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Abstract

We show that the permanent cannot be computed by uniform
constant-depth threshold circuits of size T (n) for any function T such
that for all k, T (k)(n) = o(2n). More generally, we show that any
problem that is hard for the complexity class C=P requires circuits of
this size (on the uniform constant-depth threshold circuit model). In
particular, this lower bound applies to any problem that is hard for
the complexity classes PP or #P.

This extends a recent result by Caussinus, McKenzie, Thérien, and
Vollmer [CMTV98], showing that there are problems in the count-
ing hierarchy that require superpolynomial-size uniform TC0 circuits.
The proof in [CMTV98] uses “leaf languages” as a tool in obtaining
their separations. Their proof does not immediately yield larger low-
er bounds for the complexity of these problems, and it also does not
yield a lower bound for any particular problem at any fixed level of
the counting hierarchy. (It only shows that hard problems must exist
at some level of the counting hierarchy.) We also present related and

A preliminary version of this work appeared in [All96].
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somewhat weaker lower bounds, extending the theorem of [CMTV98]
showing that ACC0 is properly contained in ModPH.

1 Introduction

1.1 Motivation and background

The central problem in complexity theory is the task of proving lower bounds
on the complexity of specific problems. Circuit complexity, in particular, the
study of constant-depth circuits, is one of the few areas where complexity
theory has succeeded in actually providing lower bounds. Yet even in the
study of constant-depth circuits, one quickly arrives at the limits of current
lower-bound technology. It is known that constant-depth circuits of AND,
OR, and NOT gates (so-called AC0 circuits) require exponential size, even
to compute the parity of n input bits (see [H̊as87, Yao85]), and similar lower
bounds are known for constant-depth circuits of AND, OR, NOT, and MODp
gates where p is prime (refer to [Raz87, Smo87]). When MODm gates are
allowed for composite m, however, almost nothing is known. It remains an
open question if there is any problem in NTIME(2nO(1)

) that cannot be done
with polynomial size and constant depth with AND and MOD6 gates.

There is considerable reason to be interested in circuits with AND, OR,
and MODm gates; circuits of this sort are called ACC0 circuits (for “alter-
nating circuits with counters”; the superscript 0 refers to the circuit depth of
O(log0 n)). The lovely result of [Bar89] characterizing NC1 (log-depth fan-in
two circuits) in terms of constant-width branching programs relies heavily
on algebraic techniques and shows that NC1 corresponds to computation
over nonsolvable algebras. Barrington also defined the corresponding notion
of computation over solvable algebras, and it is shown in [BT88] that this
notion corresponds exactly to ACC0 circuits. To restate these two points:

1. The results of [Bar89] establish intimate connections between circuit
complexity and algebraic structure.

2. In this algebraic setting, ACC0 is the most important subclass of NC1.

Although, as mentioned above, it is unknown if small ACC0 circuits suffice
to compute all problems in NTIME(2nO(1)

), lower bounds for uniform ACC0

circuits can be found in [AG94]. The techniques of [AG94] (see also [II96])
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employ diagonalization, which is less useful in the nonuniform setting. Since
our results, like those of [CMTV98] and [AG94], concern uniform circuits, it
is necessary to briefly discuss uniformity.

A circuit family {Cn} consists of a circuit for each input length n. If Cn

is “sufficiently easy” to construct from n, then the family {Cn} is said to be
uniform. Different notions of “sufficiently easy” give rise to different notions
of uniformity; the question of which is the “right” one to use when studying
classes of circuits is not always clear.

For the circuit classes considered here, convincing arguments are present-
ed in [BIS90] making the case that a very restrictive notion of uniformity
called Dlogtime-uniformity is the correct notion to use. Briefly, a circuit
family {Cn} is Dlogtime-uniform if, given a tuple (n, g, h), a deterministic
Turing machine can, in time linear in the length of the string (n, g, h), find
whether gate g is connected to gate h in circuit Cn and determine if g and h
are AND gates, OR gates, input gates, etc. The length of the input (n, g, h)
is logarithmic in the size of the circuit Cn, which is why we call it Dlogtime-
uniform. (Dlogtime-uniformity is essentially equivalent to what Ruzzo called
UD uniformity in [Ruz81], although he considered only circuits of fan-in two,
and not the unbounded fan-in circuits considered here and in [BIS90].)

