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Abstract

To analyze the complexity of decision problems on graphs, one
normally assumes that the input size is polynomial in the number of
vertices. Galperin and Wigderson [GW83] and, later, Papadimitriou
and Yannakakis [PY86] investigated the complexity of these problems
when the input graph is represented by a polylogarithmically succinct
circuit. They showed that, under such a representation, certain trivial
problems become intractable and that, in general, there is an expo-
nential blowup in problem complexity. Later, Balcázar, Lozano, and
Torán [Bal96, BL89, BLT92, Tor88] extended these results to problems
whose inputs are structures other than graphs.

In this paper, we show that, when the input graph is represented
by an ordered binary decision diagram (OBDD), there is an exponen-
tial blowup in the complexity of most graph problems. In particular,
we show that the GAP and AGAP problems become complete for
PSPACE and EXP, respectively, when the graphs are succinctly rep-
resented by OBDDs.

An extended abstract of this paper appears in the proceedings of the 1998 Symposium
on Theoretical Aspects of Computer Science.
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1 Introduction

The efficiency of algorithms is generally measured as a function of input size
(see [CLR89]). In analyses of graph-theoretic algorithms, graphs are usually
assumed to be represented either by adjacency matrices or by adjacency lists.
Nevertheless, many problem domains, most notably, computer-aided verifi-
cation (refer to [Bry86, BCM+92, Kur94a]), involve extremely large graphs
that have regular, repetitive structure. This regularity can yield very suc-
cinct encodings of the input graphs, and hence one expects a change in the
time complexity or space complexity of the graph problems.

The effect of succinct input representations on the complexity of graph
problems was first formalized and studied by Galperin and Wigderson [GW83].
They discovered that, when adjacency matrices are represented by polyloga-
rithmically sized circuits, many computationally tractable problems become
intractable. Papadimitriou and Yannakakis [PY86] later showed that such
representations generally have the effect of exponentiating the complexity
(time or space) of graph problems. Following this line of research, Balcázar,
Lozano, and Torán [Bal96, BL89, BLT92, Tor88] extended these results to
problems whose inputs are structures other than graphs and provided a gener-
al technique to compute the complexity of problems with inputs represented
by succinct circuits [BLT92]. They also provided sufficiency conditions for
problems that become intractable when inputs are represented in this way.
Veith [Vei95, Vei96] showed that, even when inputs are represented using
Boolean formulae (instead of circuits), a problem’s computational complexi-
ty can experience an exponential blowup. He also gave sufficiency conditions
for when the problems become hard.

The possibility of representing extremely large graphs succinctly has at-
tracted a lot of attention in the area of computer-aided verification (e.g.,
[Bry86, BCM+92, Kur94a]). In this domain, graphs are represented by or-
dered binary decision diagrams (OBDDs). OBDDs are special kinds of root-
ed, directed acyclic graphs that are used to represent Boolean formulae. Be-
cause of their favorable algorithmic properties, they are widely used in the ar-
eas of digital design, verification, and testing (see [Bry92, BCM+92, McM93]).
Experience has shown that OBDD-based algorithmic techniques scale up to
industrial-sized designs (see [CGH+95]), and tools based on such techniques
are gaining acceptance in industry (refer to [BBDG+94]). Although OB-
DDs provide canonical succinct representations in many practical situations,
they are exponentially less powerful than Boolean circuits, in the formal
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sense that Boolean functions exist that have polynomial-sized circuit rep-
resentations but do not have subexponential-sized OBDD representations
(see [Pon95a, Pon95b]). (On the other hand, the translation from OBDDs to
Boolean circuits is linear [Bry86].) Thus, the results of [BL89, BLT92, GW83,
PY86, Tor88, Vei95, Vei96] do not apply to OBDD-represented graphs. Fur-
thermore, even though Boolean formulae are, in terms of representation size,
less powerful than circuits, they are still more succinct than OBDDs. Trans-
lation from OBDDs to formulae leads to at most a quasi-polynomial (nlog n)
blowup, whereas there are functions (e.g., multiplication of binary integers)
that have polynomial-sized formulae but require exponential-sized OBDDs.
Indeed, while the satisfiability problem is NP-complete for Boolean formulae,
it is in nondeterministic logspace for OBDDs (see [Bry86]). Therefore, the
results in [Vei95, Vei96] do not apply to our case.

In this paper, we show that, despite these theoretical limitations on the
power of OBDDs to encode inputs succinctly, using them to represent graphs
nonetheless causes an exponential blowup in problem complexity. That is, the
well-studied phenomenon of exponential increase in computational complexi-
ty for graph problems with inputs represented by Boolean circuits or formulae
(see [BL89, BLT92, GW83, PY86, Tor88, Vei95, Vei96]) also occurs when the
graphs are represented by OBDDs. Graph properties that are ordinarily NP-
complete become NEXP-complete. The graph accessibility problem (GAP)
and the alternating graph accessibility problem (AGAP) for OBDD-encoded
graphs are PSPACE-complete and EXP-complete, respectively. Both GAP
and AGAP are important problems in model checking, a domain in which
OBDDs are widely used (refer to [BCM+92, EL86, KV96, Kur94b]).

