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Laszló Babai Juris Hartmanis Andrew Pitts
Eric Bach Maurice Herlihy James Royer
Stephen Brookes Ted Herman Alan Selman
Jin-Yi Cai Stephen Homer Nir Shavit
Anne Condon Neil Immerman Eva Tardos
Cynthia Dwork Howard Karloff Sam Toueg
David Eppstein Philip Klein Moshe Vardi
Ronald Fagin Phokion Kolaitis Jennifer Welch
Lance Fortnow Stephen Mahaney Pierre Wolper
Steven Fortune Michael Merritt

Managing editor: Michael J. O’Donnell

Electronic mail: chicago-journal@cs.uchicago.edu

[ii]

Chicago Journal of Theoretical Computer Science 1997-1



On Limited versus Polynomial
Nondeterminism

Uriel Feige Joe Kilian
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Abstract

In this paper, we show that efficient algorithms for some problemsAbstract-1

that require limited nondeterminism imply the subexponential simula-
tion of nondeterministic computation by deterministic computation.
In particular, if cliques of size O(log n) can be found in polynomial
time, then nondeterministic time f(n) is contained in deterministic
time 2O(

√
f(n) polylog f(n)).

1 Introduction

A major open question in computational complexity is whether P = NP.1-1

In other words, is it true that if a language L can be recognized in time
f(n) by a nondeterministic Turing machine (where n denotes the input
length), then L can be recognized in time (f(n))c by a deterministic Tur-
ing machine (for some constant c)? Let DTIME(f(n)) denote the class
of languages accepted by a deterministic Turing machine in time O(f(n)),
and let NTIME(f(n)) denote the class of languages accepted by a non-
deterministic Turing machine in time O(f(n)). The trivial relations be-
tween these classes are DTIME(f(n)) ⊂ NTIME(f(n)) (by definition), and
NTIME(f(n)) ⊂ DTIME(2O(f(n))) (by exhaustive search). Perhaps the only
nontrivial relation known is that DTIME(n) 6= NTIME(n) [PPST83].

A natural question to ask is whether there is a general methodology that1-2

improves over exhaustive search, and applies to a wide range of NP prob-
lems. For some specific NP problems, improvements over exhaustive search
that involve the constant in the exponent were obtained [TT77, SS79, BE95].

1
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However, we seek a more dramatic improvement, with more general applica-
bility. This leads to the following question:

Question 1 Is there a subexponential deterministic simulation of nondeter-
ministic computation? More explicitly, is there some constant δ < 1 such
that NTIME(f(n)) ⊂ DTIME(2O(f(n)δ))?

Certain NP problems require only a limited amount of nondeterminism,1-3

in the sense that their (natural) NP-witness is at most polylogarithmic in
the input length. For such problems, improvements over exhaustive search
are sometimes dramatic. Examples of problems that require limited nonde-
terminism can be constructed by considering parameterized versions of NP
optimization problems, in which the parameter k is restricted to be small
(typically constant, or O(log n)). In the problem definitions below, k is a
positive-integer input parameter.

Path

Instance: A graph G of order n.

Question: Does G contain a simple path of length at least k?

Vertex Cover

Instance: A graph G of order n.

Question: Does G contain a set of vertices of cardinality at most k that is
incident with every edge of G?

Clique

Instance: A graph G of order n.

Question: Does G contain a complete subgraph of order at least k?

Monotone Circuit Satisfiability

Instance: A monotone circuit C on n Boolean inputs.

Question: Does C accept an input vector of Hamming weight at most k?

2
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Tournament Dominating Set

Instance: A digraph G = (V, E) of order n, in which for every pair of
vertices u, v ∈ V , either (u, v) ∈ E or (v, u) ∈ E.

Question: Find a set D ⊂ V of minimum cardinality such that for each
vertex v ∈ V , there is an edge (u, v) ∈ E for some vertex u ∈ D.

VC Dimension

Instance: A set U of cardinality n and a family F of n subsets of U .

Question: Find a set S ⊂ U of maximum cardinality that is shattered by
F . Set S is shattered by F if for every subset T ⊂ F there is a set
A ∈ F such that A ∩ S = T .