Throughout the rest of this paper, all mention of uniform circuits refers to
Dlogtime-uniform circuits. In addition, ACC0(S(n)) denotes the class of lan-
guages with uniform ACC0 circuits of size S(n). ACC0 denotes ACC0(nO(1)).

In contrast to our lack of lower bounds for nonuniform ACC0 circuits for
sets in NTIME(2nO(1)

), it was shown in [AG94] that exponential size (i.e.,
size at least 2nε

) is required to compute the permanent (and other problems
complete for #P) on uniform ACC0 circuits. Thus there are sets in P#P that
require exponential-sized uniform ACC0 circuits.

The complexity class PP is closely related to #P (for instance, P#P =
PPP). Recall that a set A is in PP if there is a nondeterministic polynomial
time machine M with the property that x ∈ A if and only if the number of
accepting paths of M on input x is greater than the number of rejecting paths.
PP contains both NP and coNP (see [Gil77]). Another related complexity
class is C=P; a set A is in C=P if there is a nondeterministic polynomial
time machine M with the property that x ∈ A if and only if the number of
accepting paths of M on input x is equal to the number of rejecting paths.
C=P contains coNP but is not known to contain NP; PP is contained in
NPC=P [Tor91].
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One might expect that similar exponential lower bounds would hold for
PP or C=P as hold for #P, but [AG94] was able to show only that sets
complete for these classes require more than sub-subexponential-size ACC0

circuits, where the term “sub-subexponential” is made precise as follows.

Definition 1 A function t is said to be sub-subexponential if, for all k,

t(t(n)k) = 2no(1)

.

In [AG94] this term was defined slightly differently; in that paper, t had

to satisfy only the condition that t(t(n)) = 2no(1)
. Note that for all “natural”

and interesting size bounds t, these conditions are equivalent. Observe that
size bounds such as 2logk n and 2(log n)k log log n

are sub-subexponential.
Another class of constant-depth circuits that has attracted interest uses

threshold (or MAJORITY) gates instead of counters. Let TC0(S(n)) denote
the class of sets accepted by uniform constant-depth threshold circuits of size
S(n); TC0 denotes TC0(nO(1)). TC0 captures the complexity of important
natural computational problems such as sorting, counting, and integer mul-
tiplication. It is also a good complexity-theoretic model for the “neural net”
model of computation (see [Par90]).

It is easy to observe that ACC0 ⊆ TC0 (for example, see [BIS90]), and
thus we have even fewer lower bounds for the threshold circuit model than
for ACC0 circuits. Furthermore, since TC0(s(n)) ⊆ DSPACE(log s(n)) (for
s(n) ≥ n) and since (by an easy consequence of the space hierarchy theo-
rem) for any PSPACE-complete set A there is some ε > 0 such that A 6∈
DSPACE(nε), it follows that PSPACE-complete sets require exponential-
size uniform TC0 circuits. Yet, there is still no smaller complexity class in
PSPACE that is known to require exponential-size uniform TC0 circuits.

There are well-studied subclasses of PSPACE that correspond in a nat-
ural way to the complexity classes AC0, ACC0, and TC0. The relationship
between the polynomial hierarchy and AC0 is well known and was established
by [FSS84]. One way to present this correspondence is to observe that, when
one considers alternating Turing machines that make only O(1) alternations,
a polynomial running time yields the polynomial hierarchy, while a logarith-
mic running time yields uniform AC0. The analogous subclasses of PSPACE
corresponding to ACC0 and TC0 are ModPH and the counting hierarchy,
respectively.
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ModPH is in some sense a generalization of the polynomial hierarchy
and of ⊕P (formal definitions appear in Section 2). The counting hierarchy
(defined in [Wag86] and studied by several authors) consists of the union of
the complexity classes PP, PPPP, PPPPPP

, . . . . (Note that this is equal to
the union of the classes C=P, C=PC=P, C=PC=PC=P

, . . . .) In Section 2, we
present models of computation (similar to alternating Turing machines) such
that polynomial time on this model characterizes ModPH (or the counting
hierarchy), while logarithmic time characterizes ACC0 (or TC0, respectively).

