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Weakly Growing Context-Sensitive Grammars

Gerhard Buntrock Gundula Niemann

13 November, 1996

Abstract

This paper introduces weakly growing context-sensitive grammars.Abstract-1

Such grammars generalize the class of growing context-sensitive gram-
mars (studied by several authors), in that these grammars have rules
that “grow” according to a position valuation.

If a position valuation coincides with the initial part of an expo-Abstract-2

nential function, it is called a steady position valuation. All others are
called unsteady . The complexity of the language generated by a gram-
mar depends crucially on whether the position valuation is steady or
not. More precisely, for every unsteady position valuation, the class of
languages generated by WGCSGs with this valuation coincides with
the class CSL of context-sensitive languages. On the other hand,
for every steady position valuation, the class of languages generated
corresponds to a level of the hierarchy of exponential time-bounded
languages in CSL. We show that the following three conditions are
equivalent:

• The hierarchy of exponential time-bounded languages in CSL
collapses.

• There exists a class defined by an unsteady position valuation
such that there is also a normal form of order 2 (e.g., Cremers
or Kuroda normal form) for that class.

• There exists a class defined by a steady position valuation that
is closed under inverse homomorphisms.

Some of these results were presented at LATIN’95 at Valparáiso, Chile.

1

Chicago Journal of Theoretical Computer Science 1996-4



Buntrock and Niemann Weakly Growing CSGs §1

1 Introduction

A beautiful theory always has simple concepts and remarkable results. Here1-1

we investigate a widely unknown but nice part of the class of context-sensitive
languages (CSL).

Our simple concept consists of a valuation of strings, and concentration1-2

on the context-sensitive grammars that are growing under such a valuation.
As a result, we get characterizations of known double-bounded complexity
classes by this quite different concept. Namely, we view the exponential
time-bounded languages in CSL, where CSL is the class of languages that
can be recognized by a Turing machine in linear space. Little is known about
such dual-bounded classes; see, e.g., [Coo79], [Pip79], [Bör89], and [Rei90].
Wolfgang Paul asks in general which kind of speedup theorem holds for space-
bounded computations (see [Pau78]). We concentrate on this question for
the case of linear-bounded automata. It is shown that this problem can be
reformulated using our concept, which comes from formal language theory:
We ask whether a particular class of languages is characterized by a class
of normal form grammars of order 2 (i.e., left and right sides of rules have
length at most 2), or, equivalently, whether another class is closed under
inverse homomorphism.

Noam Chomsky has already observed in his famous work that CSL is1-3

characterized by monotone grammars, that is, grammars in which in every
rule a string is replaced by a string that is at least as long as the first one
[Cho59]. We will use this characterization as a definition.

By replacing “at least as long as” in the definition of the class CSG1-4

of context-sensitive grammars by “longer than,” we obtain growing context-
sensitive grammars (GCSG) which define the class of growing context-sensitive
languages (GCSL). Elias Dahlhaus and Manfred Warmuth investigated the
complexity of GCSL and found out that GCSL is contained in LOGCFL
[DW86], the class of such languages that can be transformed into a context-
free language (CFL) using logarithmic space ([Sud78], [Ruz80]). Note that
LOGCFL is a subclass of the class P of languages recognizable determin-
istically in polynomial time. If we valuate the symbols of a CSG with a
homomorphic mapping into the natural numbers with addition, and demand
that in every rule the sum of the values of the symbols increases, this type of
grammar (quasi-GCSG, or QGCSG for short) characterizes GCSL ([BL92],
[BL94], [Bun96]). Unfortunately, the class GCSL is very weak. Not even the

2
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language COPY def= { ww : w ∈ {a, b}∗ } is contained in GCSL ([Bun93], see
also [BO95]).

Weakly growing context-sensitive grammars (WGCSG) are a generaliza-1-5

tion of QGCSG. In a WGCSG we valuate the positions as well as the symbols
inside a rule: Every position inside a rule is related to a certain value. The
valuation of a side of a rule is obtained by the sum of the products of the
symbol valuation and the position valuation for every symbol. A context-
sensitive grammar is called weakly growing context-sensitive related to a
certain position valuation (WGCSGs, where s stands for the position valua-
tion), if there exists a symbol valuation such that for every rule the valuation
of the left-hand side is lower than that of the right-hand side. (This is defined
precisely in Definition 2.) The weakly growing context-sensitive languages
related to constant position valuations characterize GCSL. We will show
that this definition is robust under some natural changes.

The valuation of positions gives the possibility to interchange two sym-1-6

bols by a rule. This can be used to prove COPY ∈ WGCSLs for every
nonconstant position valuation s. On the other hand, it can easily be seen
that it is not possible to interchange two symbols back and forth in the same
grammar. Thus we know that WGCSGs is strictly contained in CSG for each
position valuation s. The question as to whether or not the corresponding
language classes are strictly contained in CSL will be viewed later.

For important language classes we expect some essential closure prop-1-7

erties. Clearly, the closure under non-ε-free homomorphisms of WGCSLs

yields the class of all recursively enumerable sets; i.e., WGCSLs is a basis for
recursively enumerable sets (the notion of a basis was originally introduced
by Raymond Smullyan in [Smu61]). With standard arguments the following
can be proved: For every position valuation s, the class WGCSLs is closed
under ε-free homomorphism, union, ε-free regular substitution, concatena-
tion, and intersection with regular sets. Additionally it can be shown that
WGCSLs is closed under transposition for every position valuation s.

What is missing, e.g., for WGCSLs to be an abstract family of lan-1-8

guages (or AFL, see any good introduction to formal language theory, such
as [Sal73] or [Har78]), is the closure under inverse homomorphism and also
under k-bounded homomorphism. Here from [GGH69] it is known that if
the one holds, then so does the other and vice versa, because of the closure
properties we already know. The closure under inverse homomorphism here
can neither be proved nor disproved in general; a main result in this context
is the equivalence of this problem to the problem of whether all linear space-

3
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bounded automata can be simulated by linear space-bounded automata with
an additional universal exponential time bound. The reason for this equiva-
lence lies in the fact that for each nonconstant position valuation, the closure
under inverse homomorphism of WGCSLs equals CSL.

To prove these results we distinguish steady and unsteady position valua-1-9

tions: A position valuation is steady if it coincides with the initial part of an
exponential function. We refer to the base of that corresponding function as
the growth factor of the position valuation. In the other case, the position
valuation is unsteady.

It turns out that steady position valuations are uniquely extendible to1-10

infinite position valuations such that all strings can be valuated. Moreover,
the number of derivation steps can be bounded by the valuation of the de-
rived string. This gives the result that for a steady position valuation every
weakly growing context-sensitive grammar related to it can produce only sets
acceptable by linear space-bounded automata in a certain exponential time,
where the base of the bounding exponential function is the growth factor of
the position valuation (if it is monotone increasing). To get this result so
tight, we transfer Gladkii’s Connectivity Theorem (see [Gla64]) to WGCSLs.
On the other hand, for every language that can be recognized by a linear
space-bounded automaton there exists a steady position valuation s such
that this language belongs to WGCSLs. To get a very tight relation here, we
introduce a new type of counters: grammars that count.

Furthermore, the weakly growing context-sensitive language classes cor-1-11

responding to different growth factors build up a linearly inclusion-ordered
hierarchy that characterizes the exponential time hierarchy for CSL in terms
of necessary and sufficient conditions for the hierarchy to collapse.

For unsteady position valuations, there does not exist an infinite extension1-12

such that the value of a sentential form increases if and only if a weakly
growing context-sensitive rule is applied. To the contrary: We present a
collection of rules which when applied to a given sentential form lead to a
decrement of the value of that sentential form. By this we will show that
arbitrarily long derivations are possible. We interpret this to be the reason
that for every unsteady position valuation the corresponding class of weakly
growing context-sensitive grammars characterizes CSL.

Another important difference between the steady and unsteady cases con-1-13

sists in the existence of normal forms of order 2. Note that every s-weakly
growing context-sensitive grammar in a normal form of order 2 is one related
to a steady position valuation. Here we know that for every steady position

4
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valuation s and every weakly growing context-sensitive grammar related to
it there exists an equivalent WGCSG of the same type in normal form. This
can be proved using an obvious transformation. For this we will use Cre-
mers normal form, which has the advantage of having a minimal number of
different types of rules. Additionally, it turns out that the growth factor of
a steady position valuation characterizes a weakly growing context-sensitive
language class and that the language classes corresponding to a growth factor
and its reciprocal value coincide. For unsteady position valuations, the obvi-
ous transformation to reduce the order of a rule, and similar transformations,
do not work. Thus we obtain the equivalence of the following problems.

• Does the exponential time hierarchy for CSL collapse? That is, can all
linear space-bounded automata be simulated by linear space-bounded
automata with an additional universal exponential time bound?

• Does there exist a steady position valuation such that the corresponding
class of weakly growing context-sensitive languages coincides with CSL?

• Does there exist a steady position valuation such that the correspond-
ing class of weakly growing context-sensitive languages is closed under
inverse homomorphism?

• Does there exist an unsteady position valuation such that the following
holds: Every weakly growing context-sensitive grammar related to this
position valuation can be transformed into an equivalent grammar in a
normal form of order 2 that is weakly growing context-sensitive related
to some position valuation?

2 Preliminaries

We will denote the set of positive and negative integers by Z, the set of2-1

natural numbers by N, the set N \ {0} by N+, the set of rational numbers
by Q, and the set of positive rational numbers by Q+. Denote modified
subtraction by ·−.

We will denote a linear-bounded automaton by M = (Σ, Q, Γ, q0, δ, F ),2-2

where Σ ⊆ Γ is the input alphabet, Q is the set of states, Γ is the working
alphabet, q0 is the start state, δ : (Q×Γ)→ (Q×Γ×{L, R}) is the transition
function, and F is the set of accepting states. By uqv we denote a config-
uration of M , where uv is the content of the working tape, q is the actual

5
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state, and the first symbol of v is being read. By K1
∗7−−
M

K2 we denote that
configuration K2 is reachable from configuration K1 by a computation of M
(see, e.g., [HU79] for a detailed definition). The subscript M is sometimes
omitted when it is obvious from the context. By M = (Σ, Q, q0, δ, F ) we de-
note a finite automaton, where the signature of δ is appropriately changed.
Additionally, we use δ∗ : Q × Σ∗ → Q to denote the extension of δ to Q × Σ∗.

A context-sensitive grammar (CSG) is a quadruple G = 〈N, T, S, P 〉,2-3

where N and T are finite disjoint alphabets of nonterminal and terminal
symbols, respectively, S ∈ N is the start symbol, and P is a finite set of rules
(productions) of the form α → β with α, β ∈ (N ∪ T )∗, where α contains
at least one nonterminal symbol, and |α| ≤ |β| or (α → β) = (S → ε), and
if (S → ε) ∈ P , S does not appear on the right-hand side of any rule. The
corresponding language class is denoted by CSL.

If u, v ∈ (N ∪ T )∗ are sentential forms, we say u derives v in G =2-4

〈N, T, S, P 〉, denoted by u =⇒ v, if there exist x, y, α, β ∈ (N ∪ T )∗ such

that u = xαy, v = xβy, and (α → β) ∈ P . Let ∗=⇒ denote the reflexive and
transitive closure of =⇒. Thus the language L(G) generated by a grammar

G is described by L(G) def=
{

w ∈ T ∗ : S
∗=⇒
G

w
}
. For a language L ⊆ Σ∗, the

transposition LT of L is defined by LT def=
{

w : wT ∈ L
}
, where wT denotes

the transposition of the string w ∈ Σ∗ inductively defined as follows: Define
εT def= ε, and for each v ∈ Σ∗ and each a ∈ Σ define (av)T to be vT a. Similarly,
L1·L2

def= { w · v : w ∈ L1, v ∈ L2 }, where w·v = wv is w concatenated with v.
Grammars with α ∈ N for each rule (α → β) ∈ P are called context-free.2-5

The corresponding language class is denoted by CFL. Grammars with α ∈ N
and β ∈ N · T ∪ T for each rule (α → β) ∈ P \ {(S → ε)} are called regular .
The corresponding language class is denoted by REG.

By replacing the inequality in the definition of context-sensitive grammars2-6

by a strict inequality, we obtain growing context-sensitive grammars (GCSG)
that generate the growing context-sensitive languages (GCSL) (see [DW86],
also [BL92], [Nie92]). The class GCSL is placed properly between CFL and
CSL ([DW86], also see [Nie92]).

