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Superstabilizing Protocols for Dynamic
Distributed Systems*

Shlomi Dolev Ted Herman
19 December, 1997

Abstract

Abstract-1 Two aspects of distributed-protocol reliability are the ability to
recover from transient faults and the ability to function in a dynamic
environment. Approaches for both of these aspects have been sepa-
rately developed, but have revealed drawbacks when applied to envi-
ronments with both transient faults and dynamic changes. This paper
introduces definitions and methods for addressing both concerns in
system design.

Abstract-2 A protocol is superstabilizing if it is (1) self-stabilizing, meaning
that it is guaranteed to respond to an arbitrary transient fault by
eventually satisfying and maintaining a legitimacy predicate, and it
is (2) guaranteed to satisfy a passage predicate at all times when the
system undergoes topology changes starting from a legitimate state.
The passage predicate is typically a safety property that should hold
while the protocol makes progress toward reestablishing legitimacy
following a topology change.

Abstract-3 Specific contributions of the paper include: the definition of the
class of superstabilizing protocols; metrics for evaluating superstabiliz-
ing protocols; superstabilizing protocols for coloring and spanning tree
construction; a general method for converting self-stabilizing protocols
into superstabilizing ones; and a generalized form of a self-stabilizing
topology update protocol which may have useful applications for other
research.

*A preliminary version of this work was presented at the 2nd Workshop on Self-
Stabilizing Systems, Las Vegas, Nevada, May 1995.
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1 Introduction

The most general technique enabling a system to tolerate arbitrary transient
faults is self-stabilization: a protocol is self-stabilizing if, in response to any
transient fault, it converges to a legitimate state in finite time. The charac-
terization of legitimate states, given by a legitimacy predicate, specifies the
protocol’s function. Such protocols are generally evaluated by studying the
efficiency of convergence, which entails bounding the time of convergence to
a legitimate state following a transient fault. Other aspects of convergence,
for instance, safety properties, are of less interest, because arbitrary transient
faults can falsify any nontrivial safety property.

The model of a dynamic system is one where communication links and
processors may fail and recover during normal operation. Protocols for dy-
namic systems are designed to contend with such failures and recoveries with-
out global reinitialization. These protocols consider only global states that
are reachable from a predefined initial state under a constrained sequence
of failures; under such an assumption, the protocols attempt to handle fail-
ures with as few adjustments as possible. Thus, whereas self-stabilization
research largely ignores the behavior of protocols between the time of a tran-
sient fault and restoration to a legitimate state, dynamic protocols make
guarantees about behavior at all times (during the period between a failure
event and the completion of necessary adjustments).

1.1  Superstabilization

Superstabilizing protocols combine benefits of both self-stabilizing and dy-
namic protocols. We retain the idea of a legitimate state, but partition
illegitimate states into two classes, depending on whether or not they satisfy
a passage predicate. Roughly speaking, a protocol is superstabilizing if: (1)
it is self-stabilizing, and (2) when it is started in a legitimate state and a
topology change occurs, the passage predicate holds and continues to hold
until the protocol reaches a legitimate state.

Superstabilization is specified with respect to the class of topology changes
for which a desired passage predicate can be maintained during convergence
to legitimacy. Since a legitimacy predicate is dependent on system topology,
a topology change will typically falsify legitimacy. The passage predicate
must therefore be weaker than legitimacy, but strong enough to be useful;
ideally, the passage predicate should be the strongest predicate that holds
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when a legitimate state undergoes any of a class of topology change events.
One example for a passage predicate is the existence of at most one token
in a mutual exclusion task: whereas in a legitimate state exactly one token
exists, a processor crash could eliminate the token yet not falsify the passage
predicate. Similarly, for the leader election task, the passage predicate could
specify that at most one leader exists. A useful passage predicate can thus
represent a critical safety aspect of the task in question. A superstabilizing
protocol is more stable! than a protocol that is only self-stabilizing: at a
legitimate state, the system maintains stability with respect to the passage
predicate, even when perturbed by a topology change.

Superstabilizing protocols are evaluated in several ways. Of interest are
the worst-case convergence time, i.e., the time required to establish a legit-
imate state following either a transient fault or a topology change, and the
scope of the convergence in terms of how much of the network’s data must
be changed as a result of convergence. We classify superstabilizing protocols
by the following complexity measures:

e stabilization time—the maximum amount of time it takes for the pro-
tocol to reach a legitimate state;

e superstabilization time—the maximum amount of time it takes for a
protocol starting from a legitimate state, followed by a single topology
change, to reach a legitimate state; and

e adjustment measure—the maximum number of processors that must
change their local states, upon a topology change from a legitimate
state, so that the protocol is in a legitimate state.

1.2 Background and Motivation

Many distributed protocols have been designed to cope with continuous dy-
namic changes [AAG87, AGH90, AM92, AGR92]. These protocols make
certain assumptions about the behavior of processors and links during fail-
ure and recovery; for instance, most of them do not consider the possibility
of processor crashes, and they assume that every corrupted message is iden-
tified and discarded. If failures are frequent, these restrictive assumptions
can be too optimistic.

! This stronger property of stability motivates the term superstabilizing.
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A number of researchers [DIM93, KP93, APSV91, AG94b] suggest a self-
stabilizing approach for dealing with dynamic systems. In a self-stabilizing
approach, a state following a topology change is seen as an inconsistent state
from which the system will converge to a state consistent with the new topol-
ogy. Although self-stabilization can handle dynamic systems, the primary
goal of a self-stabilizing protocol is to recover from transient faults. This
view has influenced the design and analysis of self-stabilizing protocols; for
instance, for a correct self-stabilizing protocol, there are no restrictions on the
behavior of the system during the convergence period—the only guarantee
is convergence to a legitimate state.

When considering the treatment of a dynamic system, self-stabilization
differs from the dynamic protocols cited above in the way that topology
changes are modeled. The dynamic protocols assume that topology changes
are events signaling changes on incident processors. Self-stabilizing protocols
take a necessarily more conservative approach that is entirely state-based: a
topology change results in a new state, from which convergence to a legiti-
macy is guaranteed, with no dependence on a signal. Yet when the system
is in a legitimate state and a fault happens to be a detected event, can the
behavior during the convergence be constrained to satisfy some desired safety
property? For instance, is it possible in these situations for the protocol to
maintain a “nearly legitimate” state during convergence?

The issue can be motivated by considering the problem of maintaining a
spanning tree in a network. Suppose the spanning tree is used for virtual cir-
cuits between processors in the network. When a tree link fails, the spanning
tree becomes disconnected; yet virtual circuits entirely within a connected
component can continue to operate. We would like to restore the system
to have a spanning tree so that existing virtual circuits in the connected
components remain operating; thus a least-impact legitimate state would be
realized by simply choosing a link to connect the components.

One thesis of this paper is that self-stabilizing protocols can be designed
with dynamic change in mind to improve response. Self-stabilizing protocols
proposed for dynamic systems do not use the fact that a processor can detect
that it is recovering following a crash; consequently, there is no possibility of
executing an “initialization” procedure during this recovery.? A key obser-

2Moreover, some systems do provide a “start” signal. Self-stabilizing protocols do not
specify any special starting state or action upon receiving such a signal. Note that a
computation invoked by a start signal resembles the case of a dynamic system starting
with all processors simultaneously recovering from a crash.

4
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vation for this paper is that a topology change is usually a detectable event,
and in cases where a topology change is not detected, we use self-stabilization
as a fallback mechanism to deal with the change. The remainder of the pa-
per illustrates aspects of superstabilization with selected protocols, and a
general method that converts self-stabilizing protocols into superstabilizing
protocols.

2 Dynamic Systems

A system is represented by a graph where processors are nodes and links
are (undirected) edges. An edge between two processors exists if and only
if the two processors are neighbors; processors may only communicate if
they are neighbors. Each processor has a unique identifier taken from a
totally ordered domain. We use p, ¢, and r to denote processor identifiers.
Processors communicate using registers, however, application of the model
to a message-passing system is intended; we outline an implementation of the
register model in terms of message-based constructions in [DIM97, DH95].

Associated with each processor p are code, local variables, a program
counter, a shared register, and an input variable N,, which is a list of pro-
cessors ¢ that are neighbors of p. Invariantly, neighborhoods satisfy p & N,
and ¢ € N, & p € N,. A processor can read from and write to its own
shared register, but may only read shared registers belonging to neighbor-
ing processors. The code of a processor is a sequential program; a program
counter is associated with each processor. An atomic step of a processor (in
the sequel referred to as steps) consists of the execution of one statement in
a program. In one atomic step, a processor performs some internal compu-
tation and, at most, one register operation. A processor has two possible
register operations, read and write.

Our model specifies that a step consists of a statement execution; we
have in mind a conventional instruction-execution architecture, where each
statement corresponds to some low-level code. However, to make the pre-
sentation of protocols concise, we give descriptions at a higher level in terms
of programs with assignment statements and control structures (forall, do,
etc.); it should be understood that these descriptions can be resolved into
lower-level programs where statements translate into atomic steps. In the
protocol presentations, we also use the convention that advancing the pro-
gram counter beyond the last statement of a program returns the program

5
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counter to the program’s first statement; thus each program takes the form
of an infinite loop.