We remark that the last two problems above are search problems, rather than
decision problems, and also that there is no explicit parameter k involved.
However, a parameter of k ' log n is implicit, since the cardinality of the
optimal solution is at most log n + 1.

For the problems above, with parameter k = log n, an exhaustive search1-4

requires time of roughly nlog n. However, the first two of these problems have
algorithms of time complexity O(nc2k), for some constant c, which is polyno-
mial even for k = log n [PY96, DF95, AYZ95]. (Note that these two problems
are NP-hard for a general k, since the Vertex Cover and Hamiltonian Path
problems are.) Is this phenomenon of dramatically improving over exhaus-
tive search a general one when problems that require a limited amount of
nondeterminism are concerned? Does the same apply for the k-Clique prob-
lem when k = O(log n)? These types of questions are treated by the theory
of fixed parameter intractability [DF92], and motivate the introduction of the
complexity class LOGSNP [PY96]. We shall return to discuss these notions
in Section 4.2.1. For now, we shall concentrate on the log-Clique problem in
which one must find a clique of size k ' log n in the input graph.

Question 2 Is the log-Clique problem solvable in polynomial time?

Our main result is a connection between Question 2, that deals with a1-5

case of limited nondeterminism, and Question 1, that deals with polynomial
nondeterminism. In Section 2 we show that if the answer to Question 2
is positive, then so is the answer to Question 1. In Section 3 we present

3
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extensions that deal with the complexity of finding approximate solutions
to the k-Clique problem, for small values of k. In Section 4 we discuss our
results and their implications. In particular, we discuss related work showing
(for the k-Monotone Circuit Satisfiability problem [ADF95]) or implying in
conjunction with our work (for the Tournament Dominating Set and VC-
Dimension problems [PY96]) additional problems of limited nondeterminism
whose complexity is related with subexponential simulation of NP.

2 On the Complexity of the log-Clique Problem

The results of this section were first proven as corollaries of the results of2-1

Section 3. The elementary proofs given here were noticed by Noam Nisan,
who permitted us to use them.

2-2

Lemma 1 Suppose there is a polynomial time algorithm for the k-Clique
problem when k ≤ log n. Then the k-Clique problem is solvable in time
O(nO(

√
n)), for every k.

Proof of Lemma 1 Let A be an algorithm that in time O(nc) solves theProve Lemma 1-1

k-Clique problem for k ≤ log n. Let (G, k) be an input instance for the k-
Clique problem (with arbitrarily large k). Reduce (G, k) to a new instance
(Ĝ, k̂) of the k-Clique problem as follows. Without loss of generality, assume
that k is a perfect square. (Otherwise, let k′ be the least perfect square
greater than k. Add k′ − k vertices to G, connected to every other vertex.)
Graph Ĝ contains N =

(
n√
k

)
vertices, where each vertex of Ĝ corresponds to

a
√

k-subset of vertices of G. Two vertices of Ĝ are connected by an edge if
the 2

√
k vertices that they correspond to are distinct and form a clique of

size 2
√

k in G. Set k̂ =
√

k.

Proposition 1 Ĝ has a k̂-clique if and only if G has a k-clique.

Proof of Proposition 1 If G has a k-clique, then partition the vertices ofProve Prop 1-1

this clique into
√

k sets of size
√

k. These sets make up
√

k = k̂ vertices of
Ĝ that together form a clique in Ĝ.

If Ĝ has a k̂-clique, then the vertices of G comprising each vertex of thisProve Prop 1-2

k̂-clique are all distinct, and form a clique of size
√

k · √
k = k in G.

Proof of Proposition 1 2

4
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The number of vertices of Ĝ is N =
(

n√
k

)
< n

√
n. The construction of theProve Lemma 1-2

edges of Ĝ takes time O(N2), times some polynomial in n reflecting the time it
takes to check whether 2

√
k vertices form a clique in G. Hence the reduction

from (G, k) to (Ĝ, k̂) takes time nO(
√

n). The value of k̂ satisfies k̂ ≤ log N .
Therefore, the k-Clique problem on (Ĝ, k̂) can be solved in time O(nc

√
n),

using algorithm A. The proof of the lemma follows from Proposition 1.

