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Abstract-1

Abstract-2

1

To motivate the problems studied in this paper, consider the frequency alloca-
tion problem for cellular telephones. We are given a fized set of k frequencies,
and a set of radio transmitters. Moreover, for each pair of transmitters, we
are given a number that represents the percentage of local performance de-
terioration incurred if the pair receives the same frequency. The problem is
to allocate frequencies to radio transmitters so that the global performance
deterioration is minimized. It is indeed natural to model this problem by a

Chicago Journal of Theoretical Computer Science

On the Hardness of Approximating
MAX k-CUT and Its Dual

Viggo Kann Sanjeev Khanna Jens Lagergren
Alessandro Panconesi

3 June, 1997

Abstract

We study the MaXx k-CuT problem and its dual, the
MiN k-PARTITION problem. In the MIN k-PARTITION problem, given
a graph G = (V, E) and positive edge weights, we want to find an
edge set of minimum weight whose removal makes G k-colorable. For
the MAX k-CuUT problem we show that, if P # NP, no polynomial
time approximation algorithm can achieve a relative error better than
1/(34k). It is well known that a relative error of 1/k is obtained by a
naive randomized heuristic.

For the MIN k-PARTITION problem, we show that for k£ > 2 and for
every € > 0, there exists a constant « such that the problem cannot be
approximated within oV [>7¢, even for dense graphs. Both problems
are directly related to the frequency allocation problem for cellular
(mobile) telephones, an application of industrial relevance.

Introduction

1
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coloring problem for edge-weighted graphs. Vertices of the graph correspond
to transmitters, and colors correspond to frequencies. Edges indicate nonzero
local performance deterioration, and their weights indicate the percentages of
local performance deterioration. Formally, the graph problem can be stated
as follows:

Min k-Partition
InpuT: A graph G = (V, E), with weighted edges.

GoAL: Find a color assignment c¢: V — [k] that minimizes the total weight of
monochromatic edges (an edge is monochromatic if its endpoints have
the same color).

In other words, we seek an edge set of minimum weight whose removal makes
the graph k-colorable. This problem is relevant in industrial applications.!

For k = 2, Garg, Vazirani, and Yannakakis [GVY96] use multicommodity
flow techniques to give a polynomial time O(log n)-approximation algorithm,
where n denotes the number of vertices in the input graph G. The prob-
lem is MAX SNP-hard; the best lower bound known for the approximation
of MAx Curt (i.e., MAX k-CUT with £ = 2) translates into a 1.058 lower
bound for MIN 2-PARTITION. Shrinking this gap between upper and lower
approximation bounds appears to be a challenging open problem.

When k > 3, a result of Petrank implies that it is NP-hard to approx-
imate MIN k-PARTITION within O(n) [Pet94]. This result, however, holds
only for “sparse” graphs, that is, graphs with O(n) edges. Petrank left the
approximability of MIN k-PARTITION for nonsparse graphs as an open ques-
tion. Edwards [Edw86] and Arora, Karger, and Karpinski [AKK95] have
shown that 3-colorability is polynomial time solvable on graphs where each
vertex has degree at least en for some constant € > 0.

In this paper, we continue this line of research by showing that, for & > 3:

e For every fixed ¢ > 0 and every § < (1 — 1/k)/2, it is NP-hard to
approximate MIN k-PARTITION within O(n?~¢), even when the prob-
lem is restricted to dense graphs with |E| = dn?. If § > (1 — 1/k)/2,
the graph is certainly not k-colorable by Turdn’s theorem [Tur41] (see

!Many problems that appear in applications have the problem formulated here as a
special case. However, in this paper we are interested in lower bounds, and therefore our
results apply directly to these problems.

2
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a standard graph theory text such as [Wes96], for instance), and the
whole graph is trivially a constant factor approximation.

e It is NP-hard to approximate MIN k-PARTITION within O(|E]), even
when restricting to graphs with |E| = Q(n?7¢).

e MIN 3-PARTITION can be approximated within en?, for every e > 0.
This completes the picture as far as the densities are concerned, and
answers completely the open question of Petrank.

In view of the above two negative results, it seems natural to consider the
dual problem:

Max k-Cut
INpUT: A graph G = (V, E) with weighted edges.

GoAL: Find a color assignment ¢: V' — [k] that maximizes the total weight
of properly colored edges (an edge is properly colored if its endpoints
have different colors).