Instead of just counting the symbols appearing in a rule (as we did above),2-7

we can assign each symbol a certain value (or weight). A grammar G =
〈N, T, S, P 〉 is called quasi-growing context-sensitive if it is context-sensitive

6
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and there exists a function f : N ∪T →N such that for each rule (α1 . . . αn →
β1 . . . βm) ∈ P :

n∑
i=1

f(αi) <
m∑

i=1
f(βi) or (α → β) = (S → ε)

The corresponding set of grammars is denoted by QGCSG. The function f
is called a symbol valuation for G. By f |N we denote the restriction of f to
the set N .

If in the definition of QGCSG we omit the requirement of context-sensitivity,2-8

but keep the requirement that if (S → ε) ∈ P , S does not appear on the
right-hand side of any rule, we obtain the quasi-growing grammars.

In [BL92] and [BL94] it was shown that both quasi-growing grammars2-9

and quasi-growing context-sensitive grammars characterize the class of grow-
ing context-sensitive languages (also see [Nie92]). Instead of valuating only
the symbols, we can also valuate their positions inside a rule. A posi-
tion valuation is a function that is defined for an initial segment of the
natural numbers. It must valuate at least one position. In the follow-
ing we will refer to max{|α|, |β|} as the order of the rule α → β, and
to ord(G) def= max { max{|α|, |β|} : (α → β) ∈ P } as the order of G. Note
that in the case of a context-sensitive grammar the order of G is equal to
max { |β| : (α → β) ∈ P }. By “a normal form of order 2,” we mean a normal
form such that every grammar in this normal form has order at most 2.

Definition 1 A position valuation is a function s : N+ → N+ with:

If s is defined for a j ∈ N+, then s is also defined for every i ∈ N+

with i < j.

If s is defined for all i ∈ N+, we say s is an infinite position valuation—in
the other case, s is a finite position valuation. We call each i ∈ N+ where
s(i) is defined a valuated position of s.

It is also possible to allow zero points for position valuations, but with the2-10

techniques used to show our main results we get for each position valuation
with zero points a characterization of CSL (see Theorem 8). We restrict
ourselves to the most interesting position valuations which have at least two
valuated positions.

Definition 2 Let s be a position valuation. A grammar G = 〈N, T, S, P 〉 is
called weakly growing context-sensitive related to the position valuation s or
also s-weakly growing context-sensitive, if the following hold:

7
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(i) G is context-sensitive.

(ii) Let l be the order of G. Then s has at least l valuated positions.

(iii) There exists a function f : N∪T→N such that for every rule (α1 . . . αn →
β1 . . . βm) ∈ P \ {(S → ε)} it holds that

n∑
i=1

s(i) · f(αi) <
m∑

i=1
s(i) · f(βi) (∗)

Such a function f is called a symbol valuation for G. If the inequality
(∗) above holds for a rule (α → β) ∈ P , we say α → β is s-weakly
growing with f .

The sets of corresponding grammars and languages are denoted by WGCSGs

and WGCSLs, respectively.

As we now valuate not only the symbols but also their positions inside a2-11

rule, it is possible to interchange two symbols by a rule. This can be used
to show that the language COPY def= { ww : w ∈ {a, b}∗ } is weakly growing
context-sensitive related to every nonconstant position valuation. To give
an intuition of weakly growing context-sensitive grammars, we look at the
following example closely.

Example 1 Consider the language COPY def= { ww : w ∈ {a, b}∗ }. Let s beExample 1-1

any position valuation with at least two valuated positions and s(1) < s(2).
Define a grammar G = 〈N, {a, b}, S, P 〉 as follows:Example 1-2

N
def=

{
S, S̃, A, A′, B, B′, (X, a), (X, b)

}
and P contains the following rules:

S → ε S → S̃

S̃ → AA′S̃ A′A → AA′ A′(X, a) → (X, a)a (X, a) → a

S̃ → BB′S̃ A′B → BA′ A′(X, b) → (X, a)b (X, b) → b

S̃ → A(X, a) B′A → AB′ B′(X, a) → (X, b)a A → a

S̃ → B(X, b) B′B → BB′ B′(X, b) → (X, b)b B → b

8
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This grammar is context-sensitive, of order 2, and it generates the language
COPY . Now we define f : N ∪ T → N by:

f(S̃) def= 1

f(S) def= f(A) def= f(B) def= f((X, a)) def= f((X, b)) def= 2

f(A′) def= f(B′) def= 3

f(a) def= f(b) def= 3

With a simple calculation it can be seen that every rule of P is s-weakly
growing with respect to this symbol valuation. Thus the grammar G is s-
weakly growing context-sensitive.

Example 1 2

As COPY /∈ GCSL [Bun93], we have WGCSLs 6⊆ GCSL for every non-2-12

constant position valuation s. (The example above can be adapted easily
for position valuations s with s(1) > s(2) and for those with a constant
beginning part.)

Note that if we use classical context-sensitive grammars in the definition2-13

of weakly growing context-sensitive grammars, we get a subclass of GCSG
[Nie94]. Here the interesting question arises as to whether this class of gram-
mars already characterizes the class GCSL. On the other hand, it can easily
be seen that it is not possible to interchange two symbols back and forth
in the same grammar; thus we know WGCSGs ⊂ CSG for every position
valuation s.

We now look briefly at some robustness properties of the definition of2-14

weakly growing context-sensitive languages. As can easily be seen, the stan-
dard algorithm to delete chain rules (see, e.g., [Har78]) can be adapted for
weakly growing context-sensitive grammars. The same applies to the stan-
dard algorithm to delete terminal symbols from the left-hand side of a rule.
Thus we obtain:

Proposition 1 For every WGCSG related to a position valuation s, thereProposition 1-1

exists an equivalent WGCSGs without chain rules, even if there is only a
symbol valuation known such that some chain rules are not strictly growing,
i.e., cycling with chain rules can be deleted in such cases.

Furthermore, in a WGCSGs, terminals can be forbidden on the left-handProposition 1-2

side of rules without affecting the grammar’s inherent power.

9
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In an inequality, the multiplication of both sides with the same positive2-15

value does not affect its validity, and the following holds.

Proposition 2 For all k ∈ Q+, the classes WGCSLk·s are the same.

Thus, for each constant position valuation C, it holds that WGCSGC =2-16

QGCSG and consequently, WGCSLC = GCSL.
The values on both sides of an inequality can not only be stretched, but2-17

can also be shifted without affecting its validity, which leads to the following
result.

Lemma 1 In Definition 2 (iii) it is sufficient to demand that there exists a
function f : N ∪T →Q, i.e., with values in Q, that satisfies the inequality (∗).

Proof of Lemma 1 Let s be a position valuation and let G = 〈N, T, S, P 〉Proof of Lemma 1-1

be a context-sensitive grammar where s has at least ord(G) valuated posi-
tions. Let f : N ∪ T → Q be a symbol valuation such that for every rule
(α1 . . . αn → β1 . . . βm) ∈ P not equal to (S → ε), it holds that

n∑
i=1

s(i) · f(αi) <
m∑

i=1
s(i) · f(βi)

Let {a1, . . . , ak} be the set of symbols N ∪ T and f(ai) = pi

qi
with pi ∈ Z

and qi ∈ N+ for i = 1, . . . , k. With an easy transformation we obtain a
symbol valuation with symbols in N: Let q

def= lcm(q1, . . . , qk) be the common
denominator of all values and z

def= q · |min{0, p1, . . . , pk}| be the product of
this common denominator with the absolute value of the smallest negative
enumerator. Then by a linear transformation we obtain natural numbers:
f ′(ai)

def= q · f(ai) + z. The inequalities still apply, as the grammar has no
length-decreasing rules.

Proof of Lemma 1 2

In a similar way, it can be seen that allowing values out of Q+ for position2-18

valuations does not lead to any new language classes.
As we mentioned above, in the case of quasi-growing context-sensitive2-19

grammars, if we omit the requirement of context-sensitivity, we obtain gram-
mars that characterize the same language class [BL92]. In the case of weakly
growing context-sensitive grammars, the effect is different: If in Definition 2
we leave out the requirement of context-sensitivity, we obtain the weakly

10
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growing grammars, which already characterize the languages generated by
nonrestricted grammars [Nie96], i.e., the class of recursively enumerable sets.

To lead to our main results we now introduce the two cases of steady and2-20

unsteady position valuations.

Definition 3 A position valuation s : N+→N+ is called steady if it coincidesDefinition 3-1

with an exponential function on its domain, that is, if it can be written as

s(i) = s(1) · w(s)i−1

where w(s) def= s(2)
s(1) , so w(s) ∈ Q+. This fraction, w(s), is called the growth

factor of s.
In the other case, s is unsteady. Note that this is the case if and only ifDefinition 3-2

s has at least three valuated positions, and if there exists a valuated position
i ∈ N+ of s, for which i − 1 and i + 1 are valuated, too, with:

s(i)2 6= s(i − 1) · s(i + 1)

In this case, we call such an i a blip of s, and the smallest such i we call the
first blip of s.

Note that w(s) < 1 means s is monotone decreasing, and w(s) = 1 means2-21

s is constant.

Definition 4 Let s be a position valuation. Let G = 〈N, T, S, P 〉 ∈ WGCSGs,
and let f be an appropriate symbol valuation for G. The growth rate of a
rule (α1 . . . αn → β1 . . . βm) ∈ P with respect to f is the difference

∑m
i=1 s(i) ·

f(βi)−∑n
i=1 s(i)·f(αi) between the values on the right-hand and the left-hand

sides of the rule. The growth rate of a derivation step u1 . . . un =⇒
G

v1 . . . vm

with respect to f is the difference
∑m

i=1 s(i) · f(vi) − ∑n
i=1 s(i) · f(ui) between

the values of v1 . . . vm and u1 . . . un.

The relationship between the growth rate of a rule, the growth rate of a2-22

derivation step, and the growth factor (in case of a steady position valuation)
is investigated in Lemma 3 and Lemma 5. Nevertheless, we first look at
general properties of weakly growing context-sensitive languages.

11
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3 Closure Properties and Normal Form

The most important closure properties are the AFL properties. It turns3-1

out that steadiness of a position valuation has no effect on these closure
properties except for one (see Section 3.1). To the contrary, unsteadiness does
affect the transformability of a weakly growing context-sensitive grammar
into an equivalent grammar of the same type in normal form of order 2 (see
Section 3.2). In Section 6 (Theorem 10), we will prove that the existence of
one missing closure property (inverse homomorphism) for the weakly growing
context-sensitive languages with steady position valuation is equivalent to
the existence of a transformation into a normal form of order 2 for weakly
growing context-sensitive grammars with unsteady position valuation.

3.1 Closure Properties

To get to know a new language class more closely, it is useful to learn some-3.1-1

thing about its closure properties. Clearly, the closure under non-ε-free ho-
momorphism of WGCSLs yields the class of all recursively enumerable (r.e.)
sets for every position valuation s, i.e., WGCSLs is a basis for the class of
r.e. sets (originally introduced by Raymond Smullyan in [Smu61]; see also
[Bun96]). With standard arguments, we show the following.

Theorem 1 Let s be a position valuation with at least two valuated posi-
tions. WGCSLs is closed under ε-free homomorphism, union, ε-free regular
substitution, concatenation, and intersection with regular sets.

Proof of Theorem 1

For ε-free homomorphism: Let G = 〈N, T, S, P 〉 ∈ WGCSLs, and let fProof of Theorem 1-1

be a symbol valuation for G. Let h : T → ∆ be an ε-free homomorphism.
A grammar G′ = 〈N ′, ∆, S, P ′〉 for h(L(G)) can be constructed by defin-Proof of Theorem 1-2

ing N ′ def= N ∪ T and adding to P the rules (a → h(a)) for every a ∈ T to
obtain P ′. An appropriate symbol valuation can be found by extending f to
∆ with f(u) = max { f(a) : a ∈ T } + 1 for u ∈ ∆.

For union: Let G1 = 〈N1, T1, S1, P1〉 and G2 = 〈N2, T2, S2, P2〉 be inProof of Theorem 1-3

WGCSLs. Let f1 and f2 be appropriate symbol valuations for G1 and G2,
respectively. Wlog we can assume (N1 ∪T1)∩N2 = ∅ and N1 ∩ (N2 ∪T2) = ∅.

12
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A grammar G = 〈N, T1 ∪ T2, S, P 〉 for L(G1) ∪ L(G2) can be constructed by
N = N1 ∪N2 ∪{S} and P = P1 ∪P2 ∪{(S → S1), (S → S2)}. (Handling the
case ε ∈ L(G1) ∪ L(G2) is standard.) An appropriate symbol valuation f is
defined by f |N1∪T1

def= 2 · f1, f |N2∪T2

def= 2 · f2, f(S) def= 1.

