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Abstract

We present description and analysis of a novel orthogonal accuracy
clock synchronization algorithm (OA), which takes care of both pre-
cision and accuracy with respect to external time. It is based upon
the generic algorithm introduced in [SS97a] and utilizes a convergence
function based on Marzullo’s fault-tolerant intersection function. As
far as precision is concerned, we show that OA has the same worst-
case performance as the well-known fault-tolerant midpoint algorithm
of [LWL88]. However, relying upon a perception-based hybrid fault
model and a fairly realistic system model, our results are valid for a
wide variety of node and link faults and apply to very high-precision
applications as well: Impairments due to clock granularity and dis-
crete rate adjustment cannot be ignored here anymore. Our accuracy
analysis focuses on the nodes’ local accuracy interval, which provides
the application with an on-line bound on the current deviation from
external time. We show that this bound could get larger than twice
the necessary lower bound (“traditional accuracy”), hence OA is def-
initely suboptimal in this respect.

1 Introduction

Modern distributed systems usually run applications that rely on a global no-
tion of time. Indeed, most algorithms for (fault-tolerant) distributed systems
are considerably simplified and improved with respect to performance when
mutually synchronized clocks are available ([Lis93]). In addition, since time
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rules daily life and hence most commercial computer applications, a well-
defined relation between system time and external standard time Universal
Time Coordinated (UTC) becomes increasingly important as well.

Ignoring non-fault-tolerant solutions based on centralized clocks, the usual
approach is to equip each node p of a distributed system with a local clock
Cp(t) that continuously displays p’s view of system time. Providing mutually
synchronized (“precise”) local clocks is known as the internal synchroniza-
tion problem, and numerous solutions have been worked out under the term
fault-tolerant clock synchronization, see [YM93] for a bibliography. Providing
mutually synchronized clocks that also relate to UTC (being “accurate” as
well) is usually termed the external synchronization problem, due to the fact
that UTC is provided externally to the system. A comprehensive collection
of papers describing recent efforts in this area may be found in [Sch97b].

Among those is our research on clock validation introduced in [Sch95],
which approaches the external synchronization problem by verifying whether
the usually highly accurate (but possibly faulty) “authoritative time” pro-
vided by UTC time sources is consistent with the less accurate (but reliable)
“validation time” formed by exchanging the information of all the local clocks
in the system. If so, the authoritative time is accepted —if not, it is discarded
and the nodes rely upon the validation time instead. The latter situation is
encountered in case of failures1 or unavailability of time information from
UTC time sources, where clock validation obviously “degenerates” to pure
internal synchronization. Therefore, the clock synchronization algorithm em-
ployed for computing the validation time must not only ensure precision but
has to maintain high accuracy as well.

Traditional internal synchronization algorithms are ill-suited for coping
with this requirement. In fact, although worst case accuracy bounds have
been provided for most existing algorithms, it is nevertheless true that a
static worst-case bound is not representative for the “average” execution. A
promising alternative are interval-based algorithms introduced in Marzullo’s
thesis [Mar84] and further exploited in [Lam87], [Mar90], [OSF92], [Sch95],
[Mil95], [BI96], [SS97a], [Sch97c], where local time at external time t is ex-
pressed as an interval that contains t. Given a set of such intervals from
different nodes, a usually smaller interval that contains t can be determined

1Our experimental evaluation ([HS97]) of the failures of six different GPS timing re-
ceivers revealed an average error probability of about 10−6, with several different failure
modes.
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by means of a suitable interval-valued convergence function. Since accuracy
bounds are maintained dynamically (“on-line”) here, they are obviously rep-
resentative for the “average” execution.

In [SS97a], we presented and analyzed a generic interval-based clock syn-
chronization algorithm suitable for computing the validation time in our
clock validation framework. According to the exposition above, it maintains
bounded precision when started from an initially synchronized state and
takes care of accuracy intervals as well. However, the algorithm is generic
in the sense that the convergence function employed for computing the clock
adjustments was left unspecified. As in [Sch86], all results (worst-case pre-
cision, accuracy, maximum adjustment, etc.) were hence expressed in terms
of a few characteristic parameters of the convergence function. In order to
determine the performance of a particular instance of the algorithm, all that
needs to be done is to evaluate the characteristic parameters and to plug
those into the generic results.

This paper provides description and detailed analysis of the orthogonal
accuracy algorithm OA obtained by employing the orthogonal accuracy con-
vergence function OA in the generic algorithm of [SS97a]. It is organized as
follows: Section 2 introduces our interval-based clock synchronization frame-
work, including the generic algorithm (Subsection 2