1.2 Statement of the main results

A recent paper by Caussinus, McKenzie, Thérien, and Vollmer [CMTV98]
shows that ACC0 is properly contained in ModPH, and TC0 is properly
contained in the counting hierarchy. The proof given by [CMTV98] uses
“leaf languages” as a tool and does not explicitly present a lower bound for
any language in ModPH or in the counting hierarchy. The present work
began as an attempt to discover if these techniques could be used to find
an explicit lower bound. This attempt was only partially successful. For
each given language A in ModPH, it is still an open question whether A
has polynomial-size uniform ACC0 circuits. The proof in [CMTV98] shows
only that there exists a set in ModPH that requires superpolynomial-size
ACC0 circuits; the present work gives a very simple direct proof of this same
separation, but with the improvement that “superpolynomial” is replaced by
“sub-subexponential.”

In contrast, we are able to give explicit lower bounds on the uniform
threshold circuit size required for many problems in the counting hierarchy.
Although we are able only to show that some set exists in the counting
hierarchy that requires more than sub-subexponential-size uniform threshold
circuits, we can obtain explicit lower bounds if we weaken the size bound
only slightly.

Recall that a function t is sub-subexponential if t(2)(n) = 2no(1)
, where t(k)

denotes t composed with itself k times. We obtain a smaller class of functions
if we impose the harsher restriction that for all k, t(k)(n) = o(2n), but there
seem to be no natural functions of interest that satisfy the former condition
but not the latter. In particular, functions t such as 2logk n and 2(log n)k log log n

satisfy the condition that for all k, t(k)(n) = o(2n).
The main result of this paper can now be stated.
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Main theorem (Theorem 4) Let A be hard for C=P under ≤TC0

T reducibil-
ity, and let t be a function such that for all k, t(k)(n) = o(2n). Then A 6∈
TC0(t(n)).

The notion of ≤TC0

T reducibility is defined as follows. Let A and B be
subsets of {0, 1}∗. Then A ≤TC0

T B if there is a uniform family of polynomial-
size constant-depth circuits with MAJORITY gates and oracle gates for B,
accepting A. (This is a natural adaptation of the notion of AC0 reducibility
studied in [Wil90] and elsewhere.)

In particular, all sets that are currently known to be complete for PP
require threshold circuits of this size, because all such sets currently known
are in fact complete under many-one reductions computable in uniform AC0.

Corollary 1 The permanent cannot be computed by uniform constant-depth
threshold circuits of size t(n) if, for all k, t(k)(n) = o(2n).

Proof It was shown in [Zan91] (see also comments in [AG94]) that the set
{(x, i, b) | the ith bit of PERMANENT(x) is equal to b} is hard for C=P
under AC0 reducibility (with only one query). Thus Theorem 4 applies. 2

In contrast, some of the functions that are shown to be #P-complete
in [Val79] are shown to be complete only under polynomial-time Turing re-
ducibility; for example, we have not checked to see if the problem of counting
the number of (possibly imperfect) matchings in a bipartite graph is hard
for C=P under ≤TC0

T reducibility (although we suspect that this is the case),
and until this is established, the lower bounds of this paper are not known
to hold for this problem. Similarly, the functions that are shown by Toda in
[Tod94] to be complete for FP#P are not immediately known to require large
threshold circuits; it first needs to be established that they are hard for C=P
under TC0 reductions.

2 Machine models

We assume the reader is familiar with nondeterministic oracle Turing ma-
chines. Given natural number m and oracle A, ModmPA is the class of
languages B such that, for some nondeterministic polynomial-time Turing
machine M , x is in B if and only if the number of accepting computations
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of MA on input x is a multiple of m. Then the class ModPH is defined to be
the smallest class of languages containing P and with the property that if A
is in ModPH, then so are NPA and ModmPA for every natural m. ModPH
has been studied by several authors (see, for example, [GKR+95]).

It is useful to have a model of computation characterizing ACC0 and
ModPH, in the same way that alternating Turing machines characterize both
AC0 and the polynomial hierarchy. The appropriate model of computation
was defined in [AG94] as a variant of alternating Turing machines. We refer
the reader to [AG94] for detailed definitions; for the purposes of this paper
it suffices for the reader who is familiar with alternating Turing machines
to consider the most natural way of augmenting the usual existential and
universal states of an alternating Turing machine, by adding Modm states.
(Intuitively, a Modm configuration C of an alternating Turing machine is
accepting if and only if i is a multiple of m, where i is the number of accepting
configurations that are reachable from C and are at the start of the next
“alternation level.”)