For ε-free regular substitution: In fact, we can show that WGCSLs isProof of Theorem 1-4

closed under ε-free WGCSLs substitution. Then, closure under ε-free regular
substitution follows, because every regular grammar is also weakly growing
context-sensitive. Just use the symbol valuation f : N ∪ T → N+ defined by
f(A) def= 1 for A ∈ N , f(a) def= 2 for a ∈ T .

To show closure under ε-free WGCSLs substitution, we consider G =Proof of Theorem 1-5

〈N, T, S, P 〉 ∈ WGCSGs, and for every a ∈ T let Ga = 〈Na, Ta, Sa, Pa〉 ∈
WGCSGs, where we can assume wlog that for every a and b in T with a 6= b,
it holds that (Na ∪Ta)∩Nb = ∅, and that terminals only appear on the right-
hand side of rules (Proposition 1). Let f and fa for a ∈ T be appropriate
symbol valuations, respectively. Let La

def= L(Ga).
Now we construct a grammar G′ = 〈N ′, T ′, S, P ′〉 for the languageProof of Theorem 1-6

L = { w : there exists v = a1 . . . an ∈ L with w ∈ La1 · . . . · Lan }
Let

N ′ def= N ∪ ⋃
a∈T

Na

T ′ def=
⋃
a∈T

Ta

P ′ def= (P \ { (A → a) : A ∈ N, a ∈ T }) ∪
{ A → Sa : (A → a) ∈ P } ∪ ⋃

a∈T

Pa

What happens is that every original terminal is taken as a start symbol for
the grammar of the substituting language. The function

f ′ : N ∪ ⋃
a∈T

(Na ∪ Ta) → N+

defined by

f ′|N def= f

f ′|Na∪Ta

def= max { f(b) : b ∈ T } · fa for a ∈ T

is an appropriate symbol valuation for G′.
13
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For concatenation: Let G1 = 〈N1, T1, S1, P1〉 and G2 = 〈N2, T2, S2, P2〉Proof of Theorem 1-7

be in WGCSLs. Let f1 and f2 be appropriate symbol valuations for G1 and
G2, respectively.

Wlog we can assume (N1 ∪ T1) ∩ N2 = ∅ and N1 ∩ (N2 ∪ T2) = ∅, andProof of Theorem 1-8

that terminals only appear on the right-hand side of rules (Proposition 1).
A grammar G = 〈N, T1 ∪ T2, S, P 〉 for L(G1) · L(G2) can be constructed by
defining N

def= N1 ∪ N2 ∪ {S} and P
def= P1 ∪ P2 ∪ {(S → S1S2)}. (Handling

the cases ε ∈ L(G1) and ε ∈ L(G2)is standard.) An appropriate symbol
valuation f is found by joining f1 and f2 and defining f(S) def= 1.

For intersection with regular sets: Let G = 〈N, T, S, P 〉 ∈ WGCSGs,Proof of Theorem 1-9

let L be a regular set, and let M = (Q, Σ, q0, δ, F ) be a deterministic finite
automaton that accepts L.

By Proposition 1, we can assume that there appear only nonterminals inProof of Theorem 1-10

the left-hand sides of the rules in G. A grammar G′ = 〈N ′, T ∩ Σ, S ′, P ′〉
for L ∩ L(G) is constructed as follows: N ′ def= { (p, A, q) : p, q ∈ Q, A ∈ N } ∪
{S ′} (so the nonterminals are triples), and P contains the following rules
(for every A1, . . . , An, B1, . . . , Bm ∈ N , u0, . . . , um+1, w ∈ (Σ ∩ T )∗, and
q1, . . . , qn+1, p1, . . . , pm, p′

1, . . . , p
′
m ∈ Q):

S ′ →w if (S → w) ∈ P and w ∈ L

S ′ →u0(p1, B1, p
′
1)u1(p2, B2, p

′
2) . . . um−1(pm, Bm, p′

m)um

if (S ′ → u0B1u1B2 . . . um−1Bmum) ∈ P and
δ∗(q0, u0) = p1 and
δ∗(p′

i, ui) = pi+1 for i = 1, . . . , m − 1 and
δ∗(p′

m, um) ∈ F

(q1, A1, q2)(q2, A2, q3) . . . (qn, An, qn+1) →
u1(p1, B1, p

′
1)u2(p2, B2, p

′
2) . . . um(pm, Bm, p′

m)um+1

if (A1A2 . . . An → u1B1u2B2 . . . umBm−1um+1) ∈ P and
δ∗(q1, u1) = p1 and
δ∗(p′

i, ui+1) = pi+1 for i = 1, . . . , m − 1 and
δ∗(p′

m, um+1) = qn+1

(q1, A1, q2)(q2, A2, q3) . . . (qn, An, qn+1) → w

if (A1A2 . . . An → w) ∈ P and δ∗(q1, w) = qn+1

14
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(This construction is due to [GGH69]. Matthias Jantzen uses this to show
the same result for GCSL [Jan79].)

The function f : N → N+ defined byProof of Theorem 1-11

f ′((p, A, q)) def= f(A) for p, q ∈ Q, A ∈ N

f ′(S ′) def= f(S)

f ′(a) def= f(a) for a ∈ T

is an appropriate symbol valuation for G′.

Proof of Theorem 1 2

We have proved the AFL properties (except the closure under inverse3.1-2

homomorphism). Now we show the closure under transposition. We will use
this result in the proof of Theorem 4, where we show an important property
concerning steady position valuations.

Theorem 2 Let s be a nonconstant position valuation. Then WGCSLs is
closed under transposition.

Proof of Theorem 2 We sketch the idea for the case s(1) < s(2).Proof of Theorem 2-1

For a grammar G = 〈N, T, S, P 〉 ∈ WGCSGs, a grammar G̃ = 〈Ñ , T, S̃, P̃ 〉Proof of Theorem 2-2

is constructed as follows:

Ñ
def= N ∪ {S̃} ∪ { a′ : a ∈ T } ∪

{
X̌ : X ∈ N

}
∪ { ǎ : a ∈ T }

where the rules in P̃ accomplish the following:

First, for a word w = w1 . . . wn ∈ L, the sentential form w̌1w
′
2 . . . w′

n

is generated (for this, appropriate copies of the rules in P are
used). Then this sentential form is transformed with rules of the
form

ǎb′ → b̌a

ab′ → b′a

ǎ → a

into the word wn . . . w1.

15
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Clearly L(G̃) = L(G)T . Out of a symbol valuation f for G an appropriate
symbol valuation for G̃ can be constructed in the following way.

Define f̃ : Ñ → N+ byProof of Theorem 2-3

f̃(X) def= f(X) for X ∈ N f̃(X̌) def= f(X) for X ∈ N

f̃(a′) def= f(a) for a ∈ T f̃(ǎ) def= f(a) for a ∈ T

f̃(S̃) def= f(S) f̃(a) def= max { f(a) : a ∈ T } + 1

For a symbol valuation s with s(1) > s(2), the proof works analogously.Proof of Theorem 2-4

For the case of a nonconstant position valuation with s(1) = s(2), this idea
can be adapted by shifting the “mirror point” X̌ and treating the borders
appropriately.

Proof of Theorem 2 2

To show that WGCSLs is an AFL for a certain position valuation s, we3.1-3

would have to show that WGCSLs is closed under inverse homomorphism (or
under k-bounded homomorphism because of Theorem 1, and from [GGH69]
we know that both closure properties are equivalent under the assumption
that the closure properties named in Theorem 1 apply).

For steady position valuations, this problem is equivalent to the prob-3.1-4

lem of whether all linear space-bounded automata can be simulated by lin-
ear space-bounded automata with an additional universal exponential time
bound (see Theorem 10). The reason for this equivalence lies in the fact
that for every position valuation, the closure under inverse homomorphisms
of WGCSLs equals CSL (see Theorems 5 and 9).

3.2 Normal Form

In Section 2 we introduced the two cases of steady and unsteady position3.2-1

valuations. Now we work out what we can say about the transformability
of corresponding weakly growing context-sensitive grammars into a normal
form of order 2.

For every steady position valuation s, each grammar in WGCSGs can be3.2-2

transformed into a normal form of order 2. We will use Cremers normal form
[Cre73]. Compared with all other normal forms of order 2, the advantage of
Cremers normal form lies in its minimal number of different types of rules.
Moreover, with the probably more popular normal form proposed by Kuroda,

16
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we can only describe classical context-sensitive grammars, which leads here
to a language class contained in GCSL, as we mentioned in Section 2.

Definition 5 ([Cre73]) A context-sensitive grammar G = 〈N, T, S, P 〉 is
in Cremers normal form if every rule in P is of one of the forms AB → CD,
A → CD, or A → a, where A, B, C, D ∈ N , a ∈ T .

At first, we adapt the obvious algorithm to reduce the order of a gram-3.2-3

mar.

Lemma 2 Let s be a steady position valuation. Then for every grammar
G ∈ WGCSGs of order l ≥ 3, there exists an equivalent grammar G′ ∈
WGCSGs of order l − 1.

Proof of Lemma 2 Let s : N+ → N+ be a steady position valuation withProof of Lemma 2-1

at least three valuated positions (in the other case there is nothing to show).
Define s′ : N+ → N+ by s′(i) def= s(i + 1) for all i ∈ N+, that is, if s(i + 1) is
undefined, so is s′(i). Let G = 〈N, T, S, P 〉 ∈ WGCSGs be of order l ≥ 3, let
f : N ∪ T → N be a symbol valuation for G.

We now construct a grammar G′ = 〈N ′, T, S′, P ′〉 and a symbol valuationProof of Lemma 2-2

f ′ : N ′ ∪ T → Q by the following algorithm:

1. N ′ := N , P ′ := ∅.

2. f ′(A) := f(A) for every A ∈ N , f ′(a) := f(a) for every a ∈ T .

3. For every rule (α1 . . . αn → β1 . . . βm) ∈ P , execute the following:

4. If m ≤ 2, then P ′ := P ′ ∪ {(α1 . . . αn → β1 . . . βm)}.

5. If 3 ≤ m ≤ l, then let X be a new nonterminal symbol, X /∈ N ′.

6. Define the rules:

(R1) α1α2 → β1X

(R2) Xα3 . . . αn → β2 . . . βm

Here n = 2, which means α3 . . . αn = ε, or n = 1, which
means additionally α2 = ε is possible.

7. P ′ := P ′ ∪ {(R1), (R2)}.
8. f ′(X) := s(1)

s(2) · f(α1) + f(α2) − s(1)
s(2) · f(β1) + 1

2·s(2)

17
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It holds that L(G′) = L(G). As G is context-sensitive, so is G′. By calcu-
lation and Lemma 1 it can be shown that G′ ∈ WGCSGs′ . By Proposition 2
this implies G′ ∈ WGCSGs (since s(i) = w(s) · s′(i) for every i ∈ N+).

Proof of Lemma 2 2

For unsteady position valuations, this algorithm and similar ones do not3.2-4

work. This can be checked looking at the following interesting example.

Example 2 Let s = id, i.e., s(i) = i for every i ∈ N+. Let α1α2α3 → β1β2β3

be a rule, and let f(α1) = 1, f(α2) = 1, f(α3) = 3, f(β1) = 1, f(β2) = 5,
and f(β3) = 1. Then the rule is id-weakly growing with f , and in the
rules α1α2 → β1X and Xα3 → β2β3, the symbol X cannot be valuated
appropriately.

Example 2 2

Lemma 2 can be applied step by step; thus together with Proposition 13.2-5

we obtain the following.

Theorem 3 Let s be a steady position valuation. For every grammar G ∈
WGCSGs, there exists an equivalent grammar G′ ∈ WGCSGs in Cremers
normal form.

Thus for a steady position valuation s, the class WGCSLs is characterized3.2-6

by the growth factor w(s) (this follows from Theorem 3 and Proposition 2).
We introduce the following notation:

WGCSLw(s)
def= WGCSLs

When we treat steady position valuations, we can assume wlog that s is3.2-7

an exponential function, or, if more convenient, that s is a position valuation
with only two valuated positions. Additionally, we can assume that it is
monotone increasing.

Theorem 4 Let s be a steady position valuation. Then

WGCSLw(s) = WGCSL 1
w(s)

That is, having a position valuation s, we can assume wlog it is monotone
increasing.

18

Chicago Journal of Theoretical Computer Science 1996-4



Buntrock and Niemann Weakly Growing CSGs §4

Proof of Theorem 4 Let s be a steady position valuation, let G =Proof of Theorem 4-1

〈N, T, S, P 〉 ∈ WGCSLs = WGCSL s(2)
s(1)

be in Cremers normal form (The-

orem 3), and let f be a symbol valuation for G. We define a grammar
G′ = 〈N, T, S, P ′〉, where P ′ contains the transposed version of every rule in
P . Clearly, G′ is context-sensitive and L(G′) = L(G)T . Define a position
valuation s′ by s′(1) def= s(2), s′(2) def= s(1). If G′ ∈ WGCSGs′ = WGCSG s(1)

s(2)
,

then the claim follows from Theorem 2.
The transposed versions of the length-preserving rules clearly are s′-Proof of Theorem 4-2

weakly growing with respect to f . Now we look at the expanding rules
and define an appropriate symbol valuation f ′ for G′.