In Section 2, we formally define OBDDs and present some known results
about them. In Section 3, we discuss the problem in greater detail and
compare Papadimitriou and Yannakakis’s result to ours. Finally, in Sections
5–7, we give our technical results.

2 Preliminaries

Definition 1 A binary decision diagram (BDD) is a single-rooted, directed
acyclic graph in which

• Each internal node (i.e., a node with nonzero outdegree) is labeled by a
Boolean variable.
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• Each internal node has outdegree 2. One of the outgoing edges is labeled
1 (the “then-edge”) and the other is labeled 0 (the “else-edge”).

• Each external node (i.e., a node with zero outdegree) is labeled 0 or 1.

Let X = {x1, x2, . . . , xn} be the set of Boolean variables that occur as
labels of nodes in a given BDD B. Each assignment α = (α1, α2, . . . , αn) of
Boolean values to these variables naturally defines a computational path—
the one that leads from the root to an external node and has the property
that, when it reaches a node labeled xi, it follows the edge labeled αi, for all
i.

Definition 2 A BDD B represents the Boolean function f(x1, x2, . . . , xn) if,
for each assignment α = (α1, α2, . . . , αn) to the variables of f , the computa-
tion path defined by α terminates in an external node that is labeled by the
value f(α1, α2, . . . , αn).

Definition 3 Two nodes u and v of a BDD are equivalent if the BDDs
rooted at u and v represent the same Boolean function. A BDD in which no
two different nodes are equivalent is called reduced.

Definition 4 Let < be a total ordering on a set X. An ordered binary
decision diagram (OBDD) over (X, <) is a reduced BDD with node-label set
X such that, along any path from the root to an external node, there is at
most one occurrence of each variable, and the order in which the variables
occur along the path is consistent with the order (X, <). The size of an
OBDD is the number of internal nodes in it.

Definition 5 An OBDD O represents the graph G = (V, E) if O represents
the Boolean function adj, where

adj(v1, v2) =

{
1 if and only if 〈v1, v2〉 ∈ E
0 otherwise.

Theorem 1 (Bryant [Bry86]) For each Boolean function f and ordering
(X, <) of the set of variables X, there is a unique (up to isomorphism) OBDD
over (X, <) that represents f .
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Theorem 2 (Bryant [Bry86]) Let F and G be OBDDs over (X, <) rep-
resenting functions f and g, respectively. Let the size of F be m, the size of
G be n, and 〈op〉 be a binary Boolean operation. Then there is an OBDD
over (X, <) of size at most mn and constructable in time polynomial in m
and n that represents f〈op〉g.

Definition 6 Let L = (G, <) be a linear order on the gates of a circuit,
where the inputs and outputs are classified as special instances of gates. We
say that the forward cross section of the circuit at gate g is the number of
wires connected to the output of some gate g1 AND an input of some gate g2

such that g1 ≤ g and g < g2. The reverse cross section of the circuit at gate
g is the number of wires connected to an output of some gate g1 and an input
of some gate g2 such that g2 ≤ g and g < g1.

Definition 7 The forward width of a circuit under order L, denoted wf , is
the maximum, over all gates g, of the forward cross section at g. Similarly,
the reverse width of the circuit under order L, denoted by wr, is the maximum,
over all gates g, of the reverse cross section at g.

Theorem 3 (Berman [Ber89]) For a circuit and gate ordering with wr =
0, there exists a variable ordering such that the OBDD size is bounded by
n2wf , where n is the number of inputs to the circuit.

Notation 1 We are interested in complexity classes C that have universal
Turing machines and complete problems. Let UC denote the universal Turing
machine for the complexity class C. Let L(UC) be the language accepted by the
machine UC; that is, L(UC) = {x : x encodes a C-bounded Turing machine
M and an input y such that M accepts y}.

For an n-bit number x, we refer to the ith bit by x(i), where x(n) is the
most significant bit.

3 Problem statement

Papadimitriou and Yannakakis [PY86] show that any NP-complete graph
property π to which satisfiability is reducible by a projection, in the sense
of Skyum and Valiant [SV82], becomes NEXP-complete when problem in-
stances are encoded as circuits. They do this by first constructing a circuit
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that computes the clause-literal incidence matrix of a formula F (x) (i.e., giv-
en a clause and a literal, the circuit decides whether the literal occurs in
the clause in F (x)) such that F (x) is satisfiable if and only if x ∈ L(UNEXP).
Then, using the properties of projection, they construct a circuit representing
a graph G(x) such that G(x) has a property π if and only if x ∈ L(UNEXP).

When graphs are represented by OBDDs, such reductions are not im-
mediately obtainable, for two basic reasons. First, OBDDs are strictly less
powerful than Boolean circuits, in the sense that there are Boolean functions
that have small circuit representations but no small OBDD representation-
s. In particular, the function that computes the ith bit of the product (or
quotient) of two binary numbers cannot be represented by a small OBDD
(see [Pon95a, Pon95b]). Second, the size of OBDDs is sensitive to the order-
ing of the variables of the function, and the OBDD representing the Boolean
combination of two OBDDs can be constructed quickly only when the or-
dering of the variables is consistent in the two OBDDs. Hence, for a result
equivalent to Papadimitriou and Yannakakis’s to hold for graphs represented
by OBDDs, we must construct reductions f such that the jth bit of f(x) can
be found by a small OBDD given j as the input, assuming that the ith bit
of x can be found by a small OBDD given i as the input. Furthermore, all
OBDDs involved must read the bits in consistent order.