Local processor variables are of two types: variables used for computa-
tions, and field image variables. The former are denoted using unsubscripted
variable names such as x, y, and A. The field image variables refer to fields
of registers; these variables are subscripted to refer to the register location.
For instance, e, refers to a field of processor p’s register, and y, refers to a
field of processor ¢’s register. Program statements that assign to field images
or use field images in calculations are not register operations: the field im-
age is essentially a cache of an actual register field. A processor p’s read(q)
operation, defined for ¢ € NV, atomically reads the register of processor ¢
and assigns all corresponding field images (e.g., e,, y,, etc.) at processor p.
A write operation atomically sets all fields of p’s register to current image
values. For convenience, we also permit a local calculation to specify field
image(s) with a write statement; for instance, write(e, := 1) assigns to field
image e, and then writes to p’s register.

The state of a processor p fully describes the values of its local variables,
program counter, shared register, and its neighborhood N, (although a pro-
cessor cannot change its neighborhood, it is convenient to include N, in the
state of p for subsequent definitions). In the sequel, we occasionally refer
to the state of a processor as a local state. The state of the system is a
vector of states of all processors; a system state is called a global state. For a
global state o and a processor ¢, let o[q] denote the local state of ¢ in state
o. A computation is a sequence of global states © = (6;,0s,...) such that
for i = 1,2,... the global state #;,1 is reached from 6; by a single step of
some processor. A fair computation is a computation that is either finite or
contains infinitely many steps of each (noncrashed) processor.

We write o - Q to denote that global state o satisfies a predicate Q. Sup-
pose P is a predicate that encodes some property of interest for our system;
for instance, P can specify that exactly one processor has a token for mutual
exclusion. A legitimacy predicate L is typically specified with respect to P:
whereas P is concerned with those aspects of a state to determine whether
or not the property of interest holds, the predicate L specifies permissible
values of all register fields, program counters, and local variables so that P
remains invariantly true in a computation.

A system topology is a specific system configuration of links and proces-
sors. Each processor can determine the current status of its neighborhood
from its local state (via IN,); thus the system topology can be extracted by a

6
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program from a global state of the system. Let 7.a denote the topology for a
given global state . Dynamic changes transform the system from one topol-
ogy 7.« to another topology 7.0 by changing neighborhoods and possibly
removing or adding processors.

A topology change event is the removal or addition of a single neigh-
borhood component (link, processor, or processor and subset of its incident
links), together with the execution of certain atomic steps specified in the
sequel. Topology changes involving numerous links and processors can be
modeled by a sequence of single change events. The crash of processor p
is denoted crash,,; the recovery of processor p is denoted recov,; crash,, and
recov,, denote link failure and recovery events, respectively. In our model,
a processor crash and a link crash are indistinguishable to a neighbor of the
event: if p and ¢ are neighbors and crash,, occurs, then we model this event by
crash,, with respect to reasoning about processor ¢. Similarly, a recov,, event
is indistinguishable from a recov,, event with respect to reasoning about a
neighbor ¢ of p. We say that a topology change event £ is incident on p if £
is recov,, crash,,, or recov,,. We extend this definition to be symmetric: £ is
incident on p if and only if p is incident on £.

For most of the protocols presented in this paper, each processor is
equipped with an interrupt statement, which is a statement concerned with
adjusting to topology change. A topology change £ incident on p causes the
following to atomically occur at p: the input variable IV, is changed to reflect
£, the interrupt statement of the protocol is atomically executed, and p’s
program counter is set to the first statement of its program. Note that if £
is incident on numerous processors, then all incident neighborhoods change
to reflect £, and all processors execute the interrupt statement atomically
with event £. Thus the transition by £ from 7.« to 7.3 changes more than
the neighborhoods; states a and 3 also differ in the local states of processors
incident on &£, due to execution of interrupt statements at these processors.

A trajectory is a sequence of global states in which each segment is either
a fair computation or a sequence of topology change events. For purposes of
reasoning about self-stabilization, we follow the standard method of proving
properties of computations, not trajectories. Dynamic change is handled in-
directly in this approach: following an event &, if there are no further changes
for a sufficiently long period, the protocol self-stabilizes in the computation
following & in the trajectory.

7
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3 The Superstabilization Paradigm

The definition of superstabilization takes the idea of a “typical” change into
account by specifying a class A of topology change events. A self-stabilizing
protocol is superstabilizing with respect to events of type A, if starting from
a legitimate state followed by a A-event, the passage predicate holds contin-
uously:

Definition 1 A protocol P is superstabilizing with respect to A if and only
if P is self-stabilizing, and for every trajectory ® beginning at a legitimate
state and containing a single topology change event of type A, the passage
predicate holds for every o € ®.

Although Definition 1 considers trajectories with a single change, we em-
phasize that the intent is to handle trajectories with multiple changes (each
change is completely accommodated before the next change occurs). Our
definition could be modified to state this explicitly, however, we have chosen
this simpler form to streamline presentations.

A primary motivation for superstabilization is the notion of a “low-
impact” reaction by a protocol to dynamic change. Intuitively, this means
that changes necessary in response to dynamic change should affect relatively
few processors and links. To formalize this idea, we introduce an adjustment
measure. To define an adjustment, we return to the concept of legitimacy
and a predicate P that effectively characterizes the legitimacy predicate L.
Let var(P) be the minimal collection of variables and fields upon which P
depends. Call O the state-space ranging only over the var(P) data. The ex-
pression §[O] denotes a system state projected onto the O state-space. Next
we consider a function F : O — O. Function F maps states §[O] to states
o|O] that satisfy o = L, where ¢ is any state that can be obtained from
a legitimate state followed by a A-topology change £. The idea is that F
represents the strategy of a superstabilizing protocol in reacting to an event
&, namely, choosing a new legitimate state following dynamic change. We
rank a function F by means of an adjustment measure R. The adjustment
measure R is the maximum number of processors having different O-states
between p[O] and F(p[O]), taken over all states p derived from some state
0 F L followed by some change event £ € A. A definition of F with a
small adjustment measure R implies that few adjustments are necessary in
response to a topology change.

8
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A superstabilizing protocol respects F if the protocol implements F,
meaning that it responds to a dynamic change by some computation © tak-
ing the system from a state p[O] to a state F(p[O]), and changes O-states at
the minimum number of processors necessary in order to establish the new
legitimate state given by F. If a protocol respects F, then we say that the
protocol has adjustment measure R.

The notion of adjustment measure can be regarded informally as a dis-
tance, in terms of processor states, between legitimate states of different
configurations. It is plausible to consider other definitions of distance upon
which optimal adjustment could be based. For example, if the state change
of a particular processor could cause more damage than changing the states
of all other processors, a weighted definition of adjustment measure would
be appropriate. The general technique described in Section 6 can be easily
modified to support alternative definitions of adjustment measure.

To describe the time complexity of a protocol, the idea of a cycle is
introduced. A cycle for a processor p is a minimal sequence of steps in a
computation so that an iteration of the protocol at processor p executes the
program for p from the first to the last statement. All the programs of this
paper are constructed so that a processor p’s cycle consists of reading all of
p’s neighbor registers, performing some local computation, and writing into
p’s register. The time-complexity of a computation is measured by rounds,
defined inductively as follows. Given a computation ®, the first round of ®
terminates at the first state at which every processor has completed at least
one cycle; round 7 + 1 terminates after each processor has executed at least
one cycle following the termination of round i.

The stabilization time of a protocol is the maximum number of rounds it
takes for the protocol to reach a legitimate state, starting from an arbitrary
state. The superstabilization time is the maximum number of rounds it takes
for a protocol starting from an arbitrary legitimate state o, followed by an
arbitrary A-change event £, to again reach a legitimate state.

4  Superstabilizing Coloring

This section exercises the definitions and notation developed in Sections 2 and 3
for a simple allocation problem. Let C be a totally ordered set of colors satis-
fying |C| > 1+ A, where A is an upper bound on the number of neighbors a
processor has in any trajectory. Each processor p has a register field color,,.

9
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Self-Stabilizing Section:
S1 A, B =00
S2  forall g€ N,
S3 do
read(q);
A = AU colory;
if ¢>p then B := BU color,
od
S4 if ((color,=L AN L& B) V (color,#L A color, € B))
then color, := choose(C\ A)
S5 write
Interrupt Section:
El  write( if ( £ =recov, V (€ =recovy,, A p>q))
then color, := L1 )

Figure 1: Superstabilizing coloring protocol for processor p

The predicate P of interest is: color, € C for every processor p, and no two
neighboring processors have equal colors. A legitimate state for the coloring
protocol is any state such that (1) predicate P is satisfied, and (2) for each
computation that starts in such a state, no processor changes color in the
computation. To define the passage predicate, we extend the domain of a
color field to include L¢ C. The passage predicate is: color, € C U {L} for
every processor p and, for any neighboring processors p and ¢, color, = color,
if and only if color, =1.