Let a signature σ be a finite string from {∀, ∃, Mod2, Mod3, Mod4, . . .}∗.
For any alternating Turing machine making O(1) alternations, each path in
the alternating tree of the machine on any input x has a signature given by
the sequence of types of states the machine enters. If M is an alternating
machine such that, on all inputs x, all paths have the same signature σ, then
M is said to be a σ machine. For instance, the signature of a Σ2 machine is
∃∀, and the signature of a typical machine accepting a language in NP⊕PMod7P

is ∃Mod2Mod7. Let σtime(t(n)) denote the class of languages accepted by σ
machines running in time t(n). The technical lemmas in [AG94] essentially
prove the following proposition.

Definition 2 Let us call a function f constructible if f(n) = 2g(n), where the
binary representation of g(n) can be computed from the binary representation
of n in time O(g(n)).

Proposition 1 Let 2t(n) be a constructible function, t(n) = Ω(log n). Then
uniform ACC0(2O(t(n))) =

⋃
σ σtime(O(t(n))).

It turns out to be useful to us to note that a “tape reduction theorem”
holds for σ machines. (In some ways, this can be viewed as a generalization
of [PPR80].)
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Proposition 2 Let σ be any nonempty signature. If a set is accepted in
time t(n) by a σ machine with k worktapes, then it is also accepted in time
O(t(n)) by a σ machine with two worktapes.

Proof Given a k-tape σ machine, follow the construction in [AG94] and
build an ACC0 circuit, such that σ is the sequence of types of gates encoun-
tered in a root-to-leaf path. (Note that if the signature σ is in {∀, ∃}∗, then
this is actually an AC0 circuit.) In the construction given in [AG94], the de-
terministic linear-time machine that checks the uniformity condition needs k
tapes. Let us briefly explain: The gates of the circuit are labeled with config-
urations of the σ-machine at points in the computation when an alternation
is made, and the labels also include a sequence of bits denoting the path
in the alternation tree that leads from the first configuration to the second.
The output gate of the circuit is labeled with the start configuration of the
σ machine. In order to determine what gates are connected, the “uniformity
machine” needs only to simulate the σ-Turing machine along that path; if
the σ-machine has k tapes, then the uniformity machine has k tapes, too.

However, suppose we change the naming convention for the gates in the
circuit in order to utilize the original tape-reduction proof for nondeterminis-
tic machines in [BG70]. Then we can make do with a two-tape deterministic
machine checking the uniformity condition. That is, let M1 be the k-tape
uniformity machine for the original circuit family. If the original circuit has
gates g and h, where there is an edge in the circuit from h to g—corresponding
to a computation path of the σ machine from g to h—then the new circuit
has gates (g, u) and (h, uv), where v is a string of length t(n) recording the
reading from each of the k heads of the uniformity machine M1 in the com-
putation of length t(n), which verifies that h is connected to g. Since there
are only O(1) alternations of the σ-machine, and hence the circuit has depth
O(1), the label size is still O(t(n)) bits, and thus the circuit size is still 2O(t(n)).

Now given a uniform σ-circuit family where the uniformity condition is
checked by a two-tape machine, the construction in [AG94] yields a two-tape
σ-machine accepting the original language. 2

Similarly, we find it very convenient to have a single model of computation
that is sufficient for describing both TC0 and the counting hierarchy. Such
a model is described in [PS88]. In the model, which is called a “threshold
Turing machine,” TC0 corresponds to O(log n) time and O(1) uses of the
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threshold operation, and the counting hierarchy corresponds to polynomial
time and O(1) uses of the threshold operation. The characterization of the
counting hierarchy in terms of threshold Turing machines is given in [PS88],
but the corresponding characterization of TC0 is not presented there (since
[PS88] predates the uniformity considerations of [BIS90]). It does not seem
to have been published anywhere else. Although [BIS90] does give many
equivalent characterizations of TC0, the threshold Turing machine model is
not mentioned in [BIS90]. Nonetheless, the proof of the following proposition
is quite standard and follows along the lines of related results in [PS88,
BIS90].