Proof of Lemma 1 2

Lemma 1 shows that if the log-Clique problem is in P, then a specific NP2-3

problem has subexponential complexity. The conclusion can be extended
to some other NP problems—those from which there is a linear (or slightly
superlinear) reduction to the k-Clique problem. In particular, let L be a
language in NTIME((f(n)), where f(n) is a proper complexity function (as
defined in [Pap95], for example). Then the reductions of Pippenger and
Fischer [PF79] show that it has a uniform family of nondeterministic circuits
CL(n) of bounded fan-in and size f ′(n) = O(f(n) log f(n)). To check whether
x ∈ L, one determines whether input x is accepted by the nondeterministic
circuit CL(n), where n is the length of x. This problem can be reduced to
the k-Clique problem on a graph with O(f ′(n)) vertices. Hence we obtain
the following.

Theorem 1 Suppose there is a polynomial time algorithm for the log-Clique
problem. Then there is a deterministic subexponential simulation of non-
deterministic computations. Specifically, for each proper complexity func-
tion f(n) > n, NTIME(f(n)) is contained in DTIME((f ′(n))

√
f ′(n)), where

f ′(n) = O(f(n) log f(n)).

Proof of Theorem 1 The theorem follows trivially from the discussion pre-Prove Theorem 1-1

ceding it. For thoroughness, we explain the reduction from the Nondeter-
ministic Circuit Value problem to Clique. Recall that a family of circuits for
language L has a different circuit CL(n) for each input size n. The circuit
has and, or, and not gates of fan-in 2 (or 1, for not gates) and unbounded
fan-out, n input wires that encode the input x, and one output wire. A
circuit is nondeterministic if, in addition, there are nondeterministic input
wires (that encode the witness w). If x ∈ L, there is a setting to these wires
so that the output is 1, and if x /∈ L, then for every setting to these wires,
the output is 0. The size of circuit C, denoted by |C|, is the number of gates

5
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in the circuit. The nondeterministic time for language L is a function of the
input size n, and is defined as NTL(n) = minCn [|Cn|] (where Cn correctly
recognizes L∩{0, 1}n). This is the usual correspondence between circuit size
and time. If we require that the circuit family is efficiently constructible,
then the time-complexity measure that we consider is a uniform measure.

To check whether a given nondeterministic circuit C of size m acceptsProve Theorem 1-2

input x, we may use the following reduction to the k-Clique problem. Con-
struct a graph G on at most 4m vertices that has a clique of size k = m
if and only if the circuit is accepting. Each input to a gate is labeled with
a fresh variable. A two-input gate can be represented by four vertices, one
for each combination of values to the two variables that are the input of the
gate. (If one of the variables is an input variable, then include only vertices
that are consistent with its value.) Each vertex also implies a value for its
respective output. For the output gate of the circuit, include only the ver-
tices that imply an output of 1 (accept). Every pair of vertices in the graph
is connected by an edge, unless the vertices are contradictory (they imply
two different values for some variable). The graph has a clique of size m
precisely when there is an assignment to the nondeterministic inputs of the
circuit that forces an output of 1.

Proof of Theorem 1 2

To put Lemma 1 and Theorem 1 in perspective, observe what would hap-2-4

pen if we had a polynomial time algorithm that finds cliques of size (log n)2

in graphs. Then clearly, the k-Clique problem would have a subexponential
algorithm for every value of k, simply by padding the input graph by 2

√
k

isolated vertices. A similar observation applies to parameterized versions of
many other NP problems (such as the Path and the Vertex Cover problems).
Hence the new element in our connection between limited and polynomial
nondeterminism is a quantitative one, the level of limited nondeterminism in
which such a connection can be demonstrated.

3 On Finding Small Cliques

As we have seen in Section 2, a polynomial time algorithm for finding cliques3-1

of size k = log n implies subexponential algorithms for NP problems. In
this section, we investigate weaker conditions that imply subexponential al-
gorithms for NP. The condition k = log n can be relaxed to k = (log n)α,

6
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for every α > 0. Moreover, the running time of the algorithm that finds
small cliques can be slightly superpolynomial, to an extent that depends on
α. We can further relax our conditions if we are satisfied with a weaker im-
plication, that of the existence of randomized subexponential algorithms for
NP problems. We present the relaxed implication in Section 3.1, the relaxed
conditions in Section 3.2, and the reduction between the two in Section 3.3.
This reduction is more sophisticated than that of Section 2, and it uses recent
results from the theory of interactive proofs.