4 Cook’s theorem

In order to show that satisfiability is NP-hard, Cook [Coo71] constructed a
Boolean formula F (x), given a string x encoding a nondeterministic Turing
machine decription and an input string, such that F (x) is satisfiable if and
only if the machine accepts the input in polynomial time. If we view com-
putation as a sequence of machine descriptions,1 then the formula essentially
encodes the following: Each machine description is correct and follows from
the previous description in the sequence, and the machine finally enters an
accepting state. We now describe this formula F (x) more formally.

When describing the machine at some instant, we group the state of the
machine and the index of the next step taken by the machine, with the
symbol scanned to form a single composite symbol whose appearance also
indicates the head position. For each time instant i, for each tape cell j, and

1A machine description is a sequence that describes the values of the tape cells and the
position of the input head.
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for each symbol X, which can either be a symbol of the tape alphabet or a
composite symbol, we create a Boolean variable Vi,j,X to indicate that the
content of cell j at time i is X. If p(n) denotes the polynomial time bound
on the machine, then the formula F (x) is a conjuction of the following four
formulae:

(A) ϕA = (V0,0,.) ∧ (V0,1,a1 ∨ V0,1,a2 ∨ · · · ∨ V0,1,al
) ∧ ∧n

i=2 V0,i,y(i) ∧ V0,n+1,/ ∧∧p(n)
i=n+2 V0,i,B. This basically says that at the start (time 0), the tape

contains the input between the left (.) and right end-markers (/), and
the rest of the tape is blank. The symbols ai encode the start state, first
input symbol, and various nondeterministic choices available initially.

(B) ϕB =
∨

j(
∨

X∈F Vp(n),j,X). This says that at time p(n) the machine is
one of the final states. (F is the set of composite symbols encoding a
final state and a tape symbol.)

(C) ϕC =
∧

i,j[
∨

X Vi,j,X ∧ ¬(
∨

X 6=Y (Vi,j,X ∧ Vi,j,Y ))]. This says that at each
time and for each cell, there is exactly one symbol.

(D) ϕD =
∧

i,j [
∨

(W,X,Y,Z)∈Quad(Vi,j−1,W ∧ Vi,j,X ∧ Vi,j+1,Y ∧ Vi+1,j,Z)], where
Quad is the set of all quadruples (W, X, Y, Z) such that if the symbols
in the (j − 1)th, jth, and (j + 1)th cells of the tape are W , X, and Y ,
respectively, then at the next time instant the symbol at the jth cell is
Z. So this says that the symbol at each time and for each cell follows
correctly from those at the previous time instance.

5 A small OBDD for a NEXP tableau

Applying Cook’s theorem to the tableau of a nondeterministic, exponential-
time Turing machine produces a Boolean formula with exponentially many
clauses and literals such that the formula is satisfiable if and only if the
tableau represents a valid, accepting computation. In this section, we show
that this formula can be represented succinctly by an OBDD. This means
that we can fix an enumeration of the clauses and literals such that, given
the indices of a clause and of a literal, we can determine whether the literal
occurs in the clause. Our proof exploits the great regularity of the formula in
question. As can be seen in Figure 5, a literal corresponding to cell j at time
i− 1 occurs only in the clauses corresponding to cells j − 1, j, and j + 1 at
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(i-1,j )

(i, j-1) (i, j ) (i, j+1)

cell numbers

time

Figure 1: A NEXP Tableau. Rows represent contents of tape cell at a particular time
instance. Time increases as you go down.

time i. This implies that by a suitable ordering of the clauses, we can ensure
the following: Roughly speaking, for a given input x, there is a small, fixed
constant c such that a literal with index l occurs only in clauses with indices
between (l−1)c+1+K and lc+K, where K is some (not necessarily small)
number.

We begin by proving (in Lemmas 1 and 2) that this range check can be
computed by a small OBDD. The constructed OBDD uses an ordering of
variables wherein bits of the literal index and bits of the clause index are
interleaved. This construction plays a central role in the proof of the main
theorem of this section.

Lemma 1 For a fixed integer Y , there is a circuit with wf = log Y + 2
and wr = 0 that, given an ordering x(n) < x(n−1) < · · · < x(1) on input
bits, computes the ith bit of x/Y (“/” denotes integer division), for all i.
Similarly, for a fixed Y , there is a circuit with wf = log Y + 2 and wr = 0
that, given an ordering x(n) < x(n−1) < · · · < x(1) on input bits, computes the
ith bit of x mod Y , for all i.
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Proof A circuit that does long division by repeated subtraction computes
both the quotient and the remainder and has the above properties.

Lemma 2 Let f be a function such that f(x)(i) depends only on x(n), x(n−1),
. . . , x(i). Given an ordering x(n) < y(n) < x(n−1) < · · · < y(1) on input bits,
there is a circuit that checks whether f(x ± K) = y, for a fixed integer K,
with wr = 0 and wf = 2W + 4, where W is the forward width of the circuit
that computes f(x) given the same ordering on input bits.