There are many interesting theoretical results on this problem. In particu-
lar, the MAx CUT problem has received much attention (see [GW95, PT95],
for example). In a seminal paper, Papadimitriou and Yannakakis [PY91]
showed that the problem is MAX SNP-complete. Recent results in the theory
of probabilistic checking of proofs provide powerful new tools for proving
hardness of approximation results, under suitable complexity theoretic as-
sumptions (see [BGS95] for an overview). The best-known lower bound on
the relative error achievable for Max CuUT is 0.0588, under the assumption
P # NP [Has97]. For MAX k-CuT it is well known that a naive randomized
heuristic achieves a relative error of 1/k: Each vertex is assigned one of the k
colors uniformly at random. This simple procedure can be derandomized by
a straightforward application of the method of conditional probabilities (see
[IMRO5], for example).

For the case k = 2, the above heuristic algorithm has a relative error
bound of 0.5, a bound that held for about two decades until the recent pi-
oneering work of Goemans and Williamson [GW95]. Their techniques—a
beautiful blend of mathematical programming and probabilistic methods—
yield a relative error bound of 0.122 [GW95]. More recently, Frieze and

3
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Jerrum [FJ95] have tried to generalize the Goemans and Williamson tech-
nique to the MAX k-CuUT problem. Their results are quite interesting from a
technical point of view but yield only a marginal improvement—from 1/k to
(roughly) 1/k—2k~2?In k. It is natural to ask whether better approximations
are possible, say, a relative error of 1/k'™¢ for some ¢ > 0. In this paper,
we give (under the assumption P # NP) a negative answer to this ques-
tion. We show that if P # NP, for each k > 2 the true relative error bound
for approximating MAX k-CuT lies between 1/k and 1/ck, where currently
o = 34 (the value of o depends on the best lower bound available on the
approximation of MAX CuT). Hence, unless P = NP, we cannot hope for
relative error bounds like 1/k'™ or even, say, 1/(kloglog...logk). On the
other hand, the naive randomized heuristics achieve a relative error that is
very close to the best possible (assuming P # NP).

A few words on the techniques used in this paper. The MAX k-CuTr
result is obtained by making use of an approximation preserving reduction
from MAX CuT. The difficulty in the proof is to exhibit a reduction that
increases the relative error only linearly as a function of k. The proof uses
the probabilistic method and a construction involving the Hamming distance
between characteristic vectors. Our reduction to MAX k-CUT increases the
relative error by approximately a factor of 2k. In contrast, the original reduc-
tion in [PY91] increases the relative error by a factor greater than 1000k2.
The MIN k-PARTITION lower bound of Q(n?7¢) is obtained by amplifying
the NP-hardness of k-coloring into a zero versus Q(n®~¢) separation. The
en?-approximation algorithm is based on the fact that 3-colorability can be
solved in polynomial time for dense instances [Edw86, AKK95].

We emphasize that our hardness results do not depend on the existence
of exponentially large weights in the input instances; in fact, they also hold
for the unweighted case (see also [CST95]).

This paper is organized as follows. Section 2 defines the notion of approx-
imation preserving reductions used in this paper. In Section 3, we present
the hardness result for MAX k-CuUT and a precise lower bound computa-
tion using the currently best-known lower bound for MAxX CuT. Finally,
in Section 4, we present our upper and lower bounds for approximating
MIN k-PARTITION.

4
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2 Definitions

We will use the standard approximation terminology. See for example [CK95]
for detailed definitions.

Solving an optimization problem F' given the input instance z means
finding a solution y such that the value of the objective function mpg(x,y)
is equal to the optimum (maximum or minimum). Let opty(z) denote this
optimum value of mpg.

Approximating an optimization problem F' given the input x means find-
ing some feasible solution y. How good the approximation is depends on the
relation between mp(z,y) and optp(x). There are two equivalent measures of
this relation: The performance ratio and the relative error. The performance
ratio of a solution y to an optimization problem F' is defined as

Ry(z,y) = max{ optp(z) mm,y)}

mp(x,y) optp(z)
The relative error is defined as

SF($’ y) _ ‘OptF<(x);)t_F<mx§($7 y)’

These definitions are only meaningful when optp(x) # 0. This is a prob-
lem for MIN k-PARTITION when the input graph is k-colorable. To make
the definition robust and to simplify the statement of our results, we define
the optimum value for MIN k-PARTITION as max{1, min.m(G,c)} where
G = (V, FE) is the input graph, ¢ ranges over all possible color assignments
c: V—{1,...,k}, and m(G, ¢) measures the number of monochromatic edges
under c.

