | 1 ≤ k ≤ m } ∪ { ykj | 1 ≤ k ≤ m, 1 ≤ j ≤ n2 − 3 }

The edge set is

E2 = { (un+1, yk) | 1 ≤ k ≤ m }
∪ { (yk, y

′
k), (yk, y

′′
k), (y

′
k, yk1) | 1 ≤ k ≤ m }

∪ { (ykj, ykj+1) | 1 ≤ k ≤ m, 1 ≤ j ≤ n2 − 4 }
∪ { (ykn2−3, un+1) | 1 ≤ k ≤ m }

Note that, because we are assuming that the last quantifier is ∀, playerProof of Theorem 7-8

1 chooses, from un+1, an edge to some yk. Informally, node yk corresponds
to a clause Ck, which player 1 claims is true. At that point, player 0 can
either move to y′′

k , in which case player 0 is challenging player 1 that clause
Ck is false, or y′

k, in which case player 0 is not challenging. If player 0 does
not challenge, a path of length n2 is followed, back to un+1, where this is
repeated.

Other interconnections between the clause-testing and variable-settingProof of Theorem 7-9

components are as follows:

E12 = { (y′′
k , xi) | xi occurs unnegated in clause k }

∪ { (y′′
k , x̄i) | xi occurs negated in clause k }

Thus, if player 0 challenges clause Ck, player 1 chooses a literal of theProof of Theorem 7-10

clause. If the literal is false, player 0 can follow an edge of the diamond and
force player 1 to lose in one more move.

30

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems §5

We finally describe the line. The node set is V3 = { li | 1 ≤ i ≤ n4 }. TheProof of Theorem 7-11

edge set is E3 = { (lj, lj+1) | 1 ≤ j ≤ n4 − 1 }. Thus, this is simply a line
with n4 − 1 edges.

The following edges connect each literal node of the variable-testing com-Proof of Theorem 7-12

ponent to the line:

E13 = { (xi, l1), (x̄i, l1) | 1 ≤ i ≤ n }

The purpose of this line is to ensure that player 0 never challenges player 1
on a clause that is actually true. Otherwise, player 1 can force the game to
end up on the line and thus take n4 steps, and also player 0 loses.

Thus, the whole reduction gives G = (V, E) where V = V1 ∪ V2 ∪ V3 andProof of Theorem 7-13

E = E1 ∪ E2 ∪ E12 ∪ E3 ∪ E13.
This completes the reduction from MAX-Q3SAT and implies that thereProof of Theorem 7-14

is a constant ε such that approximating MAX-GGEOG within ratio ε is
PSPACE-hard. By reducing from (log n)-MAX-Q-FORMULA instead of
MAX-Q3SAT, we improve the result to ratio nε. In this new reduction,
y′′

k is connected to a subgraph that simulates the kth formula φk in the
following way. There is a node for each of the operators of φk and possibly
some auxiliary nodes. If φk = φ′

k ∨ φ′′
k, we make sure (possibly by adding an

auxiliary node) that player 1 makes the move from the node corresponding to
the ∨ operator. Thus, player 1 chooses the subformula φ′′′

k such that φ′′′
k = 1.

If φk = φ′
k ∧ φ′′

k we make sure (possibly by adding an auxiliary node) that
player 0 makes the move from the node corresponding to the ∧ operator. If
φk is a literal, we connect it to the diamonds, as before. The paths from the
nodes y′

k to un+1 are longer than before and depend on ε.

Proof of Theorem 7 2

5 Subsequent Related Work

This section contains a brief discussion of related work that has been done5-1

since our results first appeared [CFLS93a, CFLS93b].
A polynomial-round Arthur-Merlin game with a polynomial-time veri-5-2

fier [BM88] can be thought of as a PCDS in which r(n) and q(n) are both ar-
bitrary polynomials and one of the debaters simply makes random moves. Let
AM(poly(n)) denote the class of languages accepted by such Arthur-Merlin
games. In this context, the fact that AM(poly(n)) = PSPACE (cf. [LFKN92]

31

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems (Ref)

and [Sha92]) means that, if r(n) and q(n) are both arbitrary polynomials,
then the universal debater in a PCDS can be replaced by a random debater
without loss of generality. In [CFLS94] we show that, even if r(n) = log n
and q(n) = 1, one can replace the universal debater by a random debater
and still retain the power to recognize every language in PSPACE. This fact
has implications for the hardness of approximating stochastic PSPACE-hard
functions, of the type studied by Papadimitriou [Pap85].

We have described PSPACE-hard functions that do not have PTASs,5-3

unless some unexpected collapse occurs. It is not hard to define a PSPACE-
hard function that does have a PTAS, but the straightforward examples are
artificial. We were thus led to ask in [CFLS93a] and [CFLS93b] whether there
is a natural PSPACE-hard function that has a PTAS. A positive answer to
this question is provided in [MHSR94].

Bodlaender (private communication) has extended our results by showing5-4

that MAX-Q3SAT can be approximated within some ε > 0, and by provid-
ing a simpler proof that MAX-GGEOG is PSPACE-hard to approximate; his
proof that approximating MAX-GGEOG is hard does not involve PCDSs.
Hunt et al. [HMS94] showed, also using direct-reduction arguments, that it is
PSPACE-hard to approximate several other constrained optimization prob-
lems within certain factors. These problems include MAX-Q-FORMULA, a
generalization of (log n)-MAX-Q-FORMULA, where the “clauses” are gen-
eral formulas (with no restrictions on the number of variables per “clause”).

It is not known whether characterizations of EXP and NEXP can be5-5

found that are similar to the PCP and PCD characterizations of NP and
PSPACE, respectively, and that lead to interesting nonapproximability re-
sults for problems that are complete for EXP or NEXP.