Figure 1 presents a protocol for the coloring problem. The function
choose(S) selects the minimum color from a set S (and is undefined if S
is empty). The protocol of Figure 1 has two parts: one part is a self-
stabilizing protocol, modified to deal with the L element; the other part
lists the interrupt that handles topology change events. Note that although
1 is introduced to contend with topology changes, one must then consider
the possibility of an initial state (for example, due to a transient fault) in
which color, =1 holds for every processor p. The self-stabilizing section
perpetually scans for a color conflict with the set of neighboring processors
having a larger identifier. The interrupt statement writes to the register,
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conditionally changing the color, field in case the topology change event is
a restart of the processor or a link.

Theorem 1 The coloring protocol is self-stabilizing and converges in O(n)
rounds.

Proof of Theorem 1 We show by induction on the number of processors,
that following round ¢, 0 < ¢ < n, the 7 largest-identifier processors have
permanent, non-_L color assignments such that no conflict with a neighbor of
higher identity exists among these ¢ processors. The basis for the induction
is trivial, since the empty set of processors satisfies the assertion. Next,
suppose the claim holds following round k. We examine the effect of round
(k+ 1) with respect to processor r, where r is the (k + 1) largest processor
identifier. In this round, processor r chooses some non-1 color differing
from any color of a neighboring processor with larger identity. The choice
is deterministic, based on the colors of the larger identities. By hypothesis,
these larger identity color assignments are permanent, so following round
(k + 1) and for all subsequent rounds, processor r’s color is fixed and differs
from the colors of all neighbors of larger identity. Thus after (n+ 1) rounds,
all processors have permanent color assignments.

Proof of Theorem 1 O

The class of topology events considered for the protocol is A(k), 0 < k < A,
which includes any crash event, any link recov,, event, and any recov,, event,
subject to the restriction that at most k links incident on p recover at the
same instant that p recovers; thus, A(0) allows only processor or link recovery
events that are not simultaneous, whereas A(A) includes the possibility of a
processor and all its links recovering as a single event.

Theorem 2 The coloring protocol is superstabilizing with a superstabilizing
time of O(k) and an adjustment measure R = (k + 1), where A(k) is the
class of topology change events.

Proof of Theorem 2 In the case of any crash event, the protocol remains in
a legitimate state. In the case of a recov event, for any new link introduced by
the event, one or both of the incident processors has color L as a result; thus
the passage predicate holds. Moreover, at most (k + 1) processors can have

11
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color L as a result of the recov event; by an argument similar to that given
in the proof of Theorem 1, a legitimate state is obtained in O(k) rounds, and
the passage predicate holds invariantly in the computation; the adjustment
measure R = (k+1) follows from the fact that only those processors incident
on the change event adjust color during the period of superstabilization.

Proof of Theorem 2 O

The coloring protocol illustrates qualitative and quantitative aspects of
superstabilization. The qualitative aspect is illustrated by the fact that the
convergence following a topology change does not violate a passage predicate.
This ensures better service to the user when no catastrophe takes place (i.e.,
in the absence of a severe transient fault). Quantitative aspects can be seen
by the O(k) convergence time and adjustment measure. The same protocol,
when started in an arbitrary initial state induced by a transient fault, might
take O(n) rounds to converge, and a processor could change colors O(n) times
during this convergence. Indeed, if the superstabilizing component (namely,
the interrupt statement) of the protocol is removed, then O(n) rounds can
be required for convergence following even a single topology change event
starting from a legitimate state.

5 The Superstabilizing Tree

Constructing a spanning tree in a network is a basic task for many protocols.
Several distributed reset procedures, including self-stabilizing ones, rely on
the construction of a rooted spanning tree to control synchronization. All
existing deterministic self-stabilizing algorithms for constructing spanning
trees rely on processor or link identifiers to select, for example, a shortest-
path tree or a breadth-first search tree. In a dynamic network, a change
event can invalidate an existing spanning tree and require that a new tree be
computed. Although computation is required when a change event crash,,
removes one of the links in the current spanning tree, one would hope that a
change event recover,, would require no adjustment to an existing spanning
tree. Most of the self-stabilizing spanning tree algorithms we know (e.g.,
[DIM93, AG94b, AK93]) construct a BFS (i.e., breadth-first search) or DFS
(i.e., depth-first search) tree and thus require, in some cases, recomputation
of the tree when a link recovers, regardless of whether or not the network
currently has a spanning tree. The reason is that a processor cannot locally

12
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Self-Stabilizing Section:
S1 z,y = oo, L
S2  forall g€ N,
S3 do
read(q);
if x> (d;+w,) then z, y = (d, +wy), ¢
od
S4 if p=r then d,, t, := 0, r else d,, t, = z, y
S5 write
Interrupt Section: skip

1 ift, =¢q

where w,, = {n ift, +q

Figure 2: Superstabilizing tree protocol for processor p

“know” that the system has stabilized, and must make a deterministic choice
of edges to be included in the tree. We propose a superstabilizing approach
to tree construction, which is a variant of the algorithm proposed in [CYH91].
The protocol given in this section successfully “ignores” all dynamic changes
that add links to an existing spanning tree or crash links not contained in
the tree.

All trajectories considered in this section are free of crash, or recover,
events; the number of processors remains fixed at n, and we give every pro-
cessor access to the constant n. We also suppose that the network remains,
at all states in a trajectory, connected.

The basic idea of the protocol is the construction of a least-cost path tree
to a processor r, which is designated as the root of the tree. The key point
of the protocol lies in the definition of link costs. Each link is assigned a cost
in such a way that links that are part of the tree have low cost, whereas links
outside the tree have high cost. Each processor p has two register fields, ¢,
and d,. The field ¢, ranges over identifiers of processors, and represents the
parent of p in the tree (by convention, we let ¢, = r). The register d, contains
a non-negative integer representing the cost of a path from p to the root r.

Figure 2 shows the code of the superstabilizing spanning tree protocol.
The predicate P of interest for the tree protocol is that (Vp,q : p #r A

13

Chicago Journal of Theoretical Computer Science 1997-4



5-5

Dolev and Herman Superstabilizing Protocols §6.1

t, = q: q € Np), and that the collection of t, variables {t,| p # r}
represents a spanning, directed tree rooted at r. A legitimate state for the
tree protocol is any state such that (1) predicate P is satisfied, and (2)
for each computation that starts in such a state, no processor changes a ¢,
variable in the computation.

Theorem 3 The spanning tree protocol self-stabilizes in O(n) rounds.

(See Appendix A for the proof.)

We define the class of change events A for purposes of superstabilization
to be any recov,, event or any crash,, event such that neither ¢, = ¢ nor
t, = p holds at the moment of the crash,, event; i.e., the p-¢ link is not a link
in the current tree. The passage predicate for the superstabilization property
is identical to P.

Theorem 4 The spanning tree protocol is superstabilizing for the class A,
with superstabilization time O(1) and adjustment measure R = 1.

(See Appendix A for the proof.)

6 General Superstabilization

This section introduces a general method for achieving superstabilization
with respect to the class A of single topology changes. Our general method
can be seen as a compiler that takes self-stabilizing protocol P and outputs
a new protocol P* that is both self-stabilizing and superstabilizing. This is
done by modifying protocol P and superimposing a new component, called
the superstabilizer. The superstabilizer uses, as a tool, a self-stabilizing up-
date protocol. The following section describes our update protocol, after
which we give an overview of the superstabilizer.

6.1 The Update Protocol

To simplify the presentation of our general method for superstabilizing pro-

tocols, we employ a self-stabilizing update protocol. We view the update

protocol as the simplest and clearest self-stabilizing protocol for a large class

of tasks including leader election, topology update, and diameter estimation.

Our update protocol enjoys a number of properties not directly required for
14
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general superstabilization. Some of these properties are stated and proved
in Appendix B, since they may have useful application to other results on
stabilization. We remark that our update protocol works in unidirectional
systems in which the existence of a communication link from one node to
another does not imply the existence of a link in the opposite direction (e.g.,
[AG94a, ABI7)).

To describe the task of the update protocol, suppose every processor p
has some field image x,; for the moment, we consider x, to be a constant.
The update problem is to broadcast each z, to all processors. This problem
is called the topology update when the field x, contains all the local informa-
tion about p’s links and network characteristics. Many dynamic systems are
already equipped with a topology update protocol that notifies processors
of the current topology; in such instances, our general method acts as an
extension to this existing topology update. An optimal time (©(d) round)
self-stabilizing solution to the topology update is given in [SG89, Dol93]. To
ensure a desired deterministic property of the protocol, we assume that the
neighborhood of a processor NN, is represented as an ordered list.

Let each processor p have, in addition to z,, a field e,, where e, contains
three tuples of the form (q,u, k), in which ¢ is a processor identifier, u is
of the same type as z,, and k is a non-negative integer. Let dist7(p,q) be
the minimum number of links contained in a path between processors p and
q in topology 7 (in arguments where the topology is understood from the
context, we write dist(p, q)); the third component of the tuple is intended to
represent the dist value between p and the processor named in the tuple’s
first component. We make some notational conventions in dealing with tu-
ples: with respect to a given (global) state, (g, z,, k) is a tuple whose second
component contains the current value of field z,. In proofs and assertions,
we specify tuples partially: (g,,) € e, is the assertion that processor p’s e
field contains a tuple with ¢ as its first component. Each processor uses local
variables A and B that range over the same set of tuples that e, does. For
field image e, and set variables A and B, we assume that set operations are
implemented so that computations on these objects are deterministic.