3.1 The Goal: Subexponential Algorithms for NP

It is most convenient to present our goal in the circuit model. Recall that3.1-1

(nonuniform) computation time is associated with circuit size, and let TL(n)
(NTL(n)) denote the (non)deterministic circuit complexity of language L.
Clearly, TL(n) ≤ 2O(NTL(n)), since every function has exponential-size circuits.
Interpreting Question 1 in the nonuniform circuit model, we obtain our first
goal.

Goal 1 For some ε > 0 and for every language L, if time complexity is
measured as size of nonuniform circuit families, then

TL(n) = O(2(NTL(n))1−ε

)

There is also a uniform version of our goal. However, it involves ran-3.1-2

domized algorithms. Since we will be dealing with superpolynomial ran-
domized algorithms, we allow ourselves a relaxed notion of uniformity for
nondeterministic circuits. It has the additional advantage of considering the
complexity of individual instances, rather than clustering all size-n instances
together.

Definition 1 A uniform randomized algorithm A is a weakly efficient gen-
erator of nondeterministic circuits for language L if it has the following prop-
erties:

1. On input x, A(x) outputs a nondeterministic circuit of size at most
SA,x, drawn at random from a distribution CA,x of nondeterministic
circuits.

2. A(x) runs in time subexponential in SA,x, that is in time O(2(SA,x)1−ε).

7
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3. With probability at least 2/3 (over the coin tosses of A), the output
circuit correctly decides (nondeterministically) whether x ∈ L.

The weak uniform nondeterministic complexity of x relative to A is SA,x.

The traditional notion of uniform circuit complexity is a special case of3.1-3

Definition 1, when A runs in deterministic polynomial time with unary input
n = |x|. Then A generates a uniform nondeterministic circuit family for L
with complexity SA,1n .

Goal 2 For some ε > 0 and for every language L that has a corresponding
generator of nondeterministic circuits A, there exists a uniform randomized
algorithm B that decides L, and on input x runs in time

RT (x) = O(2(SA,x)1−ε

)

In Section 4.1, we further discuss Goals 1 and 2.3.1-4

3.2 The Challenge: Finding Small Cliques

We present our challenge, which is an algorithmic problem that, if solved,3.2-1

would lead to our goals.

Challenge 1 Design a deterministic algorithm that for n-vertex graphs finds
a clique of size k in time O(nk1−ε) (if indeed the graph has such a clique),
where ε > 0, and k = Θ((log n)c) for some c > 0.

Observe that using exhaustive search, O(nk) time is achievable. Observe3.2-2

also that we are not asking for a polynomial time algorithm for finding small
cliques, but just for a substantial improvement over exhaustive search.

Our challenge can be relaxed, while still serving its purpose:3.2-3

Challenge 2 Design a randomized algorithm that distinguishes (with prob-
ability at least 2/3) between graphs with maximum cliques of size at most k
and graphs with maximum cliques of size at least 2k. The running time of the
algorithm is required to be O(nk1−ε), where k = Θ((log n)c), for some c > 0,
ε > 0. The algorithm is not required to output a clique, just a decision.

In Section 4.2, we discuss the plausibility of our challenges.3.2-4

8
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3.3 The Reduction

Playing with the parameters of Lemma 1, one can verify that Challenge 1,3.3-1

if met, implies a positive answer to Question 1. In this section, we describe
the reduction from Goals 1 and 2 to Challenge 2. It is based on interac-
tive proofs, and in particular on proof systems developed by Polishchuk and
Spielman [PS94]. They show that the verification of whether an input x
of length n is accepted by a nondeterministic circuit C of size m > n can
be reduced to the verification of a corresponding holographic proof with the
following properties.

1. The holographic proof is just a string of bits. It is an NP-witness to
the fact that x is accepted bycircuit C, which can be verified with high
confidence by examining at random only a few bits of the witness.

2. There is a uniform random polynomial-time verification algorithm V
associated with the holographic proof. The number of random bits
used by algorithm V is r, where r is bounded by some polynomial in
m.

3. Algorithm V queries the holographic proof at q = O(mo(1)) bit loca-
tions. These locations are selected at random, based on the r random
bits.