Proof We now present the construction for a circuit computing the function
f(x + K) in detail. The case of f(x−K) is similar, and we present a sketch
of the proof at the end.

The difficulty arises in computing x + K, using the given ordering on the
input bits. If we used the reverse ordering, going from least significant bits
to most significant bits, designing a circuit with the desired widths would
be simple. Unfortunately, the circuit computing f does so with a different
ordering.

In order to compute the ith bit of the sum, we need to know whether
(x(i−1)x(i−2) · · ·x(1)+K(i−1)K(i−2) · · ·K(1)) yields a carry, and we cannot know
this until we compute the sum.

We overcome this obstacle using essentially the same idea as is used in
carry-look-ahead adders. A bit position i is a carry generator if x(i) and K(i)

are 1; it is a carry propagator if exactly one of these bits is 1; it is a carry
killer if both of these bits are 0.

Initially, we compute f(x+K)(n) in two ways, one assuming that there is a
carry into the nth position and the other assuming that there is no carry into
the nth position. We compare each value of f(x+K)(n) with y(n) terminating
any computation path that leads to inequality. Inductively, suppose that we
compute at most two different values for f(x + K)(i) and compare both with
y(i). If position i − 1 is a generator, we abandon the path in which there
is no carry into position i and continue the path in which there is a carry
into position i in two ways—one assuming there is a carry into position i− 1
and the other assuming not. Similarly, if position i − 1 is a propagator, we
continue the path assuming a carry into position i by assuming that there is
a carry into position i− 1, and we continue the path assuming no carry into
position i by assuming that there is no carry into position i − 1. Finally, if
position i − 1 is a carry killer, we abandon the path assuming that there is
a carry into position i, and once more we are left with at most two paths
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to continue. Clearly, only one of these two paths is correct at the end, and
if along this path we have determined that the bits of f(x + K) are equal
to the bits of y, we output a 1; otherwise we output a 0. Our computation
is an appropriate interleaving of the carry-look-ahead adder, the circuit that
computes f hypothesized in the lemma, and a circuit that checks equality of
the bits of f(x + K) and the bits of y.

To compute f(x−K) we proceed in a similar manner.

Notation 2 Consider the language L(UNEXP). Let F (x) be the CNF Boolean
formula obtained by the exponential version of Cook’s construction, in which
F (x) is satisfiable if and only if x ∈ L(UNEXP).

Theorem 4 Let gx be the Boolean function that decides whether a given
literal occurs in a given clause in F (x); that is, gx(Cl, Lt) = 1 if and only if
the literal whose index is Lt occurs in the clause of F (x) whose index is Cl.
There is an OBDD of size polynomial in the length of x that represents the
function gx.

Proof As we saw in Section 4 there are four categories of clauses in F (x):

(A) Clauses that state that, at time 0, the tape contains the input string,
and the machine is in the initial state

(B) Clauses that state that, at time 2pM (n), the machine is in one of the
final states

(C) Clauses that state that, at time i, 0 ≤ i ≤ 2pM(n), each tape cell contains
exactly one symbol of the tape alphabet

(D) Clauses that state that, at time i, 0 ≤ i ≤ 2pM(n), the contents of the
tape cells and the state of the machine follow from those at the previous
time i− 1 by a valid “move” of the machine

We first list all the clauses in category A, then those in category B, and
then, finally, those in categories C and D. The clauses in categories C and
D are interleaved so that all clauses in these two categories referring to the
same cell of the tableau occur together in the enumeration starting from
〈0, 0〉, that is, cell 0 and time 0, and proceeding in row major order.

An important property becomes clear in the proof: There is an integer
W such that, for each pair i, j, the number of clauses in category C and D
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for time i and tape cell j is W , and W depends only on the alphabet size
and the maximum nondeterministic branching possible at any state. Hence,
for the above listing of the clauses, determining the time and cell to which
a given clause number refers involves dividing by this fixed constant W and
not by a number that is a function of i or j. This is very important, because
the function that determines the quotient when one number is divided by
another does not, in general, have a small OBDD representation. Because
there is a fixed constant W , we can use Lemma 1.

The literals Vi,j,X have the same meaning as in Section 4, and they are
numbered in the following order: V0,0,σ1 ,¬V0,0,σ1, . . ., V0,0,σm ,¬V0,0,σm , V0,1,σ1 ,
. . ., ¬V0,2pM (n),σm

, V1,0,σ1, . . ., ¬V2pM (n),2pM (n),σm
, where Γ = {σ1, σ2, . . . , σm} is

the set of tape symbols and composite symbols.

Notation 3 We use #(X) to denote the index of X, where X is a literal,
clause, or symbol in the enumeration.

We now show that, for the set of clauses in any category, gx when restrict-
ed to this set of clauses can be represented by an OBDD of polynomial size.
Since gx is a logical OR of all these (constant number of) Boolean functions,
Theorem 2 implies that there is a polynomial-sized OBDD that represents
gx.

In the rest of the proof, we only consider OBDDs with the following
ordering on the variables: Cl(k), Lt(k), Cl(k−1), Lt(k−1), . . . , Cl(1), Lt(1), where
Cl is the index of a clause and Lt is the index of a literal.