6 Acknowledgments

We thank Lance Fortnow and Mario Szegedy for helpful discussions in the6-1

formative stages of this work. We thank Jin-yi Cai, Lenore Cowen, Uriel
Feige, David Johnson, Madhu Sudan, and Mihalis Yannakakis for their com-
ments on earlier versions. Finally, we thank Nick Reingold for helping us
typeset Section 3.

Acknowledgement of support: Anne Condon’s work was supported in
part by NSF grants CCR-9100886 and CCR-9257241.

32

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems (Ref)

References

[AH92] R. Aumann and S. Hart, editors. Handbook of Game Theory,
volume 1. North Holland, Amsterdam, 1992.

[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.
Proof verification and hardness of approximation problems. In
Proceedings of the 33rd Symposium on Foundations of Computer
Science, pages 14–23, Los Alamitos, CA, October 1992. IEEE
Computer Society Press.

[AS92] S. Arora and S. Safra. Probabilistic checking of proofs. In Pro-
ceedings of the 33rd Symposium on Foundations of Computer Sci-
ence, pages 2–13, Los Alamitos, CA, October 1992. IEEE Com-
puter Society Press.

[BM88] L. Babai and S. Moran. Arthur-Merlin games: a randomized
proof system and a hierarchy of complexity classes. Journal of
Computer and System Sciences, 36(2):254–276, April 1988.

[CFLS93a] A. Condon, J. Feigenbaum, C. Lund, and P. Shor. Probabilisti-
cally checkable debate systems and approximation algorithms for
PSPACE-hard functions. Technical Report 93-10, Center for Dis-
crete Mathematics and Theoretical Computer Science (DIMACS)
, Berkeley, CA, March 1993.

[CFLS93b] A. Condon, J. Feigenbaum, C. Lund, and P. Shor. Probabilis-
tically checkable debate systems and approximation algorithms
for PSPACE-hard functions (extended abstract). In Proceedings
of the 25th ACM Symposium on the Theory of Computing, pages
305–314, New York, May 1993. Association for Computing Ma-
chinery.

[CFLS94] A. Condon, J. Feigenbaum, C. Lund, and P. Shor. Random de-
baters and the hardness of approximating stochastic functions.
In Proceedings of the 9th Conference on Structure in Complex-
ity Theory, pages 280–293, Los Alamitos, CA, June 1994. IEEE
Computer Society Press. Final version to appear in SIAM Jour-
nal on Computing.

33

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems (Ref)

[Con93] A. Condon. The complexity of the max word problem and the
power of one-way interactive proof systems. Computational Com-
plexity, 3(3):292–305, 1993.

[CW89] A. Cohen and A. Wigderson. Dispersers, deterministic ampli-
fication, and weak random sources. In Proceedings of the 30th
Symposium on Foundations of Computer Science, pages 14–19,
Los Alamitos, CA, October 1989. IEEE Computer Society Press.

[FGL+91] U. Feige, S. Goldwasser, L. Lovász, M. Safra, and M. Szegedy.
Approximating clique is almost NP-complete. In Proceedings of
the 32nd Symposium on Foundations of Computer Science, pages
2–12, Los Alamitos, CA, October 1991. IEEE Computer Society
Press.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractibility: A
Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, San Fransisco, 1979.

[GS92] P. Gemmell and M. Sudan. Highly resilient correctors for polyno-
mials. Information Processing Letters, 43(4):169–174, June 1992.

[HMS94] H. Hunt III, M. Marathe, and R. Stearns. Generalized CNF sat-
isfiability problems and non-efficient approximability. In Proceed-
ings of the 9th Conference on Structure in Complexity Theory,
pages 356–366, Los Alamitos, CA, June 1994. IEEE Computer
Society Press.

[IZ89] R. Impagliazzo and D. Zuckerman. How to recycle random bits.
In Proceedings of the 30th Symposium on Foundations of Com-
puter Science, pages 248–253, Los Alamitos, CA, October 1989.
IEEE Computer Society Press.

[Joh74] D. S. Johnson. Approximation algorithms for combinatorial prob-
lems. Journal of Computer and System Sciences, 9(3):256–278,
December 1974.

[Koz77] D. Kozen. Lower bounds for natural proof systems. In Proceed-
ings of the 18th Symposium on Foundations of Computer Sci-
ence, pages 254–266, Los Alamitos, CA, October 1977. IEEE
Computer Society Press.

34

Chicago Journal of Theoretical Computer Science 1995-4



Condon, Feigenbaum, Lund, Shor Probabilistic Debate Systems (Ref)

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic meth-
ods for interactive proof systems. Journal of the Association for
Computing Machinery, 39(4):859–868, October 1992.

[MHSR94] M. Marathe, H. Hunt III, R. Stearns, and V. Radhakrishnan.
Hierarchical specifications and polynomial-time approximation
schemes for PSPACE-complete problems. In Proceedings of the
26th ACM Symposium on the Theory of Computing, pages 468–
477, New York, May 1994. Association for Computing Machinery.

[Pap85] C. Papadimitriou. Games against nature. Journal of Computer
and System Sciences, 31(2):288–301, October 1985.

[PY91] C. Papadimitriou and M. Yannakakis. Optimization, approxima-
tion, and complexity classes. Journal of Computer and System
Sciences, 43(3):425–440, December 1991.

[Sch78] T. J. Schaefer. On the complexity of some two-person perfect-
information games. Journal of Computer and System Sciences,
16(2):185–225, April 1978.

[Sha92] A. Shamir. IP=PSPACE. Journal of the Association for Com-
puting Machinery, 39(4):869–877, October 1992.

35

Chicago Journal of Theoretical Computer Science 1995-4