Consider a rule (A → BC) ∈ P . Then s(1)·f(A) < s(1)·f(B)+s(2)·f(C).Proof of Theorem 4-3

If s(2) ·f ′(A) < s(2) ·f ′(C)+s(1) ·f ′(B) holds, the rule A → CB is s′-weakly
growing with respect to f ′. We attach an additional weight piece to B in
order to fulfill this inequality, that is, we define f ′(B) def= f(B) + b where
b

def= s(2)−s(1)
s(1) · m with m ≥ f(A). Attaching this same weight piece to A and

C does not affect the validity of the given inequality.
We define m

def= max { f(A) : A ∈ N }, and define f ′ : N ∪ T → Q byProof of Theorem 4-4

f ′(X) def= f(X) +
s(2) − s(1)

s(1)
· m for X ∈ N ∪ T

Then every transposed version of an expanding rule in P is s′-weakly growing
with respect to f ′. As f ′ differs from f only by a constant addend, the
transposed versions of the length-preserving rules in P are s′-weakly growing
with respect to f ′ also. Thus G′ ∈ WGCSGs′ follows from Lemma 1.

Proof of Theorem 4 2

4 The Unsteady Position Valuation

In this section it is shown that WGCSLs = CSL for every unsteady position4-1

valuation s. The only inclusion we have to show is CSL ⊆ WGCSLs.
It is well known that linear-bounded automata characterize the context-4-2

sensitive languages [Kur64]. This will be used extensively when we show the
claim mentioned above. There the following technique for simulating a linear-
bounded automaton by a context-sensitive grammar is adapted (see, e.g.,
[Har78]): We use a linear-bounded automaton that has a single tape, writes
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Figure 1: Tape and sentential form (sketch)

only on the tape cells marked by the input, and makes no null moves. This
can be done without loss of generality (see, e.g., [Tur36], [Har78], [HU79]).
Each configuration is represented by a certain sentential form (see Figure 1).
We work on three tracks, as follows. On the first track, we hold the input,
on the second track we always have the actual contents of the working tape,
and on the third track we have the actual state, put down exactly below the
symbol the linear-bounded automaton is actually reading. This sentential
form is generated with the initial configuration with an arbitrary input, then
M is simulated step by step, and if M accepts, the triples are transformed into
the contents of their first component, which then become terminal symbols.

To simulate a context-sensitive grammar by a linear-bounded automaton,4-3

we just follow a derivation step by step and compare the derived word with
the input afterwards.

As we mentioned earlier, for every unsteady position valuation s,4-4

WGCSLs = CSL. To prove this, we use that every unsteady position valua-
tion s has a blip (see Definition 3). We distinguish four cases for an unsteady
position valuation s, where j is the first blip:

(i) s(j − 1) > s(j) and s(j) < s(j + 1), that is, j is a “valley blip,”

(ii) s(j − 1) < s(j) and s(j) > s(j + 1), that is, j is a “peak blip,”

(iii) s is monotone increasing on an initial part up to the position j +1, and

(iv) s is monotone decreasing on an initial part up to the position j + 1.

Every unsteady position valuation corresponds to one of the cases above. In
each case we introduce for a linear-bounded automaton a way of construct-
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Figure 2: Simulation in the first case (sketch)

ing an s-weakly growing context-sensitive grammar following the algorithm
mentioned above.

For the first case (i): Given a linear bounded automaton M =4-5

(Σ, Q, Γ, q0, δ, F ), we construct the simulating grammar G = 〈N, T, S, P 〉
as follows. N consists of triples, where the first component contains an ele-
ment of Σ, the second an element of Γ, and the third is empty or contains a
state. Additionally, N contains marked copies of those symbols for the right-
hand and the left-hand borders. The idea is to valuate (by an appropriately
defined symbol valuation) all triples without state with the same value, and
the triples containing a state with a greater value.

The “valley blip” in the position valuation is then used as follows. In a4-6

rule that simulates a step of M , the state “moves” following the move of the
automaton’s head. Thus, the additional weight induced to a nonterminal by
the state also “moves,” and by an appropriate left-hand context (that is, by
j − 2 preceding nonterminals for moving to the left, j − 1 for moving to the
right, where the position j is the “valley blip”), the rule is constructed so
that on the left-hand side the state is positioned exactly on that blip. In
Figure 2 this is illustrated. Thus, for (p, y, R) ∈ δ(q, x), the rules

α


a
x
q




b
z


→ α


a
y




b
z
p




for α ∈ N j−1 (nonstate symbols only), a, b ∈ Σ, z ∈ Γ are in P ; for (p, y, L) ∈
δ(q, x) the rules
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α


a
z




b
x
q


→ α


a
z
p




b
y




for α ∈ N j−2 (nonstate symbols only), a, b ∈ Σ, z ∈ Γ are in P .
Since the positions to the right and to the left of the “valley blip” j are4-7

both valuated higher than the blip itself, these rules become s-weakly growing
with a symbol valuation according to the conditions we stated above. To
continue working, that is, to apply such a rule on a sentential form, there
must exist at least j − 1 symbols in the sentential form to the left of the
state.

Therefore, at the left-hand border we condense several steps: For w, w′ ∈4-8

Σj−1, w = w1 . . . wj−1, w′ = w′
1 . . . w′

j−1, x, y ∈ Σ,q, p ∈ Q with wqx
∗7−−
M

w′yp

the rules 
a1

w1

♥




a2

w2


. . .


aj−1

wj−1




a
x
q




b
z


→


a1

w′
1

♥




a2

w′
2


. . .


aj−1

w′
j−1




a
y




b
z
p




for a1 . . . aj−1, a, b ∈ Σ, z ∈ Γ are in P . (The ♥ here serves as a mark for the
left-hand border.)

To build an initial sentential form for the input a1 . . . aj . . . an, we use an4-9

analogous condensation of steps: For q0a1 . . . aj−1
∗7−−
M

a′
1 . . . a′

j−1p0 we build


a1

a′
1

♥




a2

a′
2


. . .


aj−1

a′
j−1




aj

aj

p0




aj+1

aj+1


. . .


an

an

♦




(where ♥ serves to mark the left-hand, and ♦ to mark the right-hand bor-
ders).

Triples containing an accepting state are transformed into their first com-4-10

ponent, which then become terminal symbols. Every triple near a terminal
is transformed in this way, too. For a detailed and explicit construction of
the grammar see [Nie94].

For the second case (ii): In the case of a “peak blip” we can use the same4-11

algorithm as we used in the first case. In fact, we can use the same gram-
mar. We just have to redefine the symbol valuation so that the nonterminals
representing simple tape cells are valuated higher than the nonterminals con-
taining a state.

22

Chicago Journal of Theoretical Computer Science 1996-4



Buntrock and Niemann Weakly Growing CSGs §4

6
-

- 6�

LBA:



pL





?




state q






qR


 reversal

state p

rule in P :

In the sentential form, the following should happen:





. . .








pL





?







. . .







swallower




−−−−→
passing





. . .








pL







. . .








?




swallower




−−−−−−→
swallowing





. . .








pL







. . .












swallower




Figure 3: Simulation with swallower

For the third case (iii): Concerning a monotone increasing position val-4-12

uation (up to the position j + 1), we relate the state with a greater value
(than the simple tape cells) for moving to the right and with a lower value
for moving to the left. To do this, we mark the state with the direction it
moved the last time. With a reversal (change of direction of the move) this
value must be changed. It is no problem in a weakly growing grammar to
change from a lower to a greater value. But going the other way, we will use
a trick to erase the “surplus weight.” First, it is encoded in a certain sym-
bol (we will use a star ?) and laid down beside the point of reversal. From
there it is passed through to the right to be swallowed. This is illustrated in
Figure 3. It is no problem to let the “surplus weight” (encoded in the star
?) pass through to the right.
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We now introduce a swallower. Informally, a swallower consists of a string4-13

θ together with some rules that can be integrated into a given s-weakly
growing context-sensitive grammar G so that every sentential form wY θ can
be transformed into wXθ, where the nonterminal X is valuated lower than
the nonterminal Y by a symbol valuation for G.

Definition 6 Let s be an unsteady position valuation which is monotone
increasing on an initial part up to a position after its first blip, and let G =
〈N, T, S, P 〉 ∈ WGCSGs. Define a swallower for s and G (also called an
s-swallower for G) to be a quintuple Ss,G = (N1, N2, Nswallow, θ, Pswallow) such
that:

• The components of the quintuple are

– N1 and N2 are nonempty subsets of N ,

– Nswallow is a set of nonterminals (not necessarily a subset of N),

– θ ∈ N∗
swallow is a string, and

– Pswallow is a set of rules of the form α → β where α, β ∈
(N ∪ Nswallow ∪ T )∗. Every rule in Pswallow is context-sensitive.

• There exists a symbol valuation f : N ∪ Nswallow ∪ T → N with

– f is a symbol valuation for G, i.e., every rule in P is s-weakly
growing with f ,

– every rule in Pswallow is s-weakly growing with f , and

– for every X ∈ N1, Y ∈ N2, it holds that f(X) < f(Y ).

• There exists an l ∈ N such that for every w ∈ (N ∪ T )∗ with |w| ≥ l
and for every X ∈ N1, Y ∈ N2, it holds that wY θ

∗=⇒
Pswallow

wXθ.

If Nswallow ⊆ N and Pswallow ⊆ P , we also call Ss,G an s-swallower in G.
If s and G are clear from the context, the subscripts are dropped.

To illustrate how a swallower can be built, we give an example first.4-14

Example 3 Take the unsteady position valuation id defined by id(i) def= i forExample 3-1

every i ∈ N+.
Let G = 〈N, T, S, P 〉 ∈ WGCSGid with X, Y ∈ N , and let f be a symbolExample 3-2

valuation for G with f(X) = 1, f(Y ) = 2.
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Chicago Journal of Theoretical Computer Science 1996-4



Buntrock and Niemann Weakly Growing CSGs §4

Define S = (N1, N2, Nswallow, θ, Pswallow) with N1
def= {X}, N2

def= {Y },Example 3-3

Nswallow
def= {M, [?], A, B, V }, θ

def= MAV , and a set of rules Pswallow comprising

(R1) Y M → X[?] (R2) [?]AV → MBA (R3) BA → AV

Using these rules out of Pswallow, the following derivation steps are possible:

Y MAV =⇒
R1

X[?]AV =⇒
R2

XMBA =⇒
R3

XMAV

Now extend the symbol valuation f to Nswallow as follows:

f(M) def= 1 f([?]) def= 2

f(A) def= 1 f(B) def= 8 f(V ) def= 5

In this way we obtain the following valuations for the rules in Pswallow:

for (R1): 1 · 2 + 2 · 1 = 4 < 5 = 1 · 1 + 2 · 2
for (R2): 1 · 2 + 2 · 1 + 3 · 5 = 19 < 20 = 1 · 1 + 2 · 8 + 3 · 1
for (R3): 1 · 8 + 2 · 1 = 10 < 11 = 1 · 1 + 2 · 5

Thus, these rules are id-weakly growing with f .
In the construction of these rules, we exploit that with the position valu-Example 3-4

ation id, a value moving from the first to the second position can be divided
in half (this happens in (R2) with the “value” 1 of the star), and moving
from the third to the second position it must be multiplied only with one
and a half (this happens in (R2) with the “value” f(V ) − f(A) = 4). Here
the values are chosen in a way that dividing the value collected in B by 2
(that is

⌈
1
2 · 1

⌉
+ 3

2 · 4 = 7 = f(B) − f(A) and happens in (R3)) the situation
of the beginning is restored.

In this way, the sentential form MAV together with the set of rulesExample 3-5

Pswallow swallows a value encoded in the star, and S is an id-swallower in G.

Example 3 2

Now we turn to the construction of a swallower for each unsteady position4-15

valuation that is monotone increasing at least up to a position after its first
blip.

25
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Lemma 3 Let s be an unsteady position valuation which is monotone in-4-16

creasing on a beginning part up to a position after the first blip, and let
G = 〈N, T, S, P 〉 ∈ WGCSGs. Let f be a symbol valuation for G that valuates
at least two symbols out of N differently. Then there exists an s-swallower
for G.