Case A Each clause in this category consists of a single literal. Clauses
corresponding to cell positions 〈0, 0〉 to 〈0, n + 1〉 specify that the top row
faithfully represents the input string y(1), . . . , y(n) along with suitable end-
markers and the start state, while clauses corresponding to cell positions
〈0, n+2〉, . . . , 〈0, 2pM(n)〉 specify that these symbols are B, the blank symbol.

Note that the OBDD is allowed to be of size polynomial in n. Thus we
can compute gx in the case when the clause number is between 0 and n + 1
by using an OBDD that resembles a trie. Upon reading a symbol, simply
branch to the node in the trie that represents all possible continuations of
the clause and literal indices that would make gx evaluate to 1. The size of
the trie (and hence also the size of the OBDD) is O(n).

For clauses whose number is between n+2 and 2pM (n), check that Lt mod
2m produces a number that encodes the blank symbol. Lemma 1 implies that

11



there is an OBDD, of small size, that can compute the ith bit of Lt mod 2m.
Now checking if Lt encodes a blank symbol just involves checking that each
bit Lt mod 2m is “correct,” and since the number of bits in Lt mod 2m is
bounded by the input size (|x|), this conjunction has a small (polynomial in
|x|) sized OBDD.

The OR of these two OBDDs computes gx in case A.

Case B The clauses in this category are

∨
j

( ∨
X∈F

V2pM (n),j,X

)
,

where F is the set of composite symbols that encode a final state and symbol
pair.

Here we need to test that Cl = 2pM(n) + 1, Lt mod 2m is a symbol that
encodes a final state, and that Lt is an index of a literal corresponding to
time 2pM(n), that is, Lt/2m ≥ 〈2pM(n), 0〉. The first two tests clearly have
small OBDDs. Because |F | ≤ m (the size of the set of tape symbols and
composite symbols), the OBDD that decides whether a number (≤ 2m) is a
symbol in F has at most m paths and so is small. Thus we also have a small
OBDD representation for gx in this case.

Case C The clauses in this case are

∨
X

Vi,j,X

¬Vi,j,X ∨ ¬Vi,j,Y , where X 6= Y.

Recall that we interleaf the clauses in categories C and D. Thus part of the
tests in both these categories involve checking whether the “block” (i.e., the
〈i, j〉 pair) is “correct.”

The block and offset within a block, for the index of a clause, can be
determined as follows:

(Cl −K1)/K2 = block and

(Cl −K1) mod K2 = offset,

where K1 = 2pM (n) +1 is the number of clauses in category A and B, and K2

is the number of clauses in category C and D for a fixed i and j.
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Because K2 is a constant that depends only on the alphabet size and the
maximum nondeterministic branching possible in M , Lemmas 1 and 2 and
Theorem 3 imply that the OBDDs that compute each bit of the block and
offset are small. Again, since the total number of bits in the block and offset
are bounded by the length of the input, |x|, checking if the block (or offset)
is equal to some value can be done by a small OBDD.

Subcase 1 In the case (Cl − K1) mod K2 = 1, we check that at least one
symbol occurs in each cell position. We see whether (Cl−K1)/K2 = Lt/2m,
(Cl − K1) mod K2 = 1, and Lt mod 2m is odd (i.e., literal is positive).
Each of these tests has a small OBDD, and so subcase 1 presents no problems.

Subcase 2 In the case 1 < (Cl − K1)/K2 mod K2 ≤
(

m
2

)
+ 1, we test

whether (Cl−K1)/K2 = Lt/2m and Lt mod 2m occurs in the clause whose
offset is (Cl −K1) mod K2.

For each value of (Cl − K1) mod K2, the OBDD that checks for the
occurrence of Lt mod 2m has two paths, because each such clause has two
literals, and thus it is small. The desired OBDD has O(m2) paths, where, in
the ith path, one checks for the case (Cl −K1) mod K2 = i. The OBDD in
subcase 2 is thus polynomial-sized.

Case D The Boolean formula that states that any transition of the machine
from one configuration to another must follow from a valid “move” of the
machine looks like∨

(W,X,Y,Z)∈Quad

(Vi,j−1,W ∧ Vi,j,X ∧ Vi,j+1,Y ∧ Vi+1,j,Z),

where Quad is the set of all quadruples (W, X, Y, Z) with the following prop-
erty: If the symbols in the (j − 1)th, jth, and (j + 1)th cells of the tape are
W , X, and Y , respectively, then at the next time instant the symbol at the
jth cell will be Z.

Distributing the ∨ over the ∧’s gives the following set of clauses:

Vi,j−1,W1 ∨ Vi,j−1,W2 ∨ · · · ∨ Vi,j−1,Wk
,

Vi,j−1,W1 ∨ Vi,j−1,W2 ∨ · · · ∨ Vi,j,X1,

...