The update protocol’s code uses the following definitions. Let processors(A)
be the list of processor identifiers obtained from the first components of the
tuples in A. Let mindist(q, A) be the first tuple in A having a minimal third
component of any tuple whose first component is ¢ (in case no matching
tuple exists, then mindist is undefined). Define A \\ (g, *, *) to be the list of
tuples obtained from A by removing every tuple whose first component is q.

15
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C1 AB:=0,0

C2 forall g€ N, do read(q); A:=AUe, od

C3 A=A\ (p,*,*); A:=A++(x%,1)

C4  forall ¢ € processors(A) do B := BU {mindist(q,A)} od
C5  B:=BU{(p,z,,0)}; e,:=initseq(B)

C6  write

Figure 3: Update protocol for processor p

Define A++(x, %, 1) to be the list of tuples obtained from A by incrementing
the third component of every tuple in A. Define initseq(A) by the following
procedure: first sort the tuples of A in ascending order of the third element
of a tuple; then, from this ordered sequence of tuples, compute the maxi-
mum initial prefix of tuples with the property: if (¢, u, k) and (¢, v, k') are
successive tuples in the prefix, then &’ < k 4 1. Then initseq(A) is the set of
tuples in this initial prefix.

For the update protocol, we define a distance-stable state to be any state
for which: (1) each processor p has exactly one tuple (q,y, dist(p,q)) in its
ep field for every processor ¢ in the network reachable by some path from
p in the current topology; (2) e, contains no other tuples; and (3) each
computation that starts in such a state preserves (1) and (2). A legitimate
state for the update protocol is a distance-stable state in which requirement
(1) is strengthened to: each processor p has exactly one tuple (q, ,, dist(p, q))
in its e, field for every processor ¢—in other words, the x field images are
accurate. Figure 3 presents the protocol.

Theorem 5 The update protocol of Figure 3 self-stabilizes in O(d) rounds.
(See Appendix B for proof.)

A corollary of self-stabilization is that, if one of the z,, fields is dynamically
changed, the protocol will effectively broadcast the new z, value to other
processors. Of particular interest are some properties that relate a sequence
of changes to an z, field to the sequence of z, values observed at another
processor q. More specifically, if processor p writes, over the course of a

computation, the values ¢y, ¢y, ... into x,, and no processor ¢ reads (via
update images of x,) a value ¢; and then later reads a value ¢; for j < k,
16
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then we call the update protocol monotonic. A monotonic update protocol
guarantees that the sequence of values in any field image is a subsequence of
the values written to the corresponding register field. Appendix B contains a
proof showing that the protocol in Figure 3 is monotonic in any computation
starting from a legitimate state. In the context of a dynamic system, we
could also require that monotonicity hold in any trajectory that begins with a
legitimate state. Unfortunately, the update protocol of Figure 3 does not have
this stronger property®; however, a limited form called impulse monotonicity
is satisfied.

6.1.1 Impulse Monotonicity

Let o be a legitimate state for the update protocol in a topology 7 where
x, = co at 0. Let A be the state obtained by making a single topology
change £ to 7 and the assignment z, := ¢;. Let ® be a topology-constant
computation originating with state A. Impulse monotonicity is satisfied if,
for any states p and v in ® such that p occurs before ~: if processor ¢ sees
c1 as the value of z,, at state p, then ¢ sees ¢; as the value of x, at state .

Impulse monotonicity is useful in the following way. If z, is changed
“slowly enough,” meaning that the protocol successfully stabilizes between
changes to z,, then a FIFO broadcast of x,, values is obtained. In the sequel,
we introduce an acknowledgment mechanism so that a processor does not
change the broadcast value of interest until all other processors within a
connected component have received the current value.

Corollary 1 The protocol of Figure 3 enjoys impulse monotonicity.

Proof of Corollary 1 The corollary is a specialization of Theorem 10, stated
and proven in Appendix B.

Proof of Corollary 1 0O

6.2 The Superstabilizer

The superstabilizer is a tool used in transforming a given self-stabilizing pro-
tocol P into a superstabilizing protocol P?. Function F, formally described

3To construct a monotonic update protocol, the update protocol can be modified by
tagging x, with a sequence number that increases with any x, change; these sequence
numbers are unbounded.
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in Section 3, determines a new legitimate state from a previously legitimate
state perturbed by a topology change £. Our superstabilizer makes use of F
by assembling the image of a global state o from local snapshots, followed by
disseminating F (o) to all processors so that a new, legitimate global state
can be installed. It is the responsibility of the superstabilizer to “hide” &£
from any processor in such a way that no user of protocol P can observe
a state inconsistent with the current topology; this is done by making the
global transition between legitimate states for different topologies effectively
atomic, thus sparing protocol P from any stabilization effort.

The superstabilizer consists of two components: a modified version of the
update protocol and an interrupt statement. By first modifying the given
protocol P, and then adding the superstabilizer, we obtain the composite pro-
tocol P®. We modify P as follows: each action of P at processor p is guarded
by a Boolean variable freeze, so that when freeze, holds, no action of P is
enabled at processor p and the program counter (with respect to P) remains
static. Our superstabilizer will ensure that, starting from any initial state,
all freeze fields eventually become false in the absence of topology changes,
which then allows P to progress normally. The composition of P and the
superstabilizer is the following for each processor p: while freeze, holds, then
the superstabilizer makes all steps at processor p; if freeze, does not hold,
then each read step in P is preceded by a complete cycle of the superstabi-
lizer at processor p. In other words, the composition of the superstabilizer
and P arranges step scheduling so that a cycle of the superstabilizer—from
the first to the last step of the superstabilizer—is inserted before each read
step of protocol P. This will ensure that any “news” of a topology change is
processed by the superstabilizer before P at each processor. The superstabi-
lizer also specifies an interrupt section for the composite protocol P?, so that
topology changes incident on processor p are handled by the superstabilizer
at p.

6.3 The Superstabilizing Protocol

The combination of the superstabilizer and the modified protocol P results
in a superstabilizing protocol P*. A legitimate state for P* is any state in
which:

1. the variables, fields, and program counter with respect to P satisfy LP
(where LP is the legitimacy predicate for the base protocol P);
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2. the update protocol component of the superstabilizer is in a legitimate
state (all e fields have accurate tuples);

3. every freeze variable is false; and
4. each computation that starts in such a state preserves points 1-3.

The passage predicate for our general method is defined in terms of the
freeze fields. For any state o, let warm(o) denote the set of processors
having freeze fields that are false. Let o[warm] be the vector of local states
of processors in warm (o). We call o warm-legitimate if there exists a state 7y
(and a topology 7.7v) where v = LP, such that o[warm] = v[warm]. In other
words, o is warm-legitimate if it appears to be a legitimate state (with respect
to some topology) when we disregard any processor p with freeze, = true.
The passage predicate for the general method is: the protocol state is warm-
legitimate.

The interface between the superstabilizer and P at processor p consists
not only of the freeze, variable, but a pseudo-variable snap,, which is defined
to be the collection, with respect to protocol P, of all local variables, shared
fields, and the program counter of P for processor p. The superstabilizer
can read and write snap,. We denote by snap a set of snap, variables, one
for each processor. Our general method is, in brief, the following: after a
topology change, P is frozen at all processors and a snap value is recorded;
subsequently, a snap value appropriate for the new topology is computed,
and each frozen processor is assigned its portion of the new snap value; and
finally, all processors are thawed.

The programming notation given in Section 2 makes local images of regis-
ter fields available to program operations: such images can be of a processor’s
own register, or that of its neighboring processors; for example, the code of
Figure 3 permits processor p to refer to e, for ¢ € N,. The update protocol
makes an image of each processor’s x field available to every other proces-
sor within a connected component. For the superstabilizer, we extend the
programming notation to allow any processor to refer to fields of any other
processor. Thus processor p can refer to x, for any g € processors(e,) by
using images provided in the e field’s tuples. Of course, these images may be
out-of-date, which necessitates synchronization measures in the superstabi-
lizer; such synchronization is achieved in phases to coordinate freezing and
snapshots.
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For convenience in describing the superstabilizer, we divide the x field
into four subfields: =, = [a, h, t, u, |. To control the phases of supersta-
bilization, the subfield a, is used; it is a ternary-valued subfield provided for
the three phases of superstabilization. These phases are as follows:

e Phase 0 is the normal state of the superstabilizer, in which protocol P
is active and the superstabilizer is idle. When (Vp :: a, = 0) holds, we
consider the superstabilization to be inactive (terminated).

e Phase 1 consists of freezing protocol P and collecting snapshots from
the frozen processors; also, in this phase an election takes place among
all processors incident on a topology change to determine a single co-
ordinator of the following phase. Phase 1 is active if (3p :: a, = 1) and
(Vp: a, <1).

e Phase 2 is concerned with computing a new global state for protocol
P and distributing the new state to all processors. Phase 2 is active
if (dp :+ a, = 2) remains active until acknowledged by all processors,
and thereafter terminates in order to resume execution of phase 0.