Note that this lemma also means that concerning an unsteady position4-17

valuation, a positive growth rate of a rule does not necessarily mean a positive
growth rate of the corresponding derivation step.

Proof of Lemma 3 We just introduce the construction of the swallowerProof of Lemma 3-1

and how the symbol valuation f can be extended to become an appropriate
symbol valuation for the swallower S = (N1, N2, Nswallow, θ, Pswallow) as well.

Let j be the first blip of s. Let N1 and N2 be nonempty subsets of N withProof of Lemma 3-2

f(X) < f(Y ) for every X ∈ N1, Y ∈ N2. Define Nswallow
def= {M, [?], A, B, V },

θ
def= MAV , let

l
def=

{
j − 1 if s(j − 1) = s(j)
j − 2 if s(j − 1) < s(j)

and define Pswallow as follows:

R1
def=

{
αY M → αX[?] : α ∈ (N ∪ T )l, Y ∈ N2, , X ∈ N1

}
R2

def=
{

α[?]AV → αMBA : α ∈ (N ∪ T )j−2
}

R3
def=

{
αBA → αAV : α ∈ (N ∪ T )j ·−3 · {M, ε}, |α| = j − 2

}
Pswallow

def= R1 ∪ R2 ∪ R3

Note that the lengths of α in R2 and R3 are different, and that M appears
in R3 iff j > 2.

Now we extend the symbol valuation f to Nswallow with values in Q asProof of Lemma 3-3

follows, where µ
def= max { f(Y ) − f(X) : X ∈ N1, Y ∈ N2 }:

f(M) def= 1 f([?]) def= 1 + µ f(A) def= 1

f(B) def=
1

s(j)2 − s(j − 1) · s(j + 1)
· (s(j − 1) · s(j) · µ + s(j) + s(j + 1)) + 1

f(V ) def=
1

s(j)2 − s(j − 1) · s(j + 1)
· ((s(j − 1))2 · µ + s(j − 1) + s(j)) + 1

It can be checked arithmetically that the rules in Pswallow all are s-weaklyProof of Lemma 3-4

growing with f . (To check R2 and R3, it is helpful first to compute s(j) ·
26
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f(B) − s(j + 1) · f(V ) and s(j) · f(V ) − s(j − 1) · f(B), respectively.) As we
have seen in Lemma 1, f can be transformed into a symbol valuation with
values in N+.

Thus f is now a symbol valuation for the swallower as well. Let w ∈Proof of Lemma 3-5

(N ∪ T )∗ with |w| ≥ l, and let X ∈ N1, Y ∈ N2. With θ = MAV the
following derivation steps are possible:

wY θ = wY MAV =⇒
R1

wX[?]AV =⇒
R2

wXMBA =⇒
R3

wXMAV = wXθ

Proof of Lemma 3 2

So we can integrate a swallower into an s-weakly growing context-sensitive4-18

grammar, where s is unsteady and monotone increasing on a beginning part
up to a position after the first blip j, that simulates a linear bounded au-
tomaton in the way we mentioned at the beginning of this section. To get a
sentential form that is not too long, we condense every two cells of the linear
bounded automaton (see linear tape compression in the literature).

When the linear bounded automaton accepts, the sentential form is trans-4-19

formed into terminals and expanded at the same time. Together with the
expansion the swallower disappears. If s on a beginning part is constant, we
have the same conditions for border-handling during the simulation as we
had in the first and the second cases.

For the fourth case (iv): Concerning an unsteady position valuation that4-20

is monotone decreasing on a beginning part up to a position after the first
blip j, the simulation of a linear bounded automaton works quite analogously.
For a move to the right, the state is related to a lower value, for a move to
the left the state is related to a higher value than the simple tape cells.
This means the “surplus weight” is generated in a left-right reversal, and
is passed through to the left, where it is swallowed. The swallower is also
constructed in a similar way: The string and the parts of the rules that
change are transposed, a dummy symbol is added to the left-hand context of
the rules in R3, and the left-hand context of every rule is replaced by dummy
symbols. Such a swallower can be integrated in an analogous way to the one
introduced above, and thus the claim can be shown for this case, too.

Conclusion: Since in all cases (i) through (iv) we can construct an appro-4-21

priate weakly growing context-sensitive grammar, we have the following:
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Theorem 5 For every unsteady position valuation s, it holds that

WGCSLs = CSL

For a more detailed description, see [Nie94].4-22

5 The Steady Position Valuation

We intend to find a characterization of a weakly growing context-sensitive5-1

language class related to a steady position valuation by linear bounded au-
tomata with a certain time bound. We approach this goal in three steps:
First, we estimate the length of a derivation in a given weakly growing
context-sensitive grammar related to a steady position valuation, and realize
an efficient simulation (Section 5.1). Second, we introduce an instrument
that will help in the simulation of linear bounded automata by weakly grow-
ing context-sensitive grammars related to a steady position valuation. This
instrument is a new kind of counter: grammars that count, where the counted
items in fact are weight pieces (Section 5.2). With these preparations the
simulation will be done easily (Section 5.3). Note, however, that with our
methods it is not possible to show a one-to-one correspondence, due to the
counter’s capacity.

5.1 Efficient Simulation of a Grammar

5.1.1 Connected Grammars

In a simulation of a grammar with a linear bounded automaton, the automa-5.1.1-1

ton can follow the derivation step by step, if it is connected (see Definition 7),
while in a nonconnected grammar, in every step it must move to the position
of replacement first. To gain an effective simulation, we will make use of the
property to be connected (see [Gla64], [Boo69], [Bun93]).

Definition 7 Let G = 〈N, T, S, P 〉 be a grammar. Let w0 = S =⇒ w1 =⇒
. . . =⇒ wt be a derivation in G, and let (αi → βi) ∈ P be the rule applied in
the step wi =⇒ wi+1. The derivation is connected if for each i = 1, 2, . . . , t−1
the substrings αi and βi−1 of wi have a nonempty overlap. The grammar G
is connected if each derivation w0

∗=⇒ wt with w0 = S is connected.

28

Chicago Journal of Theoretical Computer Science 1996-4



Buntrock and Niemann Weakly Growing CSGs §5.1.1

Gladkii showed that every grammar (of both general and context-sensitive5.1.1-2

types) can be transformed into an equivalent grammar of the same type that
is connected [Gla64]. Using Book’s proof in [Boo69], in [Bun93] it was shown
that this also is true for quasi-growing context-sensitive grammars. Here
we will show that the same is true for s-weakly growing context-sensitive
grammars, for every steady position valuation s.

Book’s proof carries over easily when we use Cremers normal form (Theo-5.1.1-3

rem 3), and we can assume that the position valuation is monotone increasing
(see Theorem 4).

Lemma 4 Let s be a steady, strictly monotone increasing position valuation.
Then for each grammar G ∈ WGCSGs in Cremers normal form, there exists
a connected grammar G′ ∈ WGCSGs with L(G′) = L(G). Additionally, the
length of a derivation for a word w in G′ is at most doubled compared to the
length in G.

Proof of Lemma 4 Let G = 〈N, T, S, P 〉 ∈ WGCSGs in Cremers normalProof of Lemma 4-1

form. Let f be a symbol valuation for G.
Define a grammar G′ = 〈N ′, T, Ŝ, P ′〉 by N ′ def= N ∪

{
Â : A ∈ N

}
, thatProof of Lemma 4-2

is, the old set of nonterminals together with a set of new nonterminals in
one-to-one correspondence with the old, and the following rules:

P1
def=

{
ÂB → ĈD, AB̂ → ĈD, AB̂ → CD̂ : A, B, C, D ∈ N, (AB → CD) ∈ P

}
P2

def=
{

Â → ĈD, Â → CD̂ : A, C, D ∈ N, (A → CD) ∈ P
}

P3
def=

{
Â → a, ÂX → aX̂ : A, X ∈ N, a ∈ T, (A → a) ∈ P

}
P4

def=
{

ÂB → AB̂ : A, B ∈ N
}

P ′ def= P1 ∪ P2 ∪ P3 ∪ P4

Following an argument given in [Boo69] we see that L(G′) = L(G), and G′

is a connected context-sensitive grammar. Now define a symbol valuation
f ′ : N ′ ∪ T → N for G′ by:

f ′(A) def= s(2)2 · f(A) for every A ∈ N

f ′(Â) def= s(2)2 · f(A) + s(2) for every A ∈ N

f ′(a) def= s(2)2 · f(a) for every a ∈ T

Then every production in P ′ is s-weakly growing with f ′ as shown below.
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Each rule from P grows at least by one with respect to f . The factorProof of Lemma 4-3

s(2)2 in the definition of f ′ causes this growth rate to rise to s(2)2. As
0 < s(2) ≤ s(1) · s(2) < s(2)2 (because s(1) ≥ 1 and s is strictly monotone
increasing), the claim can be concluded for every rule of P ′. To illustrate, we
take a closer look at the second rule in P1. Because AB → CD is s-weakly
growing with f , the following applies:

s(1) · f(A) + s(2) · f(B) + 1 ≤ s(1) · f(C) + s(2) · f(D)

so

s(1) · s(2)2 · f(A) + s(2)3 · f(B) + s(2)2 ≤ s(1) · s(2)2 · f(C) + s(2)3 · f(D)

Thus, for the new rule AB̂ → ĈD, it holds that

s(1) · f ′(A) + s(2) · f ′(B̂) = s(1) · s(2)2 · f(A) + s(2) · s(2)2 · f(B) + s(2) · s(2)
≤ s(1) · s(2)2 · f(C) + s(2) · s(2)2 · f(D)
< s(1) · s(2)2 · f(C) + s(1) · s(2) + s(2) · s(2)2 · f(D)

= s(1) · f ′(Ĉ) + s(2) · f ′(D)

Thus we have G′ ∈ WGCSGs. The second claim is true following [Boo69].

Proof of Lemma 4 2

It is possible to use the same idea for other position valuations. We even5.1.1-4

have connectivity if there is no known transformation into Cremers normal
form.

5.1.2 Efficient Simulation

When we simulate a derivation with a weakly growing context-sensitive gram-5.1.2-1

mar related to a steady position valuation by a linear bounded automaton,
we use the algorithm of Section 4 and Lemma 4. To estimate the time bound
for the linear bounded automaton, we estimate the length of the derivation in
the weakly growing context-sensitive grammar related to the steady mono-
tone increasing position valuation by the value of the derived word. This
is done by the natural infinite extension of the position valuation. Such an
extension allows us to valuate arbitrarily long sentential forms. With ev-
ery application of a rule, the value of the sentential form increases (at least
by one).
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Lemma 5 Let s be an infinite steady monotone increasing position valua-
tion. Let G = 〈N, T, S, P 〉 be an s-weakly growing context-sensitive grammar,
let u = u1 . . . ur, v = v1 . . . vs ∈ (N ∪ T )∗ be sentential forms with u =⇒ v,
and let f : N ∪ T → N+ be a symbol valuation for G. Then the following
applies:

r∑
i=1

s(i) · f(ui) + 1 ≤
s∑

i=1
s(i) · f(vi)

That is, concerning steady position valuations, the positive growth rate of a
rule induces a positive growth rate of the corresponding derivation step.

Proof of Lemma 5 Let (α → β) ∈ P be the rule used in the derivation
step u =⇒ v. The growth rate of that rule is at least 1; we denote it by g.
Let us now valuate the whole sentential forms u = u1αu2 and v = u1βu2, and
look at the growth rate of the derivation step u =⇒

G
v. We obtain the value

g · w(s)|u1| where w(s)|u1| ≥ 1, if r is length-preserving, and g · w(s)|u1| + b
where, additionally, b > 0, if it is length-increasing. As there are no length-
decreasing rules, this implies the claim.

Proof of Lemma 5 2

As we saw in Section 4 in the construction of swallowers, in the case of5.1.2-2

an unsteady position valuation it is not possible to build a natural extension
such that the value of a sentential form increases with every application of
a weakly growing rule (see Lemma 3). On the other hand, because of this
effect there cannot exist a swallower for a steady position valuation. Thus
we can estimate the length of a derivation generating a word w in a grammar
G by the valuation of the word w itself.

We conclude from Lemma 5 and Definition 3:5.1.2-3

Lemma 6 Let s be an infinite steady strictly monotone increasing position
valuation. Let G = 〈N, T, S, P 〉 ∈ WGCSGs, let f be an appropriate symbol
valuation for G. Let c = max { f(A) : A ∈ N ∪ T }. Let v ∈ L(G). Then the
length of a derivation S

∗=⇒ v is not greater than

|v|∑
i=1

s(i) · c = c ·
|v|∑
i=1

s(1) · w(s)i−1 ≤ w(s)|v| · c · s(1)
w(s) − 1
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Now we can estimate the computation time a linear bounded automaton5.1.2-4

needs to simulate a weakly growing context-sensitive grammar related to a
steady position valuation using Theorem 4, Lemma 4, and Lemma 6. (Here,
T -NSPACE-TIME(s, t) denotes the class of languages that are accepted by
a one-tape nondeterministic Turing machine with the given space bound s
and the given time bound t; see [WW86].)