4. If x is accepted by circuit C, then there exists a holographic proof
h of length l = O(m1+o(1)) that always causes V (x, C, h) to accept
(regardless of the value of the random bits used by V ).

5. If x is not accepted by circuit C, then for every string h′ of length l,
the probability that V (x, C, h′) accepts is at most 1/2 (known as the
error probability).

No familiarity with the concept of holographic proofs except for the prop-3.3-2

erties listed above is required of the reader. We remark that the bounds that
we require on l (the size of the holographic proof), on q (the number of bits
queried), and on r (the number of random bits used), are weaker than those
actually achieved by Polischchuk and Spielman [PS94].

Theorem 2 Challenge 2 implies Goals 1 and 2.

9
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Proof of Theorem 2 We reduce the existence of the holographic proof de-Prove Theorem 2-1

scribed above to the k-Clique problem. The reduction is based on the re-
duction described by Feige et al. [FGL+96], and on subsequent extensions
of Zuckerman [Zuc96]. We optimize the parameters of the reduction to best
serve our goal.

The reduction proceeds in two phases. The goal of the first phase isProve Theorem 2-2

to reduce the number of random bits needed by the verifier to check the
holographic proof. In Polishchuk and Spielman’s [PS94] proof system, the
verifier uses r random bits, where r ≥ log m. For our construction, we need
to reduce the number of random bits used by the verifier while maintaining
a low error probability. We do this by considering two different types of
random bits that the verifier can use. One type is private random bits that
the verifier gets after the prover writes down the proposed holographic proof,
as is the case in ordinary holographic proofs. The other type is a table T of
public random bits, to which the prover also has access before writing down
the proposed holographic proof. It turns out that for our purpose, we only
need to reduce the number of private random bits. This reduction is made
possible by the introduction of the public random bits, and by an increase
in the number of queried bits.

Lemma 2 Assume that there is a holographic proof system with verifier V
for checking whether circuit C accepts input x, with parameters r (number of
private random bits used by the verifier), l (proof length), and q (number of
query bits), as described above. Let s > 6 be a parameter to be chosen later.
Then there is a holographic proof system with public table T and verifier V ′

with the following properties.

1. The proof length is l, the number of private random bits is log(3l/s),
the number of queried bits is qs, and the table T contains 3lr public
random bits.

2. If x is accepted by circuit C, then there exists a holographic proof h
of length l that always causes V ′(x, C, h, T ) to accept (regardless of the
value of the public and private random bits).

3. If x is not accepted by circuit C, then most possible tables T are typical,
where T is typical if for every string h′ of length l, the probability (over
the private randomness) that V (x, C, h′, T ) accepts is at most 1/2.

10
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Proof of Lemma 2 We describe the holographic proof system with publicProve Lemma 2-1

table T and verifier V ′. When x is accepted by circuit C, the same holo-
graphic proof h as in Polishchuk and Spielman’s proof system [PS94] serves
as a holographic proof in our new proof system, regardless of the contents
of the table T . Verifier V ′ proceeds as follows. Partition the table T of size
3lr into k = 3l/s rows, where each row contains s strings of length r. Let tij
denote the jth string of row i in table T . Using log k private random bits,
V ′ selects a row i at random, and simulates the verifier V of [PS94] s times,
each time using a fresh string tij (for 1 ≤ j ≤ s) as private random bits for
V . If V accepts in all s simulations, then V ′ accepts as well. Otherwise, V ′

rejects.
Properties 1 and 2 of Lemma 2 clearly hold. It remains to consider theProve Lemma 2-2

case where x is not accepted by circuit C and show that most T are typical.
In this case, fix a (false) holographic proof h′. The probability that it is
not exposed by s simulations of V , each time with random and independent
private coins, is at most 2−s. Hence the probability (over the choice of T )
that h′ is not exposed by at least half of the k random strings in the table
T is at most 2k2−ks/2 = 23l/s−3l/2 � 2−l (for s > 6). Since there are only 2l

possible false holographic proofs, it follows that with high probability every
such holographic proof is exposed by at least k/2 of the random strings in
T . Hence for most choices of T , V ′ accepts with probability at most 1/2.