Vi+1,j,Z1 ∨ Vi+1,j,Z2 ∨ · · · ∨ Vi+1,j,Zk
,

where |Quad| = k.
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Subcase 1 We have the case of (Cl−K1)/K2 = Lt/2m+1, that is, the one
in which the literal refers to the (j − 1)th cell and time i (or 〈i, j − 1〉). We
must check whether the symbol encoded by Lt is one of the Wi’s occurring
in the clause. The clauses (for each i and j) are listed as above. There is a
close correspondence between the offset of a clause (i.e., (Cl−K1) mod K2)
represented in base 4 and the presence of a literal Vi,j−1,Wi

in the clause: If
the ith most significant bit of the base-4 representation of the offset is a 0,
then Vi,j−1,Wi

is present in the clause. Otherwise it is not. So checking if
Lt is present in the clause Cl involves checking if certain bits of the offset
are 0. (A base-4 representation can be obtained by grouping pairs of bits in
the binary representation.) Since the bits of the offset can be obtained by a
small OBDD, there is a small OBDD for this subcase.

Subcases 2 through 4 are listed below. Arguments showing that there are
small OBDDs for these cases are similar to the one in subcase 1.

Subcase 2 (Cl −K1)/K2 = Lt/2m.

Subcase 3 (Cl −K1)/K2 = Lt/2m− 1.

Subcase 4 (Cl −K1)/K2 = Lt/2m− 2pM(n).

6 NP-complete graph problems

Theorem 4 can be used to prove that most classical NP-complete graph
problems are NEXP-complete when graphs are represented by OBDDs. We
give one example of such a proof; others are quite similar.

We now consider the independent set problem. Recall that, in the decision
version of this problem, we are given a graph G and an integer k in binary
and are asked if G has an independent set of size at least k. For the succinct
version of the problem, we assume that we are given an OBDD O representing
the adjacency relation of a graph and an integer k in binary and are asked if
the graph represented by O has an independent set of size at least k.

Theorem 5 The independent set problem for graphs represented by OBDDs
is NEXP-complete.

14



Proof Consider the standard reduction from 3-SAT to independent set. In
this reduction, we create a graph in which there is a node for each occurrence
of each literal and two nodes are adjacent if and only if they either correspond
to two literals in the same clause or correspond to two complementary literals
x and x̄ occurring in two different clauses. Let GF (x) be the graph obtained
by such a reduction from the formula F (x), for some string x that encodes
a 2pM (n)-time bounded Turing machine M and an input y. Let each node of
GF (x) be named by the clause-literal pair corresponding to it.

Claim 1 Given two vertices (Cl1, Lt1) and (Cl2, Lt2) of graph GF (x), there
is a polynomial-sized OBDD that decides whether these vertices are adjacent.

Proof In order to check whether (Cl1, Lt1) is adjacent to (Cl2, Lt2), we
check whether (Cl1, Lt1) and (Cl2, Lt2) are “valid” vertices in GF (x).

(a) If either one of these vertices is not valid, we declare them to be adja-
cent.

(b) If both are valid, we check whether they are adjacent as per the reduc-
tion described above.

A node (Cl, Lt) is valid if and only if the literal whose index is Lt occurs
in the clause Cl, that is, if and only if gx(Cl, Lt) = 1. From the previous
section, we know that there is a small OBDD that computes gx, and so we
have a small OBDD to check whether a node is valid.

From the construction of GF (x), we know that two valid vertices are ad-
jacent if and only if either they correspond to literals in the same clause or
they correspond to complementary literals in different clauses; that is, either
Cl1 = Cl2 or |Lt1 − Lt2| = 1 and (Lt1 − 1)/2 = (Lt2 − 1)/2. By Lemma 2,
both of these checks can be done by small OBDDs whose orderings of the
variables are consistent with that of the OBDD for gx.

Thus the adjacency relation for graph GF (x) can be represented by a
small OBDD. Furthermore this OBDD can be constructed in polynomial
time. GF (x) has an independent set of size K, where K is the number of
clauses in F (x), if and only if F (x) is satisfiable if and only if x ∈ L(UNEXP).

Hence, the independent set problem for graphs represented by OBDDs is
NEXP-complete.
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Papadimitriou and Yannakakis [PY86] prove the general theorem that, if
the reduction from SAT to an NP-complete problem π is a projection, then
π becomes NEXP-complete when the input is represented by a circuit. The
fact that the reduction is a projection is a sufficient condition for their result,
but it appears far from necessary.

Here we state an analogous result. Let f be a reduction from SAT to an
NP-complete problem π. Suppose there is a constant k such that, for all j,
f(x)(j) is a function only of the bits x(j1), . . . , x(jk). Moreover, suppose that
there is a Mealy machine that takes the bits of j in some canonical order as
input and produces the bits of j1, . . . , jk in most significant to least significant
order.2 More precisely, there is a finite automaton that, on reading the ith bit
of j, produces the ith most significant bit of j1, . . . , jk. We refer to the above
class of reductions as padding reductions. Note that the class of padding
reductions is incomparable with the class of projections.

We state the following theorem and provide a sketch of the proof.

Theorem 6 Let f be a padding reduction from SAT to a problem π in NP.
Then π is NEXP-complete when its instances are presented as OBDDs.

Proof (sketch) Consider the instance f(F (x)) of problem π, where as be-
fore F (x) denotes the Boolean formula obtained when Cook’s theorem is
applied to a NEXP tableau. We need to show that there is a small OBDD O
that, when given j, outputs the value of f(F (x))(j), or in other words, that
there is a small OBDD representation for the instance f(F (x)).