Theorem 6 Let s be a steady nonconstant position valuation. Let w =
max{w(s), 1

w(s)}. Then:

WGCSLs ⊆ T -NSPACE-TIME (n, O(wn))

5.2 Counters

We will introduce a counter as an instrument to lay down encoded weight5.2-1

pieces, consisting of a string and some rules. We will use it in a simulation of
a linear bounded automaton by a weakly growing context-sensitive grammar.
The capacity of the counter used will cause a bound on the number of steps
that can be simulated.

Definition 8 Let s be a steady strictly monotone increasing position valua-Definition 8-1

tion, and let G = 〈N, T, S, P 〉 ∈ WGCSGs. Define a counter for G related
to the position valuation s, also called an s-counter for G, to be a quintuple
Zs,G = (N1, N2, Ncount, (zn)n∈N+ , Pcount), such that:

• The components of the quintuple are

– N1 and N2 are nonempty subsets of N ,

– Ncount is a set of nonterminals (not necessarily a subset of N),

– (zn)n∈N+ is a sequence of start strings with zn ∈ Nn
count for every

n ∈ N+, and

– Pcount is a finite subset of (N2·N∗
count×N1·N∗

count)∪(N∗
count×N∗

count);
every rule in Pcount is length-preserving.

• There exists a symbol valuation f : N ∪ Ncount ∪ T → N where

– f is a symbol valuation for G, i.e., every rule in P is s-weakly
growing with f ,

– every rule in Pcount is s-weakly growing with f , and
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– for every X ∈ N1, Y ∈ N2, it holds that f(X) < f(Y ).

We say that f |N1∪N2∪Ncount is a symbol valuation for Z.

If Ncount ⊆ N and Pcount ⊆ P , we also call Zs,G an s-counter in G. If sDefinition 8-2

and G are clear from the context, the subscripts are dropped.

For every X ∈ N1 and Y ∈ N2, the counter counts the weight piece5.2-2

f(Y ) − f(X) by applying an appropriate rule out of N2 · N∗
count × N1 · N∗

count
(and after that possibly some rules out of N∗

count ×N∗
count) on the string Y zn,

where zn is one of the start strings of Z. This results in a string Xz′
n of the

same length. Another weight can be counted applying rules as mentioned
above on Y z′

n, and so on. To use the counter to count several amounts of
weight, we apply corresponding increment rules (which are not in Pcount, but
will be added to P in order to use the counter in G).

Definition 9 Let s be a steady strictly monotone increasing position valua-Definition 9-1

tion, let G〈N, T, S, P 〉 ∈ WGCSGs. Let Z be an s-counter for G, and let f
be a symbol valuation for G and for Z.

The set ρ(Z, f) of increment rules for Z with f is defined by:Definition 9-2

ρ(Z, f) def= { (X → Y ) : X ∈ N1, Y ∈ N1 ∪ N2, and f(X) < f(Y ) }

Consider a derivation starting with a string of the form Xzn, where X ∈5.2-3

N1 and zn is the start string with index (and length) n. We are interested
in the number of times an increment rule can be used (and the weight piece
generated by it can be handled) in such a derivation. So, we define the
capacity KZ(n) to be the maximum number of times that it is possible to
have an occurrence of an increment rule in a derivation starting with Xzn

and ending with X ′z̃, where X ′ ∈ N1 and |z̃| = |zn|. Note that there are two
kinds of increment rules. The first kind (which we call a “collecting weights”
rule) leaves the first symbol in N1. The second kind of increment rule (which
replaces the first symbol from one in N1 to one in N2) is the kind of increment
rule that directly influences the counter.

Definition 10 Let s be a steady strictly monotone increasing position valua-
tion, let G = 〈N, T, S, P 〉 ∈ WGCSGs, let Z be an s-counter for G, let zn be
the start string with index n, and let VZ,G be the set of all symbol valuations
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for Z and G. The capacity function KZ : N+→N+ of Z is defined as follows:

KZ(n) def= max


 |{ j : rj ∈ ρ(Z, f) }| :

f ∈ VZ,G, X, X ′ ∈ N1, z̃ ∈ Nn
count, k ∈ N,

(r1, . . . , rk) ∈ (Pcount ∪ ρ(Z, f))k ,
Xzn =⇒

r1
. . . =⇒

rk
X ′z̃




Because the set N is finite and each of the rules is length-preserving, the
capacity of a counter certainly is well defined. Because of the possibility of
collecting weights (in fact, we only need to extend N1 to raise the capacity
of a counter by a constant factor), there is for every counter Z and every
c ∈ N+ a counter Z ′ with KZ′ = c · KZ .

Let us now have a look at a specific counter to see how it works.5.2-4

Example 4 Let s be a steady strictly monotone increasing position val-Example 4-1

uation. Let G = 〈N, T, S, P 〉 ∈ WGCSGs with {#, M} ⊆ N . Define
Z = (N1, N2, Ncount, (zn)n∈N+ , Pcount) by: N1

def= {M}, N2
def= {#}, Ncount

def=
{[0], [1], . . . , [k]} for a k ∈ N+, zn

def= [0]n for each n ∈ N+, and Pcount consisting
of the rules:

(R1) #[i] → M [i + 1]
(R2) [i + 1][i] → [i][i + 1]

for i = 0, . . . , k − 1

The symbol valuation f defined by

f(M) def= 1, f(#) def= 2, f([i]) def= i + 1 for i = 0, . . . , k

shows that Z is an s-counter for G. M → # is the only possible increment
rule, thus the capacity is KZ(n) = k · n.

If we change rule (R2) toExample 4-2

(R2′) [i + 1][i] → [0][i + 1] for i = 0, . . . , k − 1

we obtain a counter with polynomial capacity. (In the symbol valuation
define f([i]) def= w(s)i for i = 0, . . . , k.)

Example 4 2

We have seen counters with linear and with polynomial capacities. What5.2-5

about exponential capacity? As we reach for an inversion of Theorem 6, this
is our goal.

Let us check the possible capacity for a counter that follows the algorithm5.2-6

“treat the string as a number to a certain base, and add up arithmetically.”
We look at an example first.
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Example 5 Let s2 be the position valuation defined by s2(i)
def= 2i−1 forExample 5-1

every i ∈ N+. Let G = 〈N, T, S, P 〉 ∈ WGCSGs2 with {#, M} ⊆ N . Define
Z = (N1, N2, Ncount, (zn)n∈N+ , Pcount) by N1

def= {M}, N2
def= {#}, Ncount

def=
{[0], [1], [U ]}, zn

def= [0]n for each n ∈ N+ and Pcount consisting of the rules:

(R1) #[0] → M [1] (R3) [U ][0] → [0][1]
(R2) #[1] → M [U ] (R4) [U ][1] → [0][U ]

Using rules (R1)–(R4) above, together with the rule M → #, for every start
string zn the following derivation steps are possible in Z:

Mzn = M [0][0][0] . . . [0] ∗=⇒ M [1][0][0] . . . [0] ∗=⇒ M [U ][0][0] . . . [0]
∗=⇒ M [0][1][0] . . . [0] ∗=⇒ M [1][1][0] . . . [0] ∗=⇒ M [U ][1][0] . . . [0]
∗=⇒ M [0][U ][0] . . . [0] ∗=⇒ M [0][0][1][0] . . . [0]
∗=⇒ . . .

∗=⇒ M [U ][U ] . . . [U ]

At first glance, this looks like an s2-counter with capacity

2 ·
n∑

i=1
2i−1 =

n∑
i=1

2i = 2n+1 − 2 ≥ 2n

Now let f : N1 ∪ N2 ∪ Ncount → N be a symbol valuation. Then we have:

For (R3):

1 · f([U ]) + 2 · f([0]) < 1 · f([0]) + 2 · f([1])
which implies f([U ]) − f([1]) < f([1]) − f([0])

For (R4):

1 · f([U ]) + 2 · f([1]) < 1 · f([0]) + 2 · f([U ])
which implies f([1]) − f([0]) < f([U ]) − f([1])

Both of these inequalities cannot be fulfilled at the same time. ThusExample 5-2

there exists no symbol valuation with which all rules of Pcount are s2-weakly
growing. This implies that Z is not an s2-counter, for every G ∈ WGCSGs2 .

Example 5 2
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The reason is, that in every rule we transport a portion of the weight piece5.2-7

plus an increment for making the rule weakly growing to the right. When
all these portions and increments come together, they add up to a value that
must not exceed the original weight piece, because this sum is to be handled
in the same way, arbitrarily often.

We will now look at the upper bound for the capacity of a counter Zs,G5.2-8

which works after the following mechanism: It treats the start string as a
number (where each digit of that number is represented by several symbols
(bits) of the string) and increments this encoded number arithmetically. We
fix the number of symbols used to represent a digit by l ∈ N. How many
different digits [0], [1], . . . , [imax] can now be represented by l bits of the string
without violating the property of Zs,G to be an s-counter? We have seen in
Example 5 that, e.g., for l = 1 to choose imax = 1 (that is, choosing the base
of the number representation to be 2) violates this property.

This number of digits representable by l bits while respecting the s-5.2-9

counter property determines the base of the number representation that we
use to count weight pieces. Thus, it also determines the maximal capacity
reachable by such a counter.

In the following lemma, [0], [1], . . . , [imax], and [U ] are metasymbols, each5.2-10

standing for l letters (bits) that encode the digits 0, 1, . . . , imax of the number
representation, and the l letters of [U ] represent the overflow, which contains
0 and a carry for the next position.

Lemma 7 Let s be an infinite steady strictly monotone increasing positionLemma 7-1

valuation. Let G = 〈N, T, S, P 〉 ∈ WGCSGs with {#, M} ⊆ N , and let
Z = (N1, N2, Ncount, (zn)n∈N+ , Pcount) be a counter with M ∈ N1, # ∈ N2.
Let l ∈ N+.

If Zs,G works after the following scheme (where [0], [1], . . . , [imax], [U ] ∈Lemma 7-2

N l
count, imax ∈ N, i = 0, . . . , imax − 1):

(R1) #[i] → M [i + 1] (R3) [U ][i] → [0][i + 1]
(R2) #[imax] → M [U ] (R4) [U ][imax] → [0][U ]

and if Zs,G is an s-counter, then the capacity of the counter Zs,G is bounded by

KZ(n) ≤ (c + 2) ·
⌈
w(s)l − 1

⌉bn
l c

where c is a constant depending on Zs,G.
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Note that for w(s)l ≤ 2 the capacity is at most linear, but for w(s)l > 25.2-11

it is at most exponential. As we stated above, the goal of this lemma is to
estimate imax.

Proof of Lemma 7 Let f be a symbol valuation for Z. Define a functionProof of Lemma 7-1

g : N l
count→N+ by g(a1 . . . al)

def=
l∑

i=1
s(i)·f(ai), where a1, . . . , al ∈ Ncount. That

is, g valuates the metasymbols [0], [1], . . . , [imax], [U ], each represented by l
letters out of Ncount, by condensing the symbol and the position valuation.
Let w denote the growth factor w(s). Then we have:

For (R3):Proof of Lemma 7-2

g([U ]) − g([0]) < wl · (g([i + 1]) − g([i])) for i = 0, . . . , imax − 1

For (R4):Proof of Lemma 7-3

g([U ]) − g([0]) < wl · (g([U ]) − g([imax]))

Let µ = g([U ]) − g([0]). This implies

µ
def= g([U ]) + (−g([imax]) + g([imax])) + · · · + (−g([1]) + g([1])) − g([0])
= (g([U ]) − g([imax])) + (g([imax]) − g([imax − 1])) + · · · + (g([1]) − g([0]))

>
1
wl

· µ +
1
wl

· µ + · · · +
1
wl

· µ︸ ︷︷ ︸
imax+1 times

=
imax + 1

wl
· µ

For (R1) and (R2), µ > 0, so imax + 1 < wl, from which it follows that
imax =

⌈
wl − 2

⌉
(which means imax = 0 for wl ≤ 2). Thus, we have a number

representation to the base
⌈
wl − 1

⌉
.