To detect progress of phases, we employ an acknowledgment subfield h,,.
This subfield is a vector of ternary values whose elements are images of other
processor asubfields known to p: the protocol sets h,[r] to contain the image
of a,, as determined from p’s image of x, broadcast via the update protocol.
Further, since h, is broadcast via the update protocol to every processor, it
is possible for a processor r to test the status of every other processor’s image
of a,.

In addition to the a and h subfields, we define additional subfields of x,
to contain snap values. Subfield ¢, contains a value of type snap,, which is
the portion of the state of p that is related to P. The subfield u, contains
a global snap value, i.e., u,[r] contains a snap, value. Subfield u, is used
to broadcast a new global state. We denote by s, the snap value that p
assembles from the collection of ¢, subfields obtained from x, images. The
assignment w, := F(s,) will determine a new legitimate state following a
topology change (statement U2).

To make a concise presentation, an additional device is used in the code
of the interrupt statement. The function refresh(e,) reproduces e, except
that the value of the z), field is updated, i.e.,

refresh(e,) = (e, \\ (p, %, %)) U {(p,7,0)}
20
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The interrupt statement for the superstabilizer is given in Figure 4. In
response to a topology change £ incident on processor p, the program counter
(of protocol P?) is reset to the first statement of the superstabilizer, the
neighborhood N, is adjusted to reflect £, and the write operation is atomically
executed. This operation halts P by setting freeze, to true.

The remaining component of the superstabilizer consists of the combina-
tion of Figures 3 and 4, i.e., it is a modified update protocol. Statements Ul—
U8 are inserted between statements C3 and C4 to obtain the complete proto-
col. All quantifications over processors in expressions (such as (Vg :: a, = 0))
are implicitly quantified over processors(A) U {p} in the superstabilizer code.

The following scenario for a topology change £ from a legitimate state
illustrates the role of each statement of the superstabilizer. When statement
E1l executes at each processor in the set S of nodes incident on &£, the base
protocol P is frozen, a local snapshot is taken, and phase 1 of superstabi-
lization begins. Then each process in S executes statements C1-C3 of the
update protocol, but none of the statements U1-U8 make any variable as-
signments; statements C4-C6 of the update protocol ensure that a variables
will be subsequently broadcast to indicate phase 1 is under way. Processors
outside set S will take a snapshot at U8 when they detect that phase 1 is
under way: this is the freeze wave. Each processor in S thus initiates its
own freeze wave, and remains in phase 1 until either statement Ul or U2
assigns to the a variable. Statement U2 moves processor p € S from phase
1 to 2, but only after p has detected that every processor in the system has
acknowledged that a, = 1 (via the h,[p] subfields). Statement Ul causes a
processor p to revert from phase 1 to 0 when some processor ¢ € S with a
larger identifier than p is detected—this is a form of leader election to insure
that only one member of S persists in phase 1 (an additional conjunct in U2
forces the leader to wait until the election terminates before phase 2 begins).
Let s be the leader of S, that is, s has the maximum identifier among proces-
sors in S. After statement U2 assigns as := 2 (and simultaneously computes
a global legitimate state for the new topology), processor s broadcasts its
as value via the update protocol and awaits acknowledgment of a, = 2 via
hy[s] subfields. When all processors have acknowledged a, = 2, phase 2 is
complete, and processor s executes the assignment in U3, whereby s makes
the transition from phase 2 to phase 0. As as = 0 is broadcast throughout
the system, statement U8 is executed by all processors to thaw the frozen
system. Finally, statements U5-U7 are concerned with the acknowledgment
of phases as seen by a-variable images and reflected by h-variable subfields.
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The conditions for assignment in U5-U7 ensure the superstabilizer works
properly in spite of the update protocol’s weak property of monotonicity.

Theorem 6 Protocol P* is self-stabilizing with self-stabilization time O(d +
K), where K is the self-stabilization time of protocol P.

Proof of Theorem 6 For simplicity, we assume the network is connected.
By the construction of P?, it suffices to prove that the superstabilizer con-
verges in O(d) rounds to A = (Vg :: —freeze,), and to show that A (or
some stronger predicate) is stable. Thereafter, in O(K) additional rounds,
by base protocol P’s self-stabilization, P* stabilizes. Only statement U8 of
the protocol assigns to freeze,; if we show P° stabilizes to (Vg :: aq = 0),
then by Theorem 5, all a-field images are broadcast in O(d) rounds; all freeze
variables are false in the following round. Notice that a, = 0 is stable for
any p, since none of U1-U8 assign to a, if a, = 0 holds. Therefore it suffices
to show that some state satisfying a, = 0 occurs for each processor ¢ within
O(d) rounds of any computation. Heading for a contradiction, let proces-
sor  be a processor such that a, # 0 holds for more than O(d) rounds of
some computation; because none of U1-U8 assign a, := 1, yet a, = 1 is the
precondition of assigning a, := 2 (see U2), we deduce that a, # 0 holds con-
tinuously for more than O(d) rounds. Suppose a, = 2 holds continuously; by
acknowledgments from U5-U7 and stabilization of the update protocol, U3
eventually assigns a, := 0, which is a contradiction. It remains to consider
that a, = 1. There may be more than one processor for which the a field
is continuously 1-valued; let t be such a processor of maximum identifier.
By acknowledgments U5-U7 and the update protocol, any processor q # t
having a, = 1 assigns a, := 0 at Ul within O(d) rounds (because ¢ < t).
Thus, after O(d) rounds, t is the only processor having a 1-valued a field. But
again, by acknowledgments U5-U7 and the update protocol, t subsequently
assigns a, := 2 at U2 within O(d) rounds, which leads to the contradiction
described above.

Proof of Theorem 6 O
Theorem 7 Protocol P* is superstabilizing with superstabilization time O(d).

Proof of Theorem 7 Consider a computation beginning from a state o

that is the result of a single topology change event £ at a legitimate state.

Our obligation is to show that the passage predicate holds until a legitimate
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state is obtained (recall that the passage predicate for P? is that the state be
warm-legitimate). By E1, o F a, = 1 A freeze, holds for every r incident on &;
thus o is warm-legitimate. As the update protocol broadcasts the 1-valued
a fields, statement U8 sets freeze, at all processors p within O(d) rounds.
Statement U1 only assigns a, := 0 for p < ¢, where ¢ has a larger identifier,
and all processors have observed a, = 1. Therefore, within each connected
component of the network, the processor with maximum identifier incident
on £&—which we call the “leader processor” t of the component—does not
execute the assignment of Ul. Thanks to impulse monotonicity, the condition
(3¢ == a4 # 0) observed by update images is stable so long as processor ¢ does
not change its 1-valued a; field. Within O(d) rounds, statement Ul assures
that only one processor ¢ (per connected component) satisfies a; = 1; in at
most O(d) subsequent rounds, by acknowledgments and the update protocol,
statement U2 executes a; := 2 at processor t. At this point, we assert that
all processors are frozen; note also that each global state from ¢ to this point
is warm-legitimate. Upon execution of U2, a new global state is computed
from combined snapshots. Although a; = 2 is not broadcast monotonically,
statements U6 and U7 are coded in such a way that acknowledgment of a; = 2
is monotonic. Therefore, once ¢ observes (Vg :: hy[p] # 1), it is the case that
every processor has received the new global state and assigned P’s fields and
variables. Thus after O(d) rounds, ¢ executes U3, and the final phase of the
superstabilizer begins. In this final phase, stabilization to (Vq :: —freeze,)
occurs within O(d) rounds; the passage predicate holds because at each state,
the subset of unfrozen processors is locally legitimate for the new topology.

Proof of Theorem 7 O

7 Conclusions

There is increasing recognition that dynamic protocols are necessary for many
networks. Studying different approaches to programming for dynamic envi-
ronments is therefore a motivated research topic. Although self-stabilizing
techniques for dynamic systems have been previously suggested, explicit re-
search to show how and where these techniques are useful has been lacking.
This paper shows how assumptions about interrupts and dynamic change
can be exploited with qualitative and quantitative advantages, while retain-
ing the fault-tolerant properties of self-stabilization.
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Superstabilization Section:
(statements C1-C3 of update protocol)

Ul
U2
U3
U4
us
U6
u7

us

if

if

if

(ap=1A (3qg:: ag#0 AN g>p N (Vr:: hql #0)))
then a, := 0

(a,=1 AN (Vg: q#p: a;=0) N (Vg hyp] #0))
then a,, u, = 2, F(s,)

(ap=2 A (Vg5 hylp] 7 1)

then a, := 0

forall ¢ € processors(A) U {p}

if

do

if a,=0 then hyq] := 0

if a;=1 A hyjg) =0 then h,lq] =1

if a,=2 A hyl¢g] =1 then hylqg], snap, = 2, uy[p]
od

(3¢ € processors(A) U {p} :: a, # 0)
then freeze,, t, := true, snap,
else freeze, := false

(statements C4-C6 of update protocol)
Interrupt Section:

El

write
ap = 1
freeze, = true
lp ‘= snap,
. o { 0 if & = recov,
P | refresh(e,) if & # recov,

Figure 4: Superstabilizer: update extension and interrupt for p
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In particular, we suggest that when the system is in an illegitimate con-
figuration, reset to a predefined configuration will not take place; instead, the
system will reach a legitimate configuration that is close to the current ille-
gitimate configuration (where “close” means a small adjustment measure).
The benefits of this approach are twofold. First, such a strategy may keep
most of the sites of the system unchanged and in working order (as in the
example of connections within an unchanged portion of a spanning tree).
Second, in some cases the amount of work (superstabilizing time) required
to reach a close legitimate state can be small (as in our coloring example).
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Appendix A: Spanning Tree Proofs
Theorem 3 The spanning tree protocol self-stabilizes in O(n) rounds.