Proposition 3 Let t(n) be a constructible function, t(n) = Ω(log n). Then
the following classes are equal:

1. Uniform threshold circuit depth(O(1)), size(2O(t(n)))

2. Threshold Turing machine time(O(t(n))), thresholds(O(1)).

As is the case with the σ machines considered above, the threshold Turing
machines also enjoy a tape-reduction property, proved in essentially the same
way. If a set is accepted in time t(n) by a k-tape threshold Turing machine,
it is accepted in time O(t(n)) by a two-tape threshold Turing machine.

The lower bounds presented in this paper do not depend on this tape
reduction, but the statement of Theorem 1 is simplified by taking advantage
of the tape reduction.

3 Diagonalization

It is important to note that the techniques used to prove the nondeterminis-
tic time hierarchy (originally proved in [SFM78]; we use the very simple and
general version proved by Žák [Ž83]) can be used to prove analogous hier-
archies for other computational models defined in terms of nondeterministic
Turing machines (with a fixed bound on the number of worktapes). In par-
ticular, an essentially word-for-word translation of the proof in [Ž83] shows
the following.

Theorem 1 Let 2T be constructible. Then there is a set B in σtime(T (n))
such that, for all t with t(n + 1) = o(T (n)), B is not in σtime(t(n)). Also,
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there is a set D in threshold Turing machine time(O(T (n))),thresholds(k)
such that, for all t with t(n + 1) = o(T (n)), D is not in threshold Turing
machine time(O(t(n))),thresholds(k).

Proof For completeness, we present the main outline of the proof. Let
M1, M2, . . . be an enumeration of two-tape σ-machines (threshold machines,
respectively). Let f be a rapidly growing function such that time T (f(i, n, s))
is enough time for a deterministic machine to compute the function

(i, n, s) 7→
{

1 if Mi accepts 1n in ≤ s steps
0 otherwise.

Note that letting f(i, n, s) be greater than T−1(22i+n+s
) is sufficient; it is

important in our setting to handle sublinear functions T .
Now divide Σ∗ into regions, so that in region j = (i, y), we diagonalize

against machine Mi, thus ensuring that each machine is considered infinitely
often. The regions are defined by functions start(j) and end(j), defined as
follows: start(1) = 1, start(j +1) = end(j)+1, where end(j) = f(i, start(j),
T ( start(j))) (where j = (i, y)). The important point is that, on input 1end(j),
a deterministic machine can, in time T , determine whether Mi accepts 1start(j)

in less than or equal to T ( start(j) − 1) steps. By picking f appropriately
easy to invert, we can guarantee that, on input 1n, we can in time T (n)
determine which region j contains n.

Now it is easy to verify that the following routine can be computed in
time T (n) by a σ-machine (or a threshold machine, respectively). In the
pseudocode below, U is a “universal” σ-machine (or threshold machine) with
four tapes, which is therefore able to simulate one step of machine Mi in about
i3 steps.

1. On input 1n, determine which region j contains n. Let j = (i, y).

2. If n = end(j), then accept if and only if Mi does not accept 1start(j) in
≤ T ( start(j)− 1) steps.

3. Otherwise, accept if and only if U accepts (i, 1n+1) in ≤ T (n) steps.
(Here, it is important that we are talking about T (n) steps of U , which
may be only about T (n)/i3 steps of Mi.)
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Let us call the set defined by the preceding pseudocode A. Clearly, A is
in σtime(T (n)). We now claim that is is not in σtime(t(n)).

Assume otherwise, and let Mi be the σ machine accepting A in time t(n).
Let c be a constant such that i3t(n + 1) < T (n) for all n ≥ c. Let y be
a string of length greater than or equal to c, and consider stage j = (i, y).
Then for all n such that start(j) ≤ n < end(j), we have 1n ∈ A if and only
if 1n+1 ∈ A. However, this contradicts the fact that 1start(j) ∈ A if and only
if 1end(j) 6∈ A. 2

4 Nonconstructive lower bounds

Once the definitions are in hand, the proof is now quite straightforward.

Theorem 2 Let t be a constructible sub-subexponential function. Then there
exist sets A in ModPH requiring size greater than t(n) to compute on uniform
ACC0 circuits.