An optimization problem F' can be approzimated within f(n) for a func-
tion f if there exists a polynomial time algorithm A such that for all input
instances z, A(z) is a feasible solution and Rp(z, A(x)) < f(|z]). The algo-
rithm A(x) is called an f(n)-approximation algorithm.

Although various reductions preserving approximability within constants
have been proposed (see [CKST95]), the L-reduction defined in [PY91] is
perhaps the easiest to use. Given two NP optimization problems F' and
G, an L-reduction from F to G consists of two polynomial-time computable
functions f and g and two positive constants a and 3, such that f transforms
instances of I’ into instances of G, and such that, for every instance x of F',

5
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o opt(f(2)) < - optp(a), and

e for every feasible solution y of f(x) with objective value mg(f(z),y) =
s9, Yy = g(z,y) is a feasible solution of z with mg(z,y’) = s; such that

|optp(x) = s1] < Bloptg(f(z)) — s2f.

2-7 The composition of L-reductions is also an L-reduction. If F' L-reduces to
G with constants o and § and there is a polynomial time approximation algo-
rithm for G with worst-case relative error €, then there is a polynomial time
approximation algorithm for F' with worst-case relative error afe [PY91].
Conversely, if § is a lower bound for the approximation of F', then §/(af3)
is a lower bound for G. An L-reduction from F to G, therefore, can be
used both to show hardness of approximability (for G) and to find a new
approximation algorithm (for F).

2-8 Given two k-dimensional vectors y; and Yys, the Hamming distance be-
tween them is denoted by h(x1, x2). For a graph G and a vertex v of G, we
denote the degree of v in G by dg(v). If the edges of G have positive weights,
the degree of a vertex v refers to its weighted degree, given by the sum of the
weights of the edges incident on it. In this paper, a coloring of a graph G
is any assignment of colors to the vertices, and a k-coloring is any coloring
using at most k& colors.

3 Hardness of Approximating Max k-Cut

31 In this section, we give an L-reduction from MAX CuT to MAX k-CuT. The
reduction maps a MAX CUT instance G to a MAX k-CuUT instance H, and
is such that:

L OptMAX k—CUT(H) S k(k - ]‘)OpthIAX CUT(G)7 i-e-7 o = k(k - 1)? and

e given any MAX k-CUT solution h with cost sp,, we can find in polyno-
mial time a MAX CUT solution g with cost s, satisfying

2
|Optl\'1AX CUT(G) - 39| < E|Opt1\/IAX k—CUT(H) - 5h|
ie, 3=2/k.

3-2 This reduction together with a lower bound of the approximability of
Max CurT gives the following theorem.

6
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Theorem 1 There is a constant o between 1 and 34 such that it is NP-hard

to approrzimate MAX k-CUT with relative error less than ﬁ

Frove Theorem 1-1 Proof of Theorem 1 A lower bound of § for the relative error of MAx CuT
will, using the L-reduction, give us a lower bound of a% = ﬁ for Max k-CuT.
In Hastad [Has97] it was shown that it is NP-hard to approximate Max CuT

within 17/16, which gives us the lower bound 1/17 for the relative error, and
the theorem follows.

Proof of Theorem 1 O

Remark 1 Better lower bounds for MAX CUT will automatically give better
lower bounds for MAX k-CuUT.

3-3 We now give the L-reduction from MAX CuUT to MAX k-CutT. In the
proof, we assume that k is even, and we transform an unweighted graph G
into a weighted graph H. These two restrictions can be assumed without
loss of generality. The case when k is odd follows from the following simple
reduction from MAX k-CuT to MAX (k + 1)-CuT: Given an instance H of
the former, produce an instance H' of the latter by adding an extra node u
and connecting it to all vertices in H. All edges in H' have weight 1, except
edges of the form (u,x), x € V(H), which have weight w(u,z) = dg(u)/k.
This is an L-reduction with « = (k+ 1)/(k — 1) and 8 = 1. The proof
is rather straightforward and hence is omitted. Just observe that one can
assume without loss of generality that all cuts in H' use color k + 1 for u
and colors 1 through £ for the isomorphic copy of H contained in H’. The
second restriction (the fact that H is weighted, while G is not) could be elimi-
nated by further refining the reduction to yield an unweighted instance of the
MaXx k-Cut problem. This is not needed, however, in view of the more gen-
eral result of Crescenzi, Silvestri, and Trevisan [CST95]. They show that for a
rather general class of optimization problems, including MAX k-CuT, the ap-
proximation ratios of the weighted and unweighted cases coincide, provided
the weights are polynomially bounded. Our reduction below uses weights
bounded by |V(G)|, and hence that result applies.