Starting with M [0]bn
l cα, where α ∈ N∗

count with |α|+l ·
⌊

n
l

⌋
= n, the stringProof of Lemma 7-4

M [imax]bn
l cα is derivable following the scheme (R1) through (R4) plus the

increment rule (M → #). In such a derivation the increment rule is applied

bn
l c∑

i=1
imax · (imax + 1)i−1
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times. Then, with (R4), or (R2) if necessary, we can change the rightmost
digit (i.e., metasymbol) to [U ]: in doing so, the other digits change to [0].
Again we can add up (i.e., apply (M → #) and the rules from the scheme)
and thus derive M [imax]bn

l c−1[U ]α. Using this mechanism several times, we
can fill up the string with overflows [U ]. Thus, we derive M [U ]bn

l cα.
Unless Pcount contains some rules to fill up α, now no more rules apply.Proof of Lemma 7-5

The increment rule (M → #) was applied

bn
l c∑

i=1
(imax + 1) · (imax + 1)i−1 = (imax + 1) ·

bn
l c−1∑
i=0

(imax + 1)i

times. If Pcount contains some rules to fill up α, that is, to do derivation steps
[U ]αj =⇒ [0]αj+1, where α0 = α, αj ∈ N∗

count for j ∈ N, the number of these
steps is bounded by a constant c, independent of n.

To derive M [U ]bn
l cαc, the increment rule is usedProof of Lemma 7-6

(imax + 1) ·
bn

l c−1∑
i=0

(imax + 1)i + c · (imax + 1)bn
l c

times. Thus, the capacity of the counter Zs,G can be estimated by:

KZ(n) ≤ c ·
⌈
wl − 1

⌉bn
l c +

⌈
wl − 1

⌉
·
bn

l c−1∑
i=0

⌈
wl − 1

⌉i

= c ·
⌈
wl − 1

⌉bn
l c +

⌈
wl − 1

⌉
·

⌈
wl − 1

⌉bn
l c − 1

dwl − 1e − 1

= c ·
⌈
wl − 1

⌉bn
l c +

⌈
wl − 1

⌉bn
l c − 1 +

⌈
wl − 1

⌉bn
l c − 1

dwl − 1e − 1

≤ (c + 2) ·
⌈
wl − 1

⌉bn
l c

Proof of Lemma 7 2

The upper bound stated in the lemma is optimal. That is, we can really5.2-12

find a counter working according to this adding mechanism and reaching the
stated capacity. We put Lemma 8 with the exponent rounded up instead of
rounded down, only because of technical reasons in the use of the lemma.
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Lemma 8 Let s be an infinite steady strictly monotone increasing position
valuation and G ∈ WGCSGs with at least two different nonterminals, and
let c ∈ N+. Let l ∈ N. Then there exists an s-counter Z, that has a capacity
with

KZ(n) ≥ c ·
⌈
w(s)l − 1

⌉dn
l e for n ∈ N+, n ≥ l

Proof of Lemma 8 First we consider c = 1. We define an s-counterProof of Lemma 8-1

Z = (N1, N2, Ncount, (zn)n∈N+ , Pcount)

following the scheme in Lemma 7. We will use the symbols of the string that
are not used in a digit, which only occurs if n is not divisible by l, to “cheat”
by using them to encode an additional digit. Thus we define:

N1
def= {M} N2

def= {#}
Ncount

def= {D, [0], [1], . . . , [imax], [U ]} ∪ {〈0〉, 〈1〉, . . . , 〈imax〉, 〈U〉}
where imax =

⌈
w(s)l − 2

⌉
Each digit “i” is represented by Dl−1[i], and the start strings are zn =(
Dl−1[0]

)bn
l c 〈0〉nmodl for every n ∈ N. The set Pcount consists of the fol-

lowing rules (where i = 0, . . . , imax − 1):

(R1) #Dl−1[i] → MDl−1[i + 1] (R3) [U ]Dl−1[i] → [0]Dl−1[i + 1]

(R2) #Dl−1[imax] → MDl−1[U ] (R4) [U ]Dl−1[imax] → [0]Dl−1[U ]

(R5) [U ]〈i〉 → [0]〈i + 1〉
(R6) [U ]〈imax〉 → [0]〈U〉

Now we define a symbol valuation f : N1 ∪ N2 ∪ Ncount → N+ by (where
i = 1, . . . , imax):

f(M) def= 1 f(D) def= 1 f(#) def=
⌈
w(s)l

⌉
f([0]) def= 1 f([i]) def= i + 1 f([U ]) def=

⌈
w(s)l

⌉
f(〈0〉) def= 1 f(〈i〉) def= i ·

⌈
w(s)l

⌉
f(〈U〉) def=

(⌈
w(s)l

⌉
− 1

)
·
⌈
w(s)l

⌉
It can be checked easily that the given rules all are s-weakly growing with f .
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The rules (R5) and (R6) give us the possibility to “cheat” by using anProof of Lemma 8-2

additional digit, if l does not divide n. The capacity now is calculated just as

in the proof of Lemma 7, thus applies KZ(n) ≥
⌈
w(s)l − 1

⌉dn
l e. By collecting

weights we get a counter Z ′ with KZ′ = c · KZ for every c ∈ N+.

Proof of Lemma 8 2

5.3 Simulation of Time-Bounded Linear Automata

The counters introduced in Lemma 8 now will be used in a simulation of a5.3-1

time-bounded linear-bounded automaton instead of the swallower we used
in Section 4. The time bounds for linear bounded automata that can be
managed with this counter are determined by the counter’s capacity.

Theorem 7 Let w ∈ N+, let q ∈ Q with 0 < q < 1. Then:

T -NSPACE-TIME (n, O(wq·n)) ⊆ WGCSLw

Proof of Theorem 7 We only describe the intuitive operation of the gram-Proof of Theorem 7-1

mar simulating a given linear-bounded automaton on a given w ∈ N+. The
construction of the grammar itself then is straightforward.

Let M be any linear bounded automaton that recognizes its languageProof of Theorem 7-2

L(M) in the time c ·wq·n with an appropriate c ∈ N+, and let s be an infinite
steady position valuation with w(s) = w.

Similar to Section 4, case (iii), we divide the sentential form into left-handProof of Theorem 7-3

and right-hand parts: In the left-hand part the step-by-step simulation of the
automaton takes place in the same manner as in the simulation mentioned
above, except that we use tape compression; in the right-hand part, a counter
is situated (see Figure 4).

We choose an appropriate compression factor k so that q < k−1
k

, and forProof of Theorem 7-4

this k we choose the width l of a digit so that
⌈
wl

⌉
≥ wl·q· k

k−1 + 1. Note that

this expression is equivalent to
⌈
wl − 1

⌉ k−1
k

· 1
l ≥ wq.

Following Lemma 8 we can find an s-counter Z with the capacity KZ(m) ≥Proof of Theorem 7-5

c ·
⌈
(w)l − 1

⌉dm
l e

where m
def=

⌈
k−1

k
· n

⌉
is the length of the part of the senten-

tial form where the counter operates in the simulation for an input of length
n. This implies

KZ(m) ≥ c ·
⌈
wl − 1

⌉d k−1
k

· n
l e ≥ c · wq·n
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1
k
·n︷ ︸︸ ︷[

LBA simulation
compressed

] k−1
k

·n︷ ︸︸ ︷
Dl−1[i1]︸ ︷︷ ︸
lowest digit

Dl−1[i2]︸ ︷︷ ︸
2. digit

. . . Dl−1[imax]︸ ︷︷ ︸
highest digit︸ ︷︷ ︸

length of the derived word (i.e., the original input)

Figure 4: Simulation with a steady position valuation: sentential form

This means that if M accepts an input word, the simulation can be com-
pleted. Then the k-tuples of the compressed LBA-simulation are transformed
into terminals and expanded at the same time. Together with the expansion,
the counter disappears.

This can be expressed by a WGCSG with position valuation s in theProof of Theorem 7-6

following way. First we state the length of the sentential form is exactly
n, i.e., the length of the terminal word to be produced. The reason is that
the length of the part of the sentential form where the counter operates
is m =

⌈
k−1

k
· n

⌉
, as stated above, and the length of the part where the

simulation takes place can be organized such that it equals
⌊

1
k

· n
⌋
, e.g., by

compressing k symbols of the input for the LBA (the later terminal word)
in every simulation symbol, except for the rightmost one: Here we encode
k′ := k + n mod k symbols.

Now the decompression works in the following way: First, the rightmostProof of Theorem 7-7

simulation symbol is transformed and decompressed into k′ terminal symbols,
where k′ − 1 of the (leftmost) counter symbols disappear. Then the terminal
symbols are passed through to the right. By valuating the terminal symbols
greater than the maximum value of all other symbols, these rules are weakly
growing related to s. The same procedure is done with the now-rightmost
symbol, and then step by step with all the simulation symbols, where in this
and the following steps k′ := k.

For a detailed and explicit construction of the grammar, see [Nie94].Proof of Theorem 7-8

Proof of Theorem 7 2

Note that the requirement q < k−1
k

is for a trick only: In order to ex-5.3-2

ceed the time bound with the capacity of the counter, we strengthen it by
41

Chicago Journal of Theoretical Computer Science 1996-4



Buntrock and Niemann Weakly Growing CSGs §5.3

the choice of l, the number of letters representing a digit (see Lemma 8,
and regard additionally the limited space for the counter in the simulating

sentential form). But such an l, fulfilling
⌈
wl − 1

⌉ k−1
k

·n· 1
l ≥ wq·n, does not

exist for k−1
k

≤ q, so there is a gap between Theorem 6 and Theorem 7. As
the construction technique used to build a counter with exponential capacity
does not lead further (see Lemma 7), closing this gap is a nontrivial problem.

6 Characterizing the Exponential Time
Hierarchy of CSL

In the previous sections we looked at several position valuations, struc-6-1

turing and investigating them. Now we will gain an overview of the different
classes of weakly growing context-sensitive languages related to different po-
sition valuations.

For a constant position valuation, we obtain the same grammars as if we6-2

had no position valuation at all, namely the quasi-growing context-sensitive
grammars, which characterize GCSL ([BL92], compare Section 2). For every
unsteady position valuation, we obtain the language class CSL, as we saw
in Section 4. Allowing zero points for position valuations, we also obtain a
characterization of CSL, as we mentioned before (see Section 2).

Note that in Definition 3 we gave an equivalent characterization for the6-3

property “unsteady,” which does not hold for position valuations with zero
points: A position valuation s without zero points is unsteady if and only
if s has at least three valuated positions and s has a blip, i.e., a position j
with s(j)2 6= s(j − 1) · s(j + 1). In Section 4, in fact, we used this equivalent
characterization (e.g., in the values of the symbols of a swallower). Essen-
tially, there is still something to show in cases where s has only two valuated
positions or where s has no blip according to the definition given above,
which is the case if s has only one nonzero point, and this is the first or the
last valuated position, or if s has nonzero points at the first and the last
position, separated at least by two zero points. On the other hand, the proof
technique we use for these cases works for each position valuation with zero
points. Therefore we formulate the next theorem and give a proof here.
Theorem 8 Let s be a position valuation with zero points. Then:

WGCSLs = CSL
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Proof of Theorem 8 It is sufficient to show CSL ⊆ WGCSLs. And it isProof of Theorem 8-1

sufficient to show this claim for finite position valuations s. So let s be a
finite position valuation with zero points.

As the definition of WGCSLs implies that s is not constantly 0, Theorem 2Proof of Theorem 8-2

applies, and thus WGCSLs is closed under transposition. Theorem 4 can be
adapted in the following sense: Let m be the greatest position valuated by
s. Define s : N+ → N by: s(i) def= s(m − i + 1) for i = 1, 2, . . . , m. Then
WGCSLs = WGCSLs.

This especially means we can assume that there exists a zero point j withProof of Theorem 8-3

s(j + 1) = c 6= 0. Regarding these two positions, the “growth factor” in fact
is not defined, but it can be seen as arbitrarily large. Thus, we can construct
a counter similar to the one in Section 5.2 that counts in an arbitrarily given
number representation. (For j 6= 1 we add a left-hand context of length j −1
to the rules in the proof of Lemma 8, we can choose l = 1, and the symbol
valuation is constructed in the same way as it was there.) Now given a linear
bounded automaton with the exponential time bound bn = (b2)

1
2 ·n, b ≥ 2, we

construct a grammar similar to the one in the proof of Theorem 7, where we
choose q = 1

2 , k = 2, and b2 instead of dw(s) − 1e as the base of the number
representation the counter uses. Thus, the linear bounded automaton can be
simulated by an s-weakly growing context-sensitive grammar.

Proof of Theorem 8 2

Note that here we do not have a gap between the base of the time bound-6-4

ing function of the linear bounded automaton and the base of the number
representation the counter uses (in contrary to Theorem 7). Therefore, here
we do not need the trick of representing a digit by several symbols, and the
requirement q < k−1

k
can be dropped, as the base of the number representa-

tion the counter uses can be chosen freely to ensure its capacity exceeds the
time bound.