Proof Let t be given. Let C be a set complete for P under Dlogtime-uniform
projections. A “projection” is a function computable by a circuit with no
gates other than NOT gates. A projection is Dlogtime-uniform if the circuit
satisfies the usual Dlogtime-uniformity conditions. For more background and
motivation, see [ABI97]. For instance, the standard complete set {(i, x, 0j) :
Mi accepts x in time j} is a good choice for C. The proof consists of two
cases:

• C requires size greater than t(n) to compute on uniform ACC0 circuits.
In this case, of course there is nothing to prove.

• C can be computed by uniform ACC0 circuits of size t(n). Since t is con-
structible, let g be the function such that t(n) = 2g(n). In this case, it
must happen that there is some σ such that ACC0 is in σtime(g(nO(1))),
because uniform circuits for any set reducible to C can easily be con-
structed from the ACC0 circuits for C.

Now standard translational techniques can be used to show that for any
signature τ , τtime(g(n)) is contained in σtime(g(t(n)O(1))). To see this, con-
sider any language A in τtime(g(n)). Let A′ = {x10j : j + |x| + 1 = t(|x|)
and x ∈ A}. Our constructibility assumptions on t ensure that A′ is in ACC0
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and, hence, is in σtime(g(nl)) for some l. Let M be this g(nl)-time-bounded
σ machine accepting A′. The σ machine M ′ that, on input x, simulates M
on input x10t(|x|)−|x|−1 runs in time g(t(n)l).

Since t is sub-subexponential, 2nε
> t(t(n)l) = 2g(t(n)l) and thus g(t(n)l) =

o(n). Thus it follows from Theorem 1 that there is a set B in σtime(n) (and
hence in ModPH) such that, for all l, B is not in σtime(g(t(n)l)) Therefore,
B is not in τtime(g(n)) and does not have uniform ACC0 circuits of size
t(n). 2

It is important to note that, because of the nonconstructive nature of
the proof of this theorem, the proof offers no clue as to what set in ModPH
has large ACC0 circuits. An essentially identical proof yields the following
theorem.

Theorem 3 Let t be a constructible sub-subexponential function. Then there
exist sets A in the counting hierarchy requiring size greater than t(n) to com-
pute on uniform threshold circuits.

5 Main result

Theorem 4 Let t be a constructible function such that for all k, t(k)(n) =
o(2n). Let A be any set that is hard for C=P under ≤TC0

T reductions. Then A
cannot be computed by uniform constant-depth threshold circuits of size t(n).

Proof Assume otherwise. Then we can show that for every set B in the
counting hierarchy, there is some k such that B has uniform constant-depth
threshold circuits of size T (n) = t(k)(n). But since T (T (n)) = 2no(1)

, this
contradicts Theorem 3. For the purposes of this proof, define CH1 to be
C=P, and for i > 1, define CHi to be C=PCHi−1 .

First note that, under the assumption, C=P has circuits of size

t(nO(1))nO(1) = O(t(t(t(n)))).

The circuit consists of a polysize TC0 reduction from the C=P set to A, where
the oracle gates are replaced by circuits for A. Here, we assume without loss
of generality that t(n) ≥ nlog n. Otherwise, we can take t′ to be the maximum
of t(n) and nlog n.
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Now assume that all sets in CHi have uniform constant-depth circuits of
size O(t(4i)(n)), and consider a set A ∈ CHi+1. Thus there is some nondeter-
ministic machine M and a set D ∈ CHi such that MD has exactly as many
accepting paths as rejecting paths on input x if and only if x ∈ A. The set
{(x, C) : M has exactly as many accepting paths as rejecting paths on input
x, when all oracle queries are answered according to the circuit C} is in C=P
and, by the basis case, has circuits of size t(t(t(|(x, C)|))). When we replace
C by the circuit for A that exists by inductive hypotheses, we obtain a circuit
of size less than or equal to t(3)(n + t(4i)(n)) ≤ t(4(i+1))(n). 2

We do not know how to prove an explicit lower bound for any problem
in ModPH that would be analogous to Theorem 4. It is easy to observe, by
the same proof techniques, the existence of a set that is complete either for
NP or for ModpP for some prime p that requires large ACC0 circuits. Thus,
in order to find a set that is not in ACC0, one need not consider anything
beyond one of the “bottom” levels of ModPH. However, unlike the counting
hierarchy, there are infinitely many such bottom levels in ModPH.