34 We now turn to the task of defining the L-reduction. The graph H is
defined as follows. Assume that V(G) = {vi,...,v,}. Let Vi,... Vi be
sets (of vertices) defined by V; = {vi,...,v:}. That is, the sets Vi,..., Vj/a
are “copies” of the vertex set of GG. Actually, we will say that for every
1 < i < k/2, the vertex v} is a copy of the vertex v, of G. Let H be the graph
with vertex set V;,U--- UV}, and with the following edges:

7
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e If (v, v,,) is an edge of G, then (v},v/ ) is an edge of H, for 1 < i <
j < k/2. These edges are called cross edges.

e All edges between all copies of the same vertex, i.e., for every vertex v,
of Gand 1 <i < j < k/2, (vi,v]) is an edge of H. We will refer to
these edges as the row edges, and the set of copies of v; will be referred
to as the row of v;.

We make a few observations. First, the row of a vertex v; induces a clique
in H which we call the row clique of v;. Second, if we take two different rows,
say, the row of u and the row of v such that (u,v) is an edge of G, then the
cross edges between these rows induce a complete bipartite graph. Third,
the subgraph of H induced by V;, call it G;, is isomorphic to G. Moreover,
the map that maps the vertex v; of G to the vertex v} of G; (i.e., to its copy
in G;) is an isomorphism. We will call the graphs G1, ..., G2 the G-copies.

Finally, the edge weights of H are defined as follows: All cross edges have
weight 1, whereas all edges in the row of v; have weight equal to dg(v;). We
denote the sum of the weights of the edges of H by w(H).

Lemma 1 opty;, r.cor(H) < k(k — 1)optyiax cor(G)-

Proof of Lemma 1 First, we prove that w(H) = @W(G)] Notice that
in H there are k/2 copies of each vertex u of GG, and each such copy has
weighted degree £dg(u) + (& — 1)dg(uv) = (k — 1)dg(u). Hence

w(H) =3 Y dgl@)=" > (k- 1do(u) =

z€V (H) ueV(G)

k(k — 1)

—E(G)|

Since OptMAx CUT(G) = |E(G)‘/2 and OptMAx k-CUT(H) < w<H) for all graphs
G and H, the claim follows.

Proof of Lemma 1 O

Clearly, the graph H can be constructed in polynomial time, and it sat-
isfies the first requirement of the L-reduction. We now prove that the other
requirement of the L-reduction is also satisfied. A coloring of H is said to be
canonical if it satisfies the following:

e cach G-copy is bichromatic,

e no two G-copies share a color, and
8
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e all G-copies have exactly the same coloring up to renaming of the colors.

For each graph F' and each coloring ¢ of F', we define the cut-weight of ¢ to
be the sum of the weights of the bichromatic edges of F' with respect to c;
we denote it by cw(c, F).

Lemma 2 Given a k-coloring ¢ of H, one can find in polynomial time a
canonical k-coloring ¢ with cut-weight at least as large as that of c.

Once the above lemma is established, it follows that the second require-
ment of the L-reduction is satisfied. We will now prove that this is the case.

Proof of Lemma 2 Given a coloring of G, we can find a canonical color-
ing of H; the above lemma effectively means that all k-colorings of H are
canonical, including the optimum colorings. If ¢’ is canonical, its cut-weight
is given by

k
cw(d,H) =W + §cw(g, G)
where ¢ is the coloring appearing in each G-copy, and W is the sum of the

weights of all edges connecting vertices in different G-copies. In particular,
an optimum coloring of H has cut-weight

k
W+ §0ptMAx CUT(G)

It follows that for ¢ and ¢ as in Lemma, 2,

‘Optl\IAX k—CUT(H) - Cw<C> H)‘

k
> |optyiax p-cur(H) — cw(c’, H)| = §|OptIVIAX cur(G) — cw(g, G)|

and so the second requirement of the L-reduction is satisfied with § = 2/k.