Proof of Lemma 2 2

The first phase of our reduction corresponds to the selection of a table TProve Theorem 2-3

with k = 3l/s rows of rs random bits. The second phase of our reduction is
similar to the reduction of Feige et al. [FGL+96]. We construct a k-partite
graph G. Each part of the graph corresponds to one of the k rows of T .
The vertices in each part are all strings of length qs, which represent all
possible answer sequences to the qs queried bits. A vertex is removed if the
corresponding answer sequence leads V ′ to reject. Two vertices (in different
parts of G) are connected by an edge if there exists some (possibly false)
holographic proof that is consistent with both vertices. Graph G contains
at most k2qs vertices, and can be costructed in time O((lk2qs)c), for some
constant c. If x is accepted by circuit C, then the largest clique is of size k.
If x is not accepted by circuit C, then T is likely to be typical, in which case
the largest clique is of size k/2.

Assume now that Challenge 2 is true. That is, there is an algorithmProve Theorem 2-4

that distinguishes between the existence of cliques of size (log n)c and the
11
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inexistence of cliques of half this size, in time n(log n)c(1−ε) . To check whether
the nondeterministic circuit C of size m accepts input x, apply the reduction
above with s = m1/(c+1). Recall that l = m1+o(1), that k = 3l/s, and that
q = no(1). Ignoring o(1) factors in the exponent, we obtain that k ' mc/(c+1)

and that the number of vertices in G is N ' k2qs ' 2m1/(c+1) . Hence k '
(log N)c (the graph G can be padded with dummy vertices to achieve exact
equality, if desired). Now the question of whether C accepts x can be decided
in randomized time

N (log N)c(1−ε)
= 2m1/(c+1)+o(1)mc(1−ε)/(c+1)+o(1)

= 2m1−cε/(c+1)+o(1)

or in time 2m1−ε′
, where ε′ = cε/(c + 1) + o(1). This proves Goal 2.

To see that Goal 1 follows as well, we use the well known reductions fromProve Theorem 2-5

randomized algorithms to randomized circuits and from randomized circuits
to nonuniform circuits. These reductions result in a circuit whose size is
bounded by a polynomial in the running time of the original randomized
algorithm, and this polynomial overhead is negligible relative to the super-
polynomial complexities involved in our goals.

Proof of Theorem 2 2

4 Discussion

We have seen that if the log-Clique problem is in P (or if the weaker Chal-4-1

lenge 2 is met), then there is subexponential deterministic (or randomized)
simulation of nondeterministic computation. We do not wish to take a posi-
tion regarding whether our results indicate that finding small cliques is hard,
or that there are subexponential simulations. However, we do wish to point
out that the connection between limited nondeterminism and polynomial
nondeterminism suggests that the complexity of problems such as the log-
Clique problem is a question worthy of further research. Hence we discuss
our challenges in more detail in Section 4.2. Before that, in Section 4.1, we
make some observations regarding the motivating goal.

4.1 The Significance of our Goal

The goal that we consider is that of finding subexponential simulation for4.1-1

nondeterministic computation. This goal came in three different versions, the
12
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uniform one (Question 1), the nonuniform one (Goal 1), and the randomized
one (Goal 2). The uniform version is perhaps the most appealing. The
other two versions were introduced so that we can draw consequences from
a challenge that postulates the existence of an efficient algorithm that (in
graphs with small cliques) approximates the size of the maximum clique
within a constant factor, rather than give its exact size. Our reduction in
this case is randomized (specifically, the choice of table T in Theorem 2),
and we do not know if it can be replaced by a deterministic reduction.

In Goal 1, nondeterministic time is measured as the size of the nonuni-4.1-2

form, nondeterministic circuit family. This can be replaced by other mea-
sures of nondeterministic time, provided that nondeterministic circuit size is
at most slightly superlinear in these measures. Pippenger and Fischer [PF79]
have shown that there is only a logarithmic blowup when circuits simulate
multitape Turing machines. Similarly, the results of Goldreich and Ostro-
vsky [GO96], when transformed to a nondeterministic setting (details omit-
ted), imply that nondeterministic RAMs can be simulated with polyloga-
rithmic overhead by nondeterministic circuits. (Possibly there is a known
simpler proof for this last fact.) Hence, both these measures for nondeter-
ministic time can replace nondeterministic circuit complexity in Goal 1.