6 More separations

From the foregoing, we know that TC0 is properly contained in C=P (and
hence is properly contained in PP). Note, however, that C=P is not known
(or expected) to have circuits of less than exponential size. It is natural to
ask if exponential size is necessary in order to find a language that is not in
TC0. In this section we show that it is not necessary; smaller size is sufficient
in order to define languages that are not in TC0. (On the other hand, merely
having superpolynomial size is not known to be sufficient.) First we make a
simple observation.

Proposition 4 For all ε > 0, ACC0 is properly contained in

(DTIME(nε) ∪ ⋃
σ σtime(log n log∗ n)).

Proof By standard padding methods, it is easy to construct a set A ∈
DTIME(nε) that is complete for P under projections. This set A is thus also
hard for ACC0 under projections. If A is not in ACC0, then this yields the
desired conclusion.
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Otherwise, A is in ACC0 and is therefore in σtime(O(log n)) for some
σ. Since σtime(O(log n)) is closed under projections, it follows that ACC0

is equal to σtime(O(log n)). By diagonalization, we obtain that ACC0 is
properly contained in σtime(O(log n log∗ n)). 2

An identical proof yields the following.

Proposition 5 For all ε > 0, TC0 is properly contained in

(DTIME(nε) ∪ TC0(nO(log∗ n)).

(By essentially the same argument, we obtain that TC0 is properly con-
tained in NC1 ∪TC0(nO(log∗ n)).) We immediately get the following corollar-
ies, which seem only marginally better than the results of [CMTV98] showing
proper inclusion in ModPH and the counting hierarchy.

Corollary 2 Let ε be greater than 0. Then

ACC0 is properly contained in ACC0(2nε
).

TC0 is properly contained in TC0(2nε
).

But now we use the technique of [ABHH93] to get a better separation.

Lemma 1 Let S be a constructible function such that S(n) ≥ n. If ACC0

= ACC0(S(n)), then ACC0 = ACC0(S(S(n))).

Proof Let A be any set in σtime(O(log S(S(n)))). Since a constructible
function S(n) is of the form 2g(n), this means that A is in σtime(O(g(S(n)))).
Let A′ be the padded version {x10S(|x|)−|x|−1 : x ∈ A}. Our assumption
implies that A′ is in ACC0 and, thus, is in σ′time(O(log n)) for some σ′. This
in turn implies that A is in σ′time(O(log(S(n)))) and, thus, by assumption,
is in ACC0. 2

Corollary 3 Let T be a constructible function such that, for some k and all
large n, T (k)(n) > 2n, where T (k) is T composed with itself k times. Then

ACC0 is properly contained in ACC0(T (n)).

Corollary 4 Let T be a constructible function such that, for some k and all
large n, T (k)(n) > 2n. Then

TC0 is properly contained in TC0(T (n)).
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7 Conclusions and open problems

It is often harder to ask the right question than to answer that question.
In [AG94] we presented lower bounds on the uniform circuit complexity of
certain problems in PSPACE, and we did not see any way to prove lower
bounds on the ACC0 circuit complexity of any given problem in ModPH.
Given the inspiration of [CMTV98], it is easy to give a direct proof showing
that there exist sets in ModPH having large ACC0 circuit complexity, without
giving lower bounds on any specific set in ModPH.

This same technique, when taken one step further, provides explicit lower
bounds for many specific problems in the counting hierarchy, including the
complete sets for C=P, PP, and several functions complete for #P.

An obvious question is whether the sub-subexponential lower bounds giv-
en here and in [AG94] can be improved to exponential lower bounds. The
lower bounds presented here for C=P, PP, and the permanent are incompa-
rable with the bounds presented in [AG94]; the bounds presented here are
for more powerful circuits (threshold circuits as opposed to ACC0 circuits),
but the size bounds presented here are not as large as in [AG94]. It seems
unlikely that the bounds presented here are optimal; probably exponential
size is required for all of these problems.

Of course, an even more desirable step would be to prove directly that
MAJORITY requires exponential size for ACC0 circuits. The so-called nat-
ural proofs framework of [RR97] indicates that many lower bound proofs
may be quite difficult to obtain. However, since ACC0 is a very limited class
in many respects (and, in particular, it is not clear that one should expect
pseudorandom generators to be computable in ACC0), it is not clear that
lower bounds for ACC0 should be hard to obtain.
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