Essentially, since f is an padding reduction, on reading the first bit of j
we know the most significant bits of j1, . . . , jk, and so on. So if we have k
copies of the OBDD representation of F (x) (constructed in Section 5), we can
step through these OBDDs simultaneously as we read each bit of j. Once we
compute F (x)(ji), . . . , F (x)(jk), we can obtain the value of f(F (x))(j). Since
k is a constant, this construction yields a polynomial-sized OBDD.

Padding reductions can be found for a number of graph problems such
as clique, vertex cover, and so on. Such reductions are obtained by taking
the standard reductions and padding the target instances so that each of its
indices has sufficient information to allow the reconstruction of the indices on
which it depends. For example, in the case of the independent set problem,

2A Mealy machine is a finite automaton that produces an output on reading an input
symbol; see [HU79].
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we padded the indices of the vertices of the graph obtained by the standard
reduction. We labeled the vertices by a clause-literal pair, and this helped in
constructing a small OBDD for the adjacency relation.

7 The GAP and AGAP problems

In this section, we examine two graph problems that are crucially important
in computer-aided verification. We show that both experience exponential
blowup in worst-case complexity when instances are represented as OBDDs.

Problem (GAP) The graph accessibility problem is as follows.

Input: A directed graph G and vertices s and t in the graph.

Output: Is there a directed path from s to t?

Theorem 7 GAP is PSPACE-complete when the graph G is represented by
an OBDD.

Proof Let p be a polynomial and x be a string that encodes a pM(|y|)-space-
bounded Turing machine M and an input y. Without loss of generality, we
may assume that the machine M has a single accepting configuration Cf .

Consider the configuration graph GM,y = (VM,y, EM,y) corresponding to
the machine M and input y, where

VM,y = {vC | C is a possible configuration of the machine, that
is, C is a string of symbols, of which one is a composite symbol
encoding a state of machine M and a tape symbol, and all the
rest are tape symbols };
EM,y = {〈vC1 , vC2〉 | the machine M can go from configuration C1

to a configuration C2 in one step}.
If Ci is the initial configuration of machine M on input y, then M accepts

y if and only if the node labeled by Cf is reachable from the node labeled by
Ci in GM,y. In other words, x ∈ L(UPSPACE) if and only if the GAP problem
on GM,y has the answer “yes.”

Claim 2 The edge relation EM,y in graph GM,y has a small OBDD repre-
sentation.
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Proof We need to show that the function e, where

e(C1, C2) =

{
1 if and only if 〈vC1 , vC2〉 ∈ EM,y

0 otherwise

can be represented by a small OBDD. Computing the function e entails

(a) checking that C1 and C2 are possible configurations, that is, there is
exactly one composite symbol in each of C1 and C2, and

(b) checking whether the configuration C2 can be reached from C1 in one
step by the machine M .

Checking to see whether a symbol is composite amounts to checking
whether the index of the symbol is greater than some constant, because
we list all the composite symbols in the end. Hence, check (a) involves ex-
amining only the symbols of the configuration in the order in which they
occur and thus has a small OBDD representation.

Let Quad = {(W, X, Y, Z)| if W , X, and Y are the symbols in the (j −
1)th, jth, and (j + 1)th cells, respectively, at some time instant, then Z
is the symbol in the jth cell at the next time instant}. Checking whether
configuration C2 can be reached from configuration C1 in one step involves
checking whether all the symbols in C2 arise from the corresponding symbols
in C1. That is, we need to check that for all j, (C

(j−1)
1 , C

(j)
1 , C

(j+1)
1 , C

(j)
2 ) ∈

Quad. As we saw in the proof of Theorem 4, the function that checks whether
a given quadruple is in Quad can be represented by a small OBDD. We just
read the symbols of C1 and C2 alternately and keep checking whether they
“conform.” Note that we need to “remember” only two symbols of C1 as we
go along. Hence, at any level in the OBDD, there are at most a constant
number of nodes, and checking whether one configuration can follow from
another is representable by a small OBDD.

Because GM,y can be represented by a small OBDD that can be construct-
ed in polynomial time, the GAP problem for graphs represented by OBDDs
is PSPACE-complete.

Definition 8 An AND-or graph is a directed graph G with vertices labeled
AND or OR. Reachability in such graphs is recursively defined as follows:

(a) Every vertex is reachable from itself.
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(b) If u is an AND node, then v is reachable from u if and only if v is
reachable from all ui, such that 〈u, ui〉 is an edge in the graph.

(c) If u is an OR node, then v is reachable from u if and only if v is
reachable from any ui, such that 〈u, ui〉 is an edge in the graph.

The OBDD representation of an AND-or graph is an OBDD that, given the
index of two vertices (which includes their label AND or OR), determines if
they are adjacent.

Problem (AGAP) The alternating graph accessibility problem is as fol-
lows.

Input: An AND-or graph G and vertices s and t in G.

Output: Is t reachable from s?

Theorem 8 The AGAP problem for graphs represented by OBDDs is EXP-
complete.

Proof Because the AGAP problem is in P for graphs represented by adja-
cency matrices, it is in EXP for graphs represented by OBDDs.