The first step in proving Lemma 2 is to show that we may assume without
loss of generality that each row is properly colored, that is, it is colored with
k/2 colors.

Lemma 3 For each k-coloring co of H, there is a k-coloring ¢ of H such
that cw(c, H) > cw(co, H), and each row edge is bichromatic with respect to
c. Moreover, given ¢y and H, the k-coloring ¢ can be obtained in polynomial
time.

9
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Proof of Lemma 3 Assume that = and y are two copies in H of the same
vertex u of G, such that ¢y(z) = co(y) = p. For each color p’ that is not
used in the row of u, let A, be the set of vertices z adjacent to x in H such
that ¢y(z) = p’. Notice that for every such set A,/, an edge between x and a
vertex of A, is a cross edge. Since there are more than k/2 such colors p/,
and the number of cross edges incident to x is gdg(u), it follows that there is
a p’ such that |Ay| < dg(u). If we recolor x with p’, we create at most |A|
monochromatic edges of weight 1, but get rid of one monochromatic (row)
edge of weight dg(u). Thus, by recoloring = with p’ we obtain a coloring
of greater cut-weight. This process can be repeated until, in polynomially
many steps, we have a new coloring that satisfies the stated properties.

Proof of Lemma 3 O

Now fix a k-coloring ¢ of H. By the previous lemma, we may assume that
every row edge is bichromatic with respect to c. For each vertex u of G, let
x(u) be the vector in {0, 1}* defined by x(u), = 1 if and only if the color p
is used in the row of v in H. Notice that by the choice of ¢, each vector x(u)
has a Hamming weight of cardinality k/2 (recall that the Hamming weight
of a vector is the number of its nonzero coordinates).

Given ¢, we now construct a canonical coloring ¢’. The crux of the ar-
gument is to show how to compute a canonical coloring ¢ whose number
of monochromatic edges is no more than that of c¢. This implies that the
cut-weight of ¢’ is no less than the cut-weight of c.

Roughly speaking, the difficulty of the proof, and what makes it interest-
ing, is to show how, given ¢, one can get rid of the bichromatic cross edges
connecting vertices in different G-copies. Local exchange arguments such as
those used in Lemma 3 do not seem applicable, and we solve the problem by
making use of the vectors x(u) and the probabilistic method.

Our next step is to count the number of monochromatic edges with respect
to ¢ as a function of the Hamming distance between the x(-) vectors.

Lemma 4 Let u and v be two vertices of G such that (u,v) is an edge of G.
The number of monochromatic cross edges between the row of u and the row

of v is (k — h(x(u), x(v)))/2.

Proof of Lemma 4 Let P be the set of colors that appear in both rows.
Since x(u) and x(v) are both k-dimensional and have Hamming weight k/2

10
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each, it follows that
h(x(u), x(v))

2
Since each color has at most one occurrence per row and the cross edges
between the two rows induce a complete bipartite graph, |P| equals the
number of monochromatic edges.

k—
1Pl =

Proof of Lemma 4 O

Prove Lemma 27 We now use the x(-) vectors to find a good 2-coloring of G that can
be duplicated in each G-copy, using new colors in each G-copy. Chose 1%
uniformly at random between 1 and k, and let r be the 2-coloring of G
defined by r(v) = x(v);. It follows immediately that for every two vertices u
and v of GG, we have

k — h(x(v), x(vm))
k

We also get the following lemma for the expectation of the number of monochro-
matic edges of G with respect to 7.

Prlr(u) = r(v)] =

Lemma 5
2
E[[MoNo(G,r)|] = %\MONO(H, )|

where MONO(G, ) is the set of monochromatic edges of G with respect to r.

Prove Lemma 5-1 Proof of Lemma 5 First notice that
IMoNo(H,c)]= Y. |MoNo(G,c) N CrosS(G, u,v)|
(u,w)EE(QG)
1
=0 2 (b hlx(w) ()
(u,w)EE(Q)

where CROSS(G, u, v) is the set of cross edges in G between the row of v and
the row of v. The last equality follows from Lemma 4. From this we get

E[|[MoNo(G,r)|] = Z Pr[r(u) = r(v)]
(u,v)EE(QG)
k—nh 2
(u,w)EE(Q)
Proof of Lemma 5 0O
11
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Prove Lemma 2-8 Clearly, for at least one 2-coloring g of GG, the number of monochromatic
edges is at least the expected value. We can find such a 2-coloring simply by
computing, for all values of ¢, the number of monochromatic edges given by
the coloring r(v) = x(v);. To obtain a canonical ¢, just color each G-copy
according to g, each time using new colors. The whole process can be carried
out in polynomial time.