Proof of Theorem 3 Proof by induction on an arbitrary computation .
The induction is based on a directed tree. Let T, be the maximum subset of
processors whereby:

1. d, =0,
2. the set {t,| p € T, N p#r} represents a directed tree rooted at r,

3. for p € T, and p # r, register field d, satisfies d, = 1 +d, where ¢ = ¢,
and

4. each processor in 7). has executed at least one cycle in ®.

After one round, d, = 0 holds for the remainder of the computation. There-
fore, after the first round, 7, is nonempty, containing at least r. The remain-
der of the proof concerns rounds two and higher, and is organized into the
following three claims.

Claim 1 (T is Stable) If p € T, holds at the beginning of the
round, then t, and d, do not change during the round. The claim
follows by induction on depth of the tree T,. First we strengthen
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the hypothesis to state that any node p € T, satisfies d, = k,
where k is the depth of p in T,.. The basis for the induction is the
root r, which satisfies d, = 0; statement S4 assures that d, does
not change during the round. Suppose all nodes of T, up to depth
k satisfy the hypothesis, i.e., they are stable and have a d field
equal to the node depth. Consider some v € T, at depth k + 1;
by (2) and (3), d, = k + 1 at the beginning of the round. Since
every d field has non-negative value and w,, = n for any z # t,,
and assuming the inductive hypothesis for the node named by t,,
statement S3 cannot compute any lower value for x than k + 1,
and the values t, and d, do not change during the round.

Claim 2 (T, Growth) If there exists a processor that is not
contained in T, and (Vp: p & T, : d, > 2n) holds at the begin-
ning of the round, then T, grows by at least one processor by the
end of the round. The claim follows by examining processors out-
side of T, that also neighbor T,.. Let p be such a processor, outside
T, and neighbor to q € T,.. By Claim 1, d, + wy, < 2n. There-
fore, during the round, p cannot choose t, to be some processor s
satisfying ds > 2n. Thus T, grows by at least one processor.

Claim 3 (d, Growth) Define M; to be the minimum d-register
value of any processor outside of T, in round t; then M; 1 > M;.
The claim is verified by considering, for round i and p € T, as-
signment to each d, register in that round. During a round, the
value obtained for d, is strictly larger than that of some neighbor-
ing dy; if ¢ € T,, then p € T, holds at the end of the round; and
if g & T,, then the claim holds.

A corollary of Claim 3 is that following rounds 2n + 2 and higher, for every
p & T,, the field d, satisfies d, > 2n. Consequently, for rounds 2n + 2 and
higher, by Claim 2, if T, does not contain all processors, then T,. grows by at
least one processor in each successive round. The theorem follows because
there are at most n processors.

Proof of Theorem 3 O

Theorem 4 The spanning tree protocol is superstabilizing for the class A,
with superstabilization time O(1) and adjustment measure R = 1.
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Proof of Theorem 4 We show that starting from a state d, 0 = L, followed
by a topology change £, £ € A, resulting in a state o, that ¢ - £ holds. In
the case of £ = crash,,, removing a nontree link, for either processor p or g,
the weight of the p-g link w,, = n at state 6. By assumption of 6 - L, it
follows that computation of d and ¢ fields produces identical results in any
round following o, since these are necessarily based on unit w values. In the
case of & = recov,,, the weight of the new p-q link is w,, = n at state o; hence
distances are not reduced by addition of the new link, and computation of

d and t fields produces identical results in any round following o. Therefore
ok L.

Proof of Theorem 4 O

Appendix B: Update Protocol

In addition to showing that the update protocol presented in Section 6 is self-
stabilizing, additional theorems given in this appendix show that the update
protocol enjoys some other properties related to broadcast monotonicity and
the protocol’s use of memory. We begin with the proof of self-stabilization.

B.1  Self-Stabilization

Theorem 5 The update protocol of Figure 3 self-stabilizes in O(d) rounds.

Proof of Theorem 5 The proof is organized as three claims.

Claim 4 Following round i, © > 1, the e, field of every processor
satisfies

(Vp,q,j: j<i: dist(p,q) <j & (Iq,zq, dist(p,q)) €ep))

The claim follows by induction on 1. The basis of the induction is
the first round, which trivially establishes (p,z,,0) € e, for every
processor. The induction step follows because field e, is assigned
anew in each round and based on tuples that, by the induction
hypothesis, have the required property.
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Claim 5 Following round i, © > 1, the e, field of every processor
satisfies

(Yp,q,j: j<i: (Hqy.k)ece,:: k<j = (distip,q) =kNy=u1g)))

This claim follows by the same inductive argument presented for

Claim 4.

Claim 6 Following round d+1, (Vp:: (V(,,k) €e,:: k<d)).
The claim is shown by contradiction. Suppose e, contains a tuple
(,,j) where j > d. Observe that if j > d + 1, then by the con-
struction of the initseq function, at the end of round d + 1 the
field e, also contains some tuple (q, , k) where k = d+1. Thus to
show the claim, it suffices to show a contradiction for k = d + 1.
Since p assigned the tuple (q,,d + 1) to e, during round d + 1,
it must be that p found at some neighbor s the tuple {(q,,d), and
found no tuple with q as the first component at a smaller distance.
However, the tuple located at s having distance d represents the
shortest distance to q by Claim 5. And since d bounds the maxi-
mum possible shortest path, by Claim 4 all shortest paths between
p and q are visible to p at the end of round d. We conclude that
dist(p,q) = d+ 1, which contradicts the definition of diameter d.

Claims 4-6 together imply that, following d + 1 rounds, each processor cor-
rectly has a tuple for every other processor at distance d, and every tuple in
an e field correctly refers to a processor.

Proof of Theorem 5 O

B.2 Memory Adaptivity

Nowhere in the code of the update protocol is the size of the network used,
nor is a bound on the number of processors in a connected component as-
sumed; consequently, any number of processors can be dynamically added
to the system, provided processor identifiers are unique. Moreover, the local
implementation of operations on processor variables A, B, and even the field
ep can use dynamic memory allocation. The following lemma shows that
dynamic memory operations do not use unbounded amounts of memory.
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Lemma 1 For any computation ® of the update protocol, no processor re-
quires more than O(A - K - n) space for variables and register fields, where
in the initial state of ®: A is the maximum number of neighbors a processor
has, n is the number of processors, and K is the mazimum number of tuples
of any processor’s A, B, or e field in the initial state of .

Proof of Lemma 1 The computation of B consists of at most nK tuples,
since tuples with duplicate identifiers are not added to B by C4, and the
number of identifiers is bounded by nK. Moreover, no statement is capable of
introducing a tuple with a processor identifier not already present in another
tuple. Hence any assignment by C5 places at most nK tuples in e,. The
collection procedure for constructing A is the union of at most A sets of at
most nK tuples (K tuples in the first round, and nK tuples in subsequent
rounds).

Proof of Lemma 1l O

Although the lemma shows that the update protocol does not use unbounded
space in its computation, this is insufficient for a self-stabilizing implemen-
tation: suppose processors are implemented on machines with fixed memory
limits and an initial state of a computation is such that the number of tuples
is at or near the memory limit; subsequent computation may then abort by
exceeding the memory limit in a dynamic allocation request. Therefore, in
order to claim that the update protocol is self-stabilizing, we assume that ev-
ery trajectory’s initial state satisfies n&K < N, where N is some appropriate
limit related to memory limits of processors (even if the abort resets memory,
some minimal amount of memory is needed to guarantee self-stabilization of
the update protocol).

Note that upon stabilization, the e, register contains only those tuples
representing reachable nodes in the network. Therefore, the amount of mem-
ory needed for e, can be dynamically adjusted during a computation to the
minimum amount needed to represent the list of tuples; this idea is called
memory adaptivity in [AEYH92]. The following lemma is an observation due
to Gerard Tel.

Lemma 2 The update protocol of Figure 3 is memory adaptive.

4Remark during presentation, December 1993.
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Proof of Lemma 2 Upon stabilization, the necessary size of the e field is
bounded by a function of the number of processors.