There is a large class of NP-complete problems for which even if subexpo-4.1-3

nential simulation of NP is achieved (in the sense of this paper), no improve-
ment in the known deterministic running time will follow. These problems
are those for which the witness length is much shorter than the input length.
Typical examples arise in many graph-theoretic problems, in which the input
length depends on the number of edges, whereas the witness length depends
on the number of vertices. For these problems (e.g., the Hamiltonicity, Ver-
tex Cover, Chromatic Number, and Independent Set problems, all on dense
graphs) it is easy to come up with deterministic algorithms that are subex-
ponential in the size of the input. This reveals two weaknesses in our notion
of subexponential simulation of nondeterminism:

1. we do not allow for the possibility of sublinear nondeterministic running
times (at least not for functions that depend on all their inputs), and

2. we do not distinguish between deterministic and nondeterministic steps
of a nondeterministic algorithm, a distinction that exhaustive search
may well take advantage of.

Subexponential simulation of nondeterministic computation has crypto-4.1-4
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graphic significance. A persistent trend in cryptography is to design encryp-
tion schemes that are as efficient as possible to apply (in nearly linear time),
and as hard as possible to break (exponential in the length of the private
key). The near-linearity requirement is important if one must encrypt large
volumes of communication online, using only weak processors. The exponen-
tiality requirement offers security against adversaries who try to break the
encryption scheme offline, using very powerful computers. Goals 1 and 2, if
achieved, imply that encryption schemes with properties as described above
do not exist (at least not in an asymptotic sense, if private keys are long
enough). The complexity of breaking nearly linear encryption schemes would
be subexponential, comparable in nature to the complexity of known factor-
ization algorithms (see, e.g., [BLP94]).

4.2 The Plausibility of Our Challenges

Challenge 1 calls for efficient algorithms for finding the maximum cliques in4.2-1

graphs that have small cliques. Challenge 2 calls for approximating the size
of the maximum clique within a factor of two. Straightforward probabilistic
arguments show that the size of the maximum clique in almost all graphs is
roughly 2 log n, and that simple greedy algorithms find cliques of size roughly
log n in almost all graphs. Hence for most graphs, Challenge 2 can be met.
We do not know if the same holds for Challenge 1. This partly motivates the
introduction of Challenge 2.

4.2.1 Related Work

Finding small cliques in graphs is a special case of the question of finding4.2.1-1

(edge-induced) subgraphs that are isomorphic to other small subgraphs. For
some of these subgraphs (e.g., finding a simple path of length log n), Alon,
Yuster, and Zwick [AYZ95] give a polynomial time algorithm, which is much
more than we are asking for. The fastest known algorithms for finding sub-
graphs isomorphic to a graph H [PV90, AYZ95] require time Ω(nt), where t is
the tree width of H (a notion introduced by Robertson and Seymour [RS86]).
Unfortunately, the tree width of k-cliques is k − 1.

It is possible to find cliques of size k = n − O(log n) in polynomial time4.2.1-2

(when they exist). This follows from the fact that k-Vertex-Cover has com-
plexity O(nc2k), and hence vertex covers of size O(log n) can be found in
polynomial time [PY96, DF95, BG93]. To reduce an instance of the k-Clique
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problem to the k′-Vertex-Cover problem, simply consider the complement of
the input graph, and set k′ = n − k.

For decision problems that involve a parameter (such as in our case, where4.2.1-3

the size k of the clique is a parameter), one can sometimes design algorithms
that have running time O(ncf(k)), for some constant c, and arbitrary func-
tion f . In this case, the problem is fixed-parameter tractable [AEFM89,
DF92], since for every fixed k, it can be solved in time O(nc), where c is
independent of k. Downey and Fellows [DF92] introduced a hierarchy of
fixed-parameter problems, and showed that the Clique problem is complete
for W [1], the lowest level of this hierarchy. Thus if the Clique problem is
not fixed-parameter tractable, then no problem that is hard for some level of
the hierarchy is fixed-parameter tractable. Our techniques allow us to draw
some consequences from the assumption that the Clique problem is fixed-
parameter tractable. More specifically, assume that the k-Clique problem
can be decided in time O(ncf(k)), and for simplicity, assume that f(k) is a
proper complexity function. Then for k(n) = f−1(n), the k(n)-Clique prob-
lem can be decided in polynomial time. Since k(n) is not bounded by any
constant, a proof similar to that of Lemma 1 implies that for every ε > 0, the
Clique problem can be decided in time O(2εn). This implies similar savings
when simulating nondeterministic circuits by deterministic ones (as in the
proof of Theorem 1). We obtain the following.