For every steady position valuation s, we saw in Section 3.2 that the6-5

corresponding class of weakly growing context-sensitive languages is charac-
terized by the growth factor w(s), and in Theorems 6 and 7 the following
was shown.

Proposition 3 Let s be a steady nonconstant position valuation. Let w =
max

{
w(s), 1

w(s)

}
. For every q ∈ Q+, 0 < q < 1, it holds that

T -NSPACE-TIME (n, O(wq·n)) ⊆ WGCSLs = WGCSLw

⊆ T -NSPACE-TIME (n, O(wn))
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T -NSPACE-TIME (n, O(vn))

for log(w)
log(v) < q < 1

T -NSPACE-TIME (n, O(vq·n))

T -NSPACE-TIME (n, O(wn))

WGCSLv

WGCSLw

Figure 5: Relations for growth factors v > w > 1

Corollary 1 For v, w ∈ N+ with w < v it holds that WGCSLw ⊆ WGCSLv.

The resulting relations for different growth factors are depicted in Fig-6-6

ure 5.
As every polynomial time bound can be exceeded by every exponential6-7

time bound, the following can be concluded. To denote classes of sets ac-
cepted in polynomial time bounds, we use the notation pol for the set of all
polynomials in a single variable n.

Corollary 2 For every steady nonconstant position valuation s, it holds that

T -NSPACE-TIME (n, pol) ⊆ WGCSLs

We therefore have all the relations depicted in Figure 6, where we con-6-8

centrated on some specific classes because of clarity. Thus the weakly grow-
ing context-sensitive languages related to steady position valuations build a
linearly inclusion-ordered hierarchy that characterizes the exponential time
hierarchy for context-sensitive languages in the sense that the one collapses
to a certain level if and only if the other collapses to a corresponding level.
Additionally, with the counters we introduced in Section 5.2 and the idea of
construction in the proof of Theorem 7, the following can be shown.
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< q < 1

T -NSPACE-TIME
(
n, O(2(k−1)·n)

)
WGCSL2k−1 = WGCSL 1

2k−1

WGCSL22 = WGCSL 1
4

WGCSL2 = WGCSL 1
2

WGCSL 3
2

WGCSL 4
3

T -NSPACE-TIME
(
n, O(22·n)

)

T -NSPACE-TIME
(
n, O(2q·2·n)

)
for 1
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Figure 6: Exponential-time CSL and WGCSL hierarchies
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Theorem 9 Let s be a steady nonconstant position valuation. The closure
of WGCSLs under inverse homomorphism is CSL. As well, the closure of
WGCSLs under k-bounded homomorphism is CSL.

Proof of Theorem 9 Let L ∈ CSL, and let M be a linear bounded au-Proof of Theorem 9-1

tomaton that accepts L in the time t · 2c·n. Let Σ be the input alphabet.
Analogously to the grammar in the proof of Theorem 7, we construct anProof of Theorem 9-2

s-weakly growing context-sensitive grammar G that simulates M (without
tape compression) and uses a counter just like the one we used in the proof
mentioned above.

For an input word of length n, we choose a start string of length m forProof of Theorem 9-3

the counter, where m ≥ l·c
log(w(s)−1) · n and l ∈ N. Thus we reach at least the

capacity

KZ(m) ≥ t ·
(
w(s)l − 1

)dm
l e ≥ t ·

(
w(s)l − 1

)⌈
l·c

l·log(w(s)l−1)
·n

⌉

≥ t · 2
log(w(s)l−1)·

⌈
c

log(w(s)l−1)
·n

⌉
≥ t · 2c·n

which means, if M accepts an input word, its work is simulated completely.

Now we can expand each symbol a ∈ Σ to a♦
⌈

l·c
log(w(s)l−1)

⌉
, where ♦ /∈ ΣProof of Theorem 9-4

is a new symbol. Together with the expansion, the counter disappears.

We define a homomorphism h : Σ∗ →(Σ ∪ {♦})∗ by h(a) def= a♦
⌈

l·c
log(w(s)l−1)

⌉
Proof of Theorem 9-5

for every a ∈ Σ. Then h(L) = L(G).
To prove the claim for k-bounded homomorphism, define h : (Σ ∪ {♦})∗→Proof of Theorem 9-6

Σ∗ by h(a) def= a for every a ∈ Σ, h(♦) def= ε. Then h is k-bounded for L(G)
with k

def=
⌈

l·c
log(w(s)l−1)

⌉
, and h(L(G)) = L.

Proof of Theorem 9 2

We point out that s is nonconstant, not only because the counter is not6-9

defined otherwise, but also because GCSL is closed under inverse homomor-
phism [BL92] (and thus also under k-bounded homomorphism, [GGH69]).

We obtain the following connections between the closure of WGCSLs un-6-10

der inverse homomorphism for steady position valuations s, the transforma-
bility of a grammar from WGCSGs into Cremers normal form for unsteady
position valuations s, and the exponential time hierarchy of CSL.
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Theorem 10 Let w > 1, and let s be a steady position valuation with
w(s) = w. The following statements are equivalent:

a) WGCSLw = CSL.

b) WGCSLw is closed under inverse homomorphism.

c) For every unsteady position valuation s̃, for every grammar G ∈ WGCSGs̃,
there exists a grammar G′ ∈ WGCSGs in Cremers normal form with
L(G′) = L(G).

d) There exists an unsteady position valuation s̃ satisfying the condition
of c) above.

Additionally, a) implies:

e) T -NSPACE-TIME (n, O(wn)) = T -NSPACE(n),

and from this it can be concluded:

f) WGCSLv = CSL for every v > w.

7 Conclusion

We have seen a characterization of CSL by weakly growing context-sensitive7-1

grammars related to an unsteady position valuation (Section 4) and a char-
acterization of the exponential time hierarchy of CSL by classes of weakly
growing context-sensitive languages related to steady position valuations
(Section 6). Equally interesting, we consider the question of whether the
exponential time hierarchy for linear bounded automata collapses.

Theorem 10 proves that the following problems are equivalent:7-2

• For every weakly growing context-sensitive grammar related to an un-
steady position valuation s̃, does there exist an equivalent grammar in a
normal form of bounded order that is weakly growing context-sensitive
related to a steady position valuation s?

• Is WGCSLs closed under inverse homomorphism for a steady position
valuation s?
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• Does the hierarchy of weakly growing context-sensitive language classes
corresponding to different growth factors collapse down to a certain
level? That is, do CSL and WGCSLs coincide for a steady position
valuation s?

• Does the exponential time hierarchy for CSL collapse up to CSL? That
is, do CSL and T -NSPACE-TIME (n, O(wn)) coincide for a certain
w ∈ N+?

If in the first question we allow an arbitrary position valuation instead of
a steady one, we also must restrict ourselves to normal forms of order 2
(and thus end up with a steady position valuation again). The reason lies in
the fact that for each context-sensitive grammar there exists an equivalent
grammar of order 3 that is in WGCSGs, where s is an arbitrary unsteady
position valuation with three valuated positions. This can be shown in the
following way:

We restrict ourselves to the case s(1) < s(2). The others work
analogously. Given a context-sensitive grammar G, first G is
transformed into an equivalent grammar G′ in Cremers normal
form. Then we associate an additional encoded weight piece with
every rule such that all the rules become weakly growing related
to s with an appropriately defined symbol valuation f (this idea
is similar to the one in the proof of Theorem 2). Then we add
rules to pass those weights through to the right and a swallower
(compare Section 4, case (iii)). Thus every step of the original
derivation can be simulated by using the corresponding rule of
the new grammar, passing the encoded weight through to the
right, and swallowing it.

Because of Theorem 3 we know that asking for a normal form of bounded7-3

order in the case of a steady position valuation is equivalent to asking for a
normal form of order 2. Remember that our notation of a characterization of
one hierarchy by another means that the one collapses if and only if the other
does. More precisely, we have a chain of inclusions between language classes
where the members of that chain alternate between the two hierarchies.

In this context, it would be interesting to close the gap between Theo-7-4

rems 6 and 7, that is, to answer the question whether

WGCSLw = T -NSPACE-TIME (n, O(wn)) ?
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problem: succinctness versus complexity. In Patrice Enjalbert,
Ernst W. Mayr, and Klaus W. Wagner, editors, Proceedings of
the 11th Symposium on Theoretical Aspects of Computer Science,
volume 775 of Lecture Notes in Computer Science, pages 595–606,
Berlin, Heidelberg, New York, 1994. Springer-Verlag.

49

Chicago Journal of Theoretical Computer Science 1996-4



Buntrock and Niemann Weakly Growing CSGs (Ref)

[BO95] Gerhard Buntrock and Friedrich Otto. Growing context-sensitive
languages and Church-Rosser languages. In Proceedings of the
12th Symposium on Theoretical Aspects of Computer Science, vol-
ume 900 of Lecture Notes in Computer Science, pages 313–324.
Springer-Verlag, 1995. To appear in Information and Computa-
tion.

[Boo69] Ronald V. Book. Grammars with time functions. Dissertation,
Harvard University, Cambridge, Massachusetts, February 1969.

[Bör89] Egon Börger. Computability, Complexity, Logic, volume 128 of
Studies in Logic and the Foundations of Mathematics. North Hol-
land, Amsterdam, 1989. The German original appeared as: [?].

[Bun93] Gerhard Buntrock. Growing context-sensitive languages and au-
tomata. Technical Report 69, Fakultät für Mathematik und Infor-
matik, Universität Würzburg, September 1993.

[Bun96] Gerhard Buntrock. Wachsende kontextsensitive Sprachen. Habili-
tation thesis, Fakultät für Mathematik und Informatik, Universität
Würzburg, July 1996. English title: Growing context-sensitive lan-
guages.

[Cho59] Noam Chomsky. On certain formal properties of grammars. Infor-
mation and Control, 2:137–167, 1959.

[Coo79] Stephen A. Cook. Deterministic CFL’s are accepted simultaneously
in polynomial time and LOG squared space. In M. Fischer, editor,
Eleventh Annual ACM Symposium on Theory of Computing, pages
338–345. ACM, 1979. The results of this paper are contained in
[?].

[Cre73] Armin B. Cremers. Normal forms for context–sensitive grammars.
Acta Informatica, 3:59–73, 1973.

[DW86] Elias Dahlhaus and Manfred K. Warmuth. Membership for growing
context–sensitive grammars is polynomial. Journal of Computer
and System Sciences, 33(3):456–472, 1986.

50

Chicago Journal of Theoretical Computer Science 1996-4



Buntrock and Niemann Weakly Growing CSGs (Ref)

[GGH69] Seymour Ginsburg, Sheila Greibach, and John E. Hopcroft. Stud-
ies in abstract families of languages. Memoirs of the American
Mathematical Society, 87:1–51, 1969.

[Gla64] Aleksey Vsevolodovich Gladkii. O slo�nosti vyvoda v grammatikah
neposredstvenno sostavl��wih. ALGEBRA i LOGIKA, Ceminar,
3(5-6):29–44, 1964. English title: On the complexity of deriva-
tions in context-sensitive grammars; journal: Algebra and Logics,
Seminar, Academy of Sciences of USSR, Novosibirsk.

[Har78] Michael A. Harrison. Introduction to Formal Language Theory.
Series in Computer Science. Addison-Wesley, Reading, MA, 1978.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages and Computation. Series in Computer Science.
Addison-Wesley, Reading, MA, 1979.

[Jan79] Matthias Jantzen. A remark on increasing grammars. Unpublished
note: the content of this note can be read in [Bun96], 1979.

[Kur64] S.-Y. Kuroda. Classes of languages and linear-bounded automata.
Information and Control, 7(2):207–223, 1964.

[Nie92] Gundula Niemann. Die Länge wachsender Grammatiken, die aus
quasi wachsenden erzeugt werden. Studienarbeit, Fakultät für
Mathematik und Informatik, Universität Würzburg, December
1992. English title: The length of growing grammars that are
produced out of quasi-growing ones.

[Nie94] Gundula Niemann. Charakterisierungen mit schwach wachsend
kontextsensitiven Grammatiken. Diplomarbeit, Fakultät für Math-
ematik und Informatik, Universität Würzburg, March 1994. En-
glish title: Characterizations with weakly growing context-sensitive
grammars.

[Nie96] Gundula Niemann. On weakly growing grammars. Technical Re-
port 155, Fakultät für Mathematik und Informatik, Universität
Würzburg, October 1996.

51

Chicago Journal of Theoretical Computer Science 1996-4



Buntrock and Niemann Weakly Growing CSGs (Ref)

[Pau78] Wolfgang J. Paul. Komplexitätstheorie. Teubner Studienbücher In-
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