Proof of Lemma 2 0O

4 Hardness of Approximating Min k-Partition

41 We now show that for each fixed & > 2, it is NP-hard to approximate
MIN k-PARTITION to within a factor of O(n®~) for every ¢ > 0. An in-
teresting aspect of this result is that it holds even when we restrict ourselves
to graphs with Q(n?~¢) edges.

Definition 1 (Dense and Everywhere Dense Graphs) Ann-vertex graph
is called dense if it has Q(n?) edges, and it is called (everywhere) e-dense if
each vertex in the graph has degree at least en for some fived ¢ > 0.

42 We begin with the following simple lemma.

Lemma 6 For each k > 3, it is NP-hard to decide if a graph is k-colorable
over graphs with ©(n®) edges, where 0 < a < 2.

Prove Lemma 6-1 Proof of Lemma 6 It suffices to show that the result holds on the family
of n-vertex graphs with Q(n?) edges (i.e., dense graphs): We can obtain a
graph with ©(n®) edges by adding a disjoint empty graph on ©(n?®) vertices.
Clearly, this transformation leaves the chromatic number unchanged.

Prove Lemma 6-2 We show only the hardness of 3-coloring on dense graphs: Edwards [Edw86]
proved that for k > 4, k-coloring a dense graph is NP-hard. Given a graph
G on n vertices, we construct another graph G’, which is simply a disjoint
union of G and a complete 3-partite graph H on N vertices such that each
part of the partition has the same size. If we choose N to be the smallest
multiple of 3 greater than or equal to n?, then clearly the graph G’ is dense.
Furthermore, it is immediate from the construction that G’ is 3-colorable if
and only if GG is 3-colorable. Hence it is NP-hard to decide if a dense graph
is 3-colorable.

Proof of Lemma 6 O
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Prove Lemma 7-1

Prove Lemma 7-2

Prove Lemma 8-1
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From here on, we use (G, k) to denote the minimum number of edges that
must be deleted from G to obtain a k-partite graph. The next lemma shows
that the NP-hardness of distinguishing between (G, k) = 0 and v(G, k) > 1
can be amplified to that of distinguishing between v(H, k) = 0 and v(H, k) =
Q(n* ) for each fixed ¢ > 0. This yields the desired hardness result. The
precise statement is as follows.

Lemma 7 (Amplification Lemma) For all positive integers k and s, given
a graph G, one can in polynomial time construct a graph H such that |V (H)| =
slV(G)|, |E(H)| = s*|E(Q)|, and v(H, k) = s*v(G, k).

Proof of Lemma 7 The graph H in the Amplification lemma is constructed
as follows:

e For each vertex v in G, the set V/(H) contains s copies named uy, . . . , ug.
o (u;,v;) is an edge in H if and only if (u,v) is an edge in G.

Notice that the set of copies of each vertex u, that is, uq, ..., us, is an indepen-
dent set of H. It is easily seen that |V (H)| = s|V(G)|, |E(H)| = s*|E(GQ)|,
and that the construction can be done in polynomial time. In the remainder
of this section, H will denote the graph obtained from G by the construction
above.

Definition 2 (Quasi-coloring) A coloring of a graph G is called an (m)
quasi-coloring if it induces at most m monochromatic edges.

We say that an (m) quasi-coloring of H is normalized if and only if, for each
u € V(G), all the s copies of w in H, that is, us, ..., us, have the same color.

Lemma 8 Fach (m) quasi-coloring of H can be transformed into a normal-
ized (m) quasi-coloring in polynomial time.

Proof of Lemma 8 Let ¢ be a given (m) quasi-coloring. Consider any ver-
tex v in G and let uy;, be the copy of w in H with the smallest number
of monochromatic edges incident on it under the coloring c¢. Since the wu;s
have the same neighbors, the coloring ¢’ that assigns the color of the vertex
Umin to each copy u;, and agrees with coloring ¢ everywhere else, is still an
(m) quasi-coloring. Iterating this process over each vertex u in G, we get a
normalized (m) quasi-coloring for H.