Proposition 2 If the k-Clique problem (or any other problem that is hard for
the lowest level of the fixed-parameter hierarchy) is fixed-parameter tractable,
then nondeterministic circuits of size NT can be simulated by deterministic
circuits of size 2o(NT ).

We remark that the VC-Dimension problem is contained in W [1], and4.2.1-4

that the Tournament Dominating Set problem is complete for W [2], the
second level of the fixed-parameter hierarchy. The Monotone Circuit Sat-
isfiability problem is complete for W [P], the highest level of this hierarchy.
In [ADF95] it is shown that the class W [P] is fixed-parameter tractable if
and only if satisfiability of a Boolean expression of size m on n variables
can be solved in time poly(m)2o(n). This result is of a similar nature to our
Proposition 2. It has the advantage of being an “if and only if” connection,
and of being able to distinguish between nondeterministic and deterministic
steps in efficiently simulating nondeterministic computation. Proposition 2
has the advantage of dealing with the lowest level of the fixed-parameter
hierarchy.
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A graph H is a minor of graph G if a graph isomorphic to H can be4.2.1-5

obtained by contracting edges of a subgraph of G. By the theory of Robertson
and Seymour, for every fixed H, testing whether H is a minor of G can be
done in time O(|V (G)|3) [RS95]. In particular, testing whether a graph G
has a k-clique as a minor is fixed-parameter tractable.

Papadimitriou and Yannakakis [PY96] introduced the class LOGSNP.4.2.1-6

The problems in this class can be solved in time O(nlog n). The log-Clique
problem belongs to this class, but is not known to be complete for this class
(see also [CC93]). Some natural questions, such as the VC-Dimension and
Tournament Dominating Set problems, are LOGSNP-hard. A polynomial
time algorithm for any of these problems implies a polynomial time algorithm
for the log-Clique problem; hence, these problems can replace the log-Clique
problem in Theorem 1.

4.2.2 Beating Exhaustive Search

We survey an approach developed by Itai and Rodeh [IR78] and Nesetril4.2.2-1

and Poljak [NP85] that shows that exhaustive search is not the quickest way
to find cliques. Cliques of size 3 can be found quickly by computing G3

(where G is the adjacency matrix of the graph) and searching for a nonzero
diagonal entry. This requires O(nω) time, where ω < 3 is the exponent
for matrix multiplication (which currently stands at ω = 2.376 [CW90]).
Cliques of size k can be found by finding all k/3-cliques in the graph (for
simplicity, assume that k is divisible by 3), then considering each such k/3-
clique as a vertex in a new larger graph G′, and connecting two vertices
in G′ if together their corresponding vertices in G constitute a 2k/3-clique.
Now matrix multiplication can be used to find 3-cycles in G′, leading to an
O(nkω/3) algorithm.

The natural idea to improve upon the above algorithm is to use recursion.4.2.2-2

As a first step (one level of recursion), one may try to find cliques of size
9 in O(nω2) time, or even just improve upon O(n3ω). The problem that
one encounters is that in order to employ the recursion, one needs not only
to determine whether the graph has 3-cycles (which requires O(nω) time),
but also to represent all such cycles. An explicit representation of all these
cycles requires Ω(n3) time and space, since the number of 3-cycles might be
as large as

(
n
3

)
. An implicit representation may be much shorter (indeed,

the graph itself serves as an implicit representation of all its cycles), but
then it is not known how to perform matrix multiplication on this implicit
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representation. Thus, finding cliques of size 9 efficiently may be the key to
the whole approach.

We would like to add here a philosophical remark (the last one). There is4.2.2-3

the known association of problems in P (or in BPP) as tractable, and prob-
lems not in BPP as intractable. When asked why an algorithm of complexity
n13 is considered tractable, the usual answer is that n13 is intractable, but
that one almost never comes up with a polynomial time problem that has
this complexity. Is the question of finding cliques of size 20 an exception to
this folklore rule?
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