Proof of Lemma 2 0O

B.3 Monotonicity Properties

We distinguish three monotonicity properties of an update protocol:

e Static monotonicity. Let o be a legitimate state for the update protocol
where z, = ¢y at 0. Suppose @ is a topology-constant computation
originating with state o, and suppose field z, is changed at distinct
states 01, 0a, ... of ® to have the values ¢y, ¢, . .., where state J; occurs
before d; for ¢ < j. Static monotonicity is satisfied if, for any states p
and v in ® such that p occurs before v: if processor ¢ sees ¢; as the
value of x, at state p and sees c¢; as the value of z, at state ~, then
1 < 7 holds.

e Dynamic monotonicity. Let o be a legitimate state for the update
protocol where z,, = ¢y at 0. Suppose @ is a trajectory originating with
state o, and suppose field z, is changed at distinct states d1,ds, ... of
® to have the values ci, ¢y, ..., where state d; occurs before §; for i <
J; ® may have topology changes interleaved with steps of processors,
including, possibly, the crash and recovery of processor p. Dynamic
monotonicity is satisfied if, for any states p and v in ® such that p
occurs before v: if processor g sees ¢; as the value of z,, at state p and
sees ¢; as the value of x, at state «, then 7 < j holds.

e Impulse monotonicity. Let o be a legitimate state for the update proto-
col in a topology 7 where x, = ¢y at 0. Let A be the state obtained by
making a single topology change £ to 7 and the assignment z, := ¢;.
Let ® be a topology-constant computation originating with state .
Impulse monotonicity is satisfied if, for any states p and v in ® such
that p occurs before 7: if processor g sees ¢; as the value of z, at state
p, then g sees ¢; as the value of z, at state .

Note that with static and dynamic monotonicity, we admit the possibility of
“overwriting” of x, before its value is successfully broadcast to all processors;
however, a subsequence of FIFO delivery is guaranteed by monotonicity. If
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x, is changed “slowly enough,” meaning that the protocol successfully sta-
bilizes between changes to x,, then a FIFO broadcast of z, values is ob-
tained. In Section 6, we introduce an acknowledgment mechanism so that
a processor does not change the broadcast value of interest until all other
processors within a connected component have received the current value.
The acknowledgment mechanism does not itself guarantee FIFO broadcast;
monotonicity is also required. As indicated in following theorems, the update
protocol satisfies static and impulse monotonicity, but not dynamic mono-
tonicity; further measures are introduced in Section 6 to deal with the lack
of dynamic monotonicity.

Theorem 8 The update protocol of Figure 3 enjoys static monotonicity.

Proof of Theorem 8 The theorem can be proved by induction on a lex-
icographic measure composed of path length and the ordering of links by
a processor’s neighborhood; essentially, the deterministic ordering of links
defines a broadcast tree. Our general method does not exploit static mono-
tonicity, so we omit details of the proof.

Proof of Theorem 8 O

In the sequel, for dynamic and impulse monotonicity, we make a restric-
tion on a topology change event £ that adds a node p to the network: the
ep field contains no tuples. Given this restriction, the following monotonicity
theorems hold.

Theorem 9 The update protocol of Figure 3 does not satisfy dynamic mono-
tonicity.

A counter-example provides proof of this theorem, and is presented in [DH95].
The counter-example actually shows that the update protocol does not sat-
isfy even more restricted forms of dynamic monotonicity: the example is
constructed with a single initial topology change and no further topology
changes, and only two changes to a register field.

Theorem 10 The protocol of Figure 3 is impulse monotonic:

o Let o be a legitimate state for topology T .

e The following atomically occurs at state o: a single topology change €
occurs to obtain a new topology U, and for each processor r incident
on &, the value of x, is changed to Z,.
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o Let ® be a topology-constant computation of the protocol following the
change &.

Then the following two claims hold:

e For any two processors p and q that are connected in both T and U,
there is a tuple (p, ,) € e, at each state in ®; if p and q are not connected
in T but are connected in U, then for any state § € ® satisfying (p,,) €
eq, at every subsequent state p there is a tuple (p,,) € e,.

e For any processors p and q, where p is incident on &, if there is a tuple
(p,Zp,) € €4 at some state 0, then at every state p following 0 in ®
there is a tuple (p, Tp,) € €,.

Proof of Theorem 10 The proof is based on considering an arbitrary le-
gitimate state o in topology 7, an arbitrary single topology change £ in
state o resulting in topology U, followed by a topology-constant computa-
tion . We consider two cases based on how & changes: either £ increases
or decreases connectivity in the network. We label a topology change that
increases connectivity as +&, since either a link or a processor is added to
the network; a topology change that decreases connectivity is labeled —&.

For the +& case, a technical lemma is needed: Lemma 4 shows for ® that
distances tracked in tuples do not increase during the computation, and that
the function initseq does not remove tuples during the course of the protocol’s
computation. To show impulse monotonicity, we assign one of two colors to
each tuple in an e register. Atomically, with +& we color all tuples white
with the exception of (,,0) tuples incident on +&, which are colored black.
Then at each cycle of a processor in @, the color of a (,,0) tuple is black
for processors incident on +&, and white for other processors; the color of a
(,,k) tuple, k # 0, is inherited from the color of the (,, (k — 1)) tuple upon
which it is based. It follows that any tuple that decreases distance during the
course of ® is black; because distances do not increase in ® and the ordering
of neighbors is deterministic in the protocol, once a tuple is black it remains
black. Thus for an arbitrary processor ¢ and some p incident on +&, the
tuple (p,,) € ¢ changes color exactly once in computation .

For the —& case, the same coloring technique is used, with a different
lemma: Lemma 3 shows for ® that distances tracked in tuples do not decrease
during the computation and that initseq does not remove tuples that refer to
reachable processors. To show impulse monotonicity, we assign one of two
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colors to each tuple in an e register. Atomically, with —& we color all tuples
white with the exception of (,,0) tuples incident on —&, which are colored
black. Then at each cycle of a processor in ®, the color of a (,,0) tuple
is black for processors incident on —&, and white for other processors; the
color of a (,,k) tuple, k # 0, is inherited from the color of the (,, (k — 1))
tuple upon which it is based. It follows that any tuple that increases distance
during the course of ® is white unless it represents a final increase basing
the tuple on a shortest path for U; because distances do not decrease in ®
and the ordering of neighbors is deterministic in the protocol, once a tuple is
black it remains black. Thus for an arbitrary processor ¢ and some p incident
on —&, the tuple (p,,) € ¢ changes color exactly once in computation ®.

Proof of Theorem 10 O

For the remaining lemmas of this subsection, o, £, 7, U, and ® are fixed
as specified in Theorem 10. Let dist(z,y) = oo denote that no path connects
x and y. To simplify analysis, we call a tuple (p,,) € e, a reachable tuple if
disty(p, q) # 0.

Let p and 0 be states of ®. The notation p < § denotes that p occurs
before § in the sequence ®. The notation successor(p) = 6 means that state
d immediately follows p in ®. The notation (p,,k) € e, ® 0 means that
tuple (p,, k) is contained in field e, at state §. The predicate adjust(q, p, )
is defined to hold if a distance change in a reachable tuple occurs:

adjust(q, p,6) = § = successor(p) A (I(p,, k) € e,0p = (I(p,,m) € e, :: m # k))

We define a based tuple recursively as follows: tuple (p,,k) € e, ® p is based
if k& = 0 or there is some based tuple (p,,(k — 1)) € e, ©® p for r € N,.
Observe that in a legitimate state for the update protocol, all tuples are
based; following event —&, some tuple(s) may not be based.

A tuple (p,,k) € e, is low if it is reachable and k < disty(p,q). A tuple
(p,, k) € e, is said to be mazlow if it is low and satisfies:

(V(s,,m) € e, (s,,m) islow = disty(s,q) < disty(p,q))

Lemma 3 For event —&, for all processors p and q satisfying disty(p,q) #
00, the following claims hold:

Claim 7 (Vp: pe ®: (p,,) €¢e,0p)
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Claim 8 (p,,!) € e, = ¢ < disty(p,q)
Claim 9 (p <0 A (p,,0) €e,Op A (p,,m) €E€,00) = {<m
Claim 10 (p,,k) € e, © p is based = disty(q,p) =k

Claim 11 (p,,k) € ¢, is based = (Vj: 0<j<k: (3(r,,j) €
eq (1, 7) is based))

Claim 12 adjust(q,p,0) = (¥(s,,) € e, = (s,,) € €, O
p is mazlow = (s,,) € e, ® J is based)

Proof of Lemma 3 Proof is by induction on .

Basis Let A be the state obtained from ¢ as modified by —&; X is the
initial state of ® and forms the induction’s basis. Claim 7 holds for A by the
assumption that o satisfies L. Claims 8 and 10 hold by the assumption of
o satisfying L7 and the fact that —& can only increase minimum distances
between processors. Claims 9 and 12 are claims over pairs of distinct states,
and thus hold trivially in the initial state of ®. Claim 11 follows from Claim
10, which establishes that a based tuple represents a minimum distance, and
because o satisfies L7, each based tuple also corresponds to a minimum
distance in 7; therefore, all nodes that lie on a shortest path unaffected by
—& between ¢ and p have based tuples.