Proof of Lemma 8 O
13
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Prove Lemma 7-3

Prove Lemma 7-4

4-5

Prove Theorem 2-1

Prove Theorem 2-2
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We can now prove that he graph H constructed above satisfies v(H, k) =
s?y(G, k). Every (m) quasi-coloring of G can be transformed into an (s*m)
quasi-coloring for H. For each vertex u in G, assign its color to all the copies
of win H. Thus v(H, k) < s*v(G, k).

On the other hand, an (m) quasi-coloring for H implies an (|m/s*])
quasi-coloring for G. By Lemma 8, we can assume without loss of generality
that we are given a normalized (m) quasi-coloring, say cy, of H. Construct a
coloring ¢ for G by assigning each vertex u the same color as assigned to each
of its copies in H by the coloring cy. By our construction of the graph H,
it is easy to see that each monochromatic edge in G corresponds to a unique
set of s* monochromatic edges in H. We conclude that y(H, k) < s?v(G, k).
The lemma follows.

Proof of Lemma 7 O

Hence we have the following theorem.

Theorem 2 For every fived € > 0 and every (2 —e) < a < 2, it is NP-hard
to approzimate (-, k) within O(n*=¢) over graphs with ©(n®) edges.

Proof of Theorem 2 Lemma 6 shows that it is NP-hard to distinguish
between v(G,k) = 0 and (G, k) > 1, even when we are restricted to a
family of graphs with ©(n®) edges where 0 < a < 2.

To show the desired result, we start with the family of graphs with
O(not(@=2(=9/) edges. Given a graph G in this family, we construct the
graph H using the Amplification lemma, where we choose s = ne L, Clearly,
v(H, k) is 0 if and only if v(G,k) = 0, and v(H, k) is Q(N?7¢) otherwise,
where N is the number of vertices in H. This completes the proof.

Proof of Theorem 2 O

Remark 2 In fact, we can show that it is NP-hard to approximate
MIN k-PARTITION within O(n®~¢), even when restricting the problem to
dense graphs with |E| = én? for any 6 < (1 —1/k)/2. This is a sharp bound,
since if 6 > (1—1/k)/2, the graph cannot be k-colorable (according to Turdn’s
theorem), and the whole graph is trivially a 14 20/(1 — 1/k)-approzimation.

The following lemma shows that the hardness result established above is
almost tight when k = 3.

14
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Prove Lemma 9-1

Prove Theorem 8-1
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Lemma 9 (G, 3) can be approvimated within en? for every fived ¢ > 0.

Proof of Lemma 9 Let p = 1/e. If 4(G,3) > p, then the set of all edges
constitutes a sufficiently good solution (as discussed in Section 2, we take
max(y(G,3),1) to compute the performance ratio). So we assume that
(G, 3) < p. Delete from G all vertices of degree at most (¢/2)n. We delete
at most (€/2)n? edges in this process. Now we are left with a graph G’
that satisfies the property that each vertex has degree at least (¢/2)n. In
G', for every subset of at most p edges, we test whether the graph obtained
by deleting F' from G’ is 3-colorable. Assuming that n is large enough, the
resulting graph is still €-dense for some ¢ < e. Hence if the resulting graph

is 3-colorable, we can indeed verify so by using the coloring algorithm of
Edwards [Edw86] or Arora et al. [AKK95|. The result follows.

Proof of Lemma 9 O

Petrank showed in [Pet94] that for graphs with ©(n) edges, it is NP-hard
to approximate v(H, k) to within a factor of O(|E(H)|) (whenever k > 3).
We can use the Amplification lemma to strengthen this result and obtain the
following.

Theorem 3 For each k > 2 and 0 < € < 1, it is NP-hard to approrimate
v(H, k) within O(|E(H)|) over the graphs with Q(n?~¢) edges.

Proof of Theorem 3 Petrank showed in [Pet94] the following. For each
k > 3, there is some constant ¢ such that it is NP-hard to tell whether a
given graph G, from a family F of graphs with ©(n) = ¢'n edges, satisfies
v(G,k) = 0 or v(G,k) > cn. Applying the Amplification lemma with s =
n(1=9/¢ to a graph G of F gives a graph H such that: |V (H)| = sn, |E(H)| =
ds?n, (G, k) = 0 if and only if v(H,k) = 0, and v(G, k) > cn if and only
if v(H,k) > s’cn. That is, it is NP-hard to approximate (H, k) within
O(|E(H)|). Since sn = n'/¢ and ¢/s*n = ¢n?=9/¢ the result follows.

Proof of Theorem 3 O
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