Let x be a string that encodes a 2pM (n)-time-bounded Turing machine M
and an input y. We construct an AND-or graph with two special vertices
s and t, such that t is reachable from s if and only if x ∈ L(UEXP). The
construction of the graph is very similar to the construction of the circuit in
the proof that circuit value is P-complete.

Once again let Quad = {(W, X, Y, Z)| if W, X, and Y are the symbols in
the (j−1)th, jth, and (j +1)th cells, respectively, at some time instant, then
Z is the symbol in the jth cell at the next time instant}. Let < be some
ordering on the quadruples in Quad.

We construct the graph GM,y in stages, starting with the empty graph.

Stage 0 Add two AND nodes, one labeled 0 and the other 1. These nodes
represent false and true, respectively.

Stage 1 For each j, 0 ≤ j ≤ 2pM (n), and each X, where X is either a tape
symbol or a composite symbol encoding a state of machine M and a tape
symbol, add an OR node labeled V0,j,X. Add the edge 〈V0,j,X, 1〉 if the jth
symbol in the initial configuration of M on input y is X. Otherwise, add the
edge 〈V0,j,X, 0〉.
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Stage 2i For each j and k, add an AND node labeled Ni,j,k. Add edges
〈Ni,j,k, Vi−1,j−1,W 〉, 〈Ni,j,k, Vi−1,j,X〉, and 〈Ni,j,k, Vi−1,j−1,Y 〉, where the kth quad-
ruple in Quad is (W, X, Y, Z), for some Z.

Stage 2i+1 For each j and symbol Z, add an OR node labeled Vi,j,Z. For
each k, if (W, X, Y, Z) is the kth quadruple, for some W , X, and Y , then
add the edge 〈Vi,j,Z, Ni,j,k〉.

Stage 2pM(n) + 2 Add an OR node s. For all j, add edges 〈s, V2pM (n),j,X〉,
where X is a composite symbol encoding a final state and some tape symbol.

The basic idea of the construction is as follows. The node label Vi,j,X

means that, during the computation, at time i, the jth tape cell contains the
symbol X. From the definition of Quad, it can be seen that

Vi,j,Z =
∨

(W,X,Y,Z)∈Quad

(Vi−1,j−1,W ∧ Vi−1,j,X ∧ Vi−1,j+1,Y ).

The string y is accepted if, at time 2pM(n), the machine reaches a final state,
that is, ∨

j

( ∨
X∈F

V2pM (n),j,X

)
,

where F is the set of composite symbols that encode a final state and symbol
pair. Hence, the graph GM,y is such that node 1 is reachable from node s if
and only if M accepts input y.

Claim 3 The graph GM,y can be represented by a small OBDD.

Proof There are no edges of the form 〈Vi1,j1,k1, Vi2,j2,k2〉 or 〈Ni1,j1,k1 , Ni2,j2,k2〉.
Also, the OBDD deciding whether there is an edge of the form 〈V0,j,X, 1〉 is
simple: Based on the value of j, just check if the jth symbol of the input is
X. The case of 〈V0,j,X, 0〉 is similar.

That leaves edges of only the following two forms: 〈Ni,j,k, Vi−1,j′,X〉, where
j′ = j or j − 1 or j + 1, and 〈Vi,j,X, Ni,j,k〉. In each case, determining
whether nodes Vi1,j1,X and NI2,j2,k are adjacent involves checking whether
i1, i2 and j1, j2 differ by a constant and whether the symbol X occurs in the
kth quadruple. That both these checks can be done by a small OBDD was
seen in the proof of Theorem 4.
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Thus the graph GM,y can be represented by a small OBDD that can be
constructed in polynomial time. Furthermore, node 1 is reachable from s in
GM,y if and only if x ∈ L(UEXP). Hence, the AGAP problem is EXP-complete
for graphs represented by OBDDs.

8 Open questions

The results that we prove in this paper are all negative: In the worst case,
succinct encoding of instances using OBDDs generates problems that are
hard for PSPACE, EXP, or NEXP. However, one of our main motivations
for this investigation is the observed good performance of computer-aided
verification tools on OBDD-encoded instances. Thus worst-case hardness
results do not adequately capture the complexity of the problems on real-
world instances. It would be desirable to have precise characterizations of
the special cases that occur in practice and of the special cases that can be
solved efficiently.

It would also be nice to have a general hardness result for OBDDs that
is analogous to Papadmitriou and Yannakakis’s result for circuits. In other
words, is there a class of reductions such that if any problem is complete
for NP via a reduction in the class, the problem is also complete for NEXP
when instances are encoded as OBDDs? There has been some recent work
in this direction (refer to [Vei98]). Recall from Definition 5 that an OBDD
representation of a graph is an OBDD that encodes the adjacency relation on
vertices. Veith [Vei98] obtains the general result for graphs that are encoded
by OBDDs wherein the ordering of the variables is fixed, namely, the one
where the bits of the first and second vertex are fed in alternating order. He
shows that any problem that is complete for NP via quantifier-free reductions
is also complete for NEXP when the instances are encoded by OBDDs with
the above ordering. However, the question remains open for problems where
instances are encoded by OBDDs with a different variable ordering.
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