Induction Let d = successor(p), and suppose that Claims 7-12 hold for
all states 7, 7 < p. Consider two cases for adjust: if adjust(q, p,0) does not
hold for any processor ¢, that is, either e, is unchanged by the transition from
p to o or only changes to unreachable tuples occur, then Claims 7-12 hold
for 0 by inheritance from p. The other possibility is that adjust(q, p,d) holds
for some processor ¢. In this case, the transition from p to J writes initseq(B)
into e,, where B contains tuples computed by steps in ® or that are present
in state X\. Tuples placed in B by steps of ® are calculated from tuples of ¢’s
neighbors, which satisfy Claims 7-12 by the induction hypothesis. To show
that Claims 7-12 hold for state d, we consider the claims with respect to B,
and then reason about initseq(B). The remainder of the induction considers
tuples placed in B by steps of ® preceding state ¢.

Claim 7 holds for B because (g,,0) € e, holds for any iteration of the
loop in Figure 3 and by the induction hypothesis for Claim 7, each r € N,

34

Chicago Journal of Theoretical Computer Science 1997-4



Proof of Lemma 3-4

Dolev and Herman Superstabilizing Protocols §B.3

has a tuple (p,,) € e, for any p satisfying disty(r,p) # oo. Claim 8 holds
for B since (p,,¢) € B for { # 0 implies (p,,¢ — 1) € e, for some r € N,,
and the induction hypothesis for Claim 8 is assumed for r. Claim 8, the
induction hypothesis of Claim 10, and the definition of a based tuple show
that Claim 10 holds for based tuples in B. Claim 11 holds by the induction
hypothesis on Claim 11: based tuples in B are calculated upon neighboring
processor-based tuples, which satisfy Claim 11 by assumption; hence all of
the neighbor’s supporting based tuples (at smaller distances) are also input
to forming tuples in B. Claims 9 and 12 are only concerned with tuples that
change distance with respect to current distances in the e, field. Claim 9
holds for tuples in B by the induction hypothesis for Claims 7 and 9; tuples
in B are calculated from neighboring e fields and tuples in these fields do
not increase distance by any transition prior to state . Similarly, Claim
12 holds for B, because any adjustment to a tuple follows from (possibly
multiple) changes in neighboring e fields; by hypothesis 12, each such change
to an e field adjusts all maxlow tuples, which then by Claims 7, 8, and 10
remain constant thereafter.

Thus Claims 7-12 have been established for B prior to the writing of
initseq(B) at state 6. It only remains to show that no reachable tuple is
removed from B by the application of initseq. This is argued by contradiction.
Suppose a reachable tuple (p,, m) € B is discarded by initseq; this implies
the existence of a “gap,” i.e., for some distance ¢, { < m, no tuple (,,¢) € B
exists. All tuples contained in B have distances equal to or larger than
tuples contained in e,, by Claim 9. It follows that such a gap is the result
of increasing the distance of some tuple(s). Yet Claim 12 implies that the
maximum-distance reachable tuple resulting from an increase yields a based
tuple; Claim 11 then implies the existence of tuples at all lesser distances in
B, which contradicts the assumption of a gap.

Proof of Lemma 3 O

Lemma 4 For event +&, for all processors p and q satisfying disty(p,q) #
00, the following claims hold:

Claim 13 (p,,k) € ¢, = disty(p,q) <k
Claim 14 (p <0 A (p,,0) € e,Op A (p,,m) € €,©F) = {>m

Claim 15 (p<d A (p,,) €Ee,Op) = (p,,) €€, O0
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Claim 16 (p,.k) € e, = (Vr, 0 disty(p,r) ={(# o0 = (I(r,,m) €
eg i m<k+{)

Proof of Lemma 4 Proof is by induction on ®. To simplify cases within
the proof, we distinguish two possibilities for event +&; either a link is added
to the network, or a node is added with its accompanying links. In case +&
adds a node to the network, let z denote the node added. The assumption
for dynamic and impulse monotonicity with respect to nodes is that they
initially have empty e fields when added to the network. Observe from the
code of the update protocol and the assumption of a legitimate state prior
to +& that no processor changes its e field so long as e, contains no tuples.
Furthermore, after one cycle by processor z, the e, field is assigned to satisfy:

(1) (Vp, k= disty(p,z) =k #00 = (p,, k) €e,)

In addition to Claims 13-16, we add Claim 17 to the list of claims to prove
invariant in the computation ®:

Claim 17 (z,,k) € e, = (Vr, 0 disty(z,7) =L # 00 = (I(r,,m) €
eq: m<k+{))

Basis If +& adds no processor to the network, then let A\ be the state
obtained from ¢ as modified by +&; if a processor z is added to the net-
work, then let A be the first state in ® that satisfies (). State A forms the
induction’s basis. Claim 13 holds for A because event +& can only decrease
distances between existing nodes, and all tuples present in e fields at state o
represent distances in 7 by the assumption of a legitimate state, hence also
for state A; and () directly implies Claim 13 for processor z. Claims 14 and
15 hold for A either because there are no previous states in ® or because
no e fields are modified except for e,, which obtains its initial value at .
Claim 16 holds trivially for A since o satisfies L7, and Claim 17 holds be-
cause no processor reads any tuple from e, prior to state A.

Induction Let § = successor(p), and suppose that Claims 13-17 hold for
all states 7, 7 < p. Consider two cases for adjust: if adjust(q, p,0) does not
hold for any processor ¢, that is, either e, is unchanged by the transition from
p to 0 or only changes to unreachable tuples occur, then Claims 13-17 hold
for 0 by inheritance from p. The other possibility is that adjust(q, p,d) holds
for some processor ¢. In this case, the transition from p to § writes initseq(B)
into e4, where B contains tuples computed by steps in ® or that are present

36

Chicago Journal of Theoretical Computer Science 1997-4



Proof of Lemma 4-4

Proof of Lemma 4-5

Dolev and Herman Superstabilizing Protocols §B.3

in state A. Tuples placed in B by steps of ® are calculated from tuples of ¢’s
neighbors, which satisfy Claims 13-17 by the induction hypothesis. To show
that Claims 13-17 hold for state d, we consider the claims with respect to B,
and then reason about initseq(B). The remainder of the induction considers
tuples placed in B by steps of ® preceding state §.

Claim 13 holds for B because any step of ® that places a tuple in B
either places (q,,0) in B or calculates some (p,, (k + 1)) based on a tuple
(p,,k) € e, for some r € N,; and tuples in e, satisfy Claim 13 by the
induction hypothesis. Similarly, Claims 16 and 17 follow by appealing to
the induction hypothesis for the contents of some neighboring processor’s e
field. To show Claim 15, consider any tuple (p,,) € e, ® p. This tuple’s
presence is either inherited from ¢ or was calculated by some step of &
preceding 0; in either case, we infer the existence of a tuple (p,,) € e, for
r € N,. By the induction hypothesis on Claim 15, some tuple (p,,) € e, is
present at each state up to p, which implies the computation of B results in
(p,,) € B®p. For Claim 14 it suffices to show, for any tuple (p,,?) € e, ® p,
that (p,,m) € B ® p satisfies m < {. Since calculation of (p,,m) is based on
neighboring e fields, all of whose tuples satisfy Claim 14 by hypothesis, we
conclude that Claim 14 holds for B.

Thus Claims 13-17 have been established for B prior to the writing of
initseq(B) at state §. It only remains to show that no reachable tuple is
removed from B by the application of initseq. This is argued by contradiction.
Suppose a reachable tuple (p,,m) € B is discarded by initseq. This implies
the existence of a “gap,” i.e., for some distance ¢, { < m, no tuple (,,¢) € B
exists. All tuples contained in B have distances smaller or equal to tuples
contained in ey, by Claim 17. It follows that such a gap is the result of
decreasing the distance of some tuple(s). This situation leads to the claim:

Claim 18 (V(r,,j) € B: j</{ N r# z: distz(r,p) = 00)

Claim 18 follows from Claim 16: on one hand, if dist7(r,p) < (m — j) holds
for any tuple (r,,j) € B, j < £, then the tuple (p,,m) ¢ B; on the other
hand, if dist7(r,p) > (m — j) holds for every tuple (r,,j) € B, j < ¢, then
tuples at distances m,(m — 1),... are by Claim 16 present in B and there
is no gap at distance ¢. As a consequence of Claim 18, there is some tuple
(p,,m) € B for which dist7(q,p) = co. Therefore (p,, m) € B holds, because
some neighboring processor’s e register contained tuple (p,, (m — 1)), which
implies (z,,) € B. If p = z, then there exists some neighbor of z, call it
s, so that distr = (q,s) = disty(q, s), which by Claims 13 and 15 and the
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assumption that o is legitimate for 7 contradicts the assumption of a gap.
If p # z, then the tuple (z,,) has smaller distance than m, and by Claim 17
the existence of a gap is contradicted.

Proof of Lemma 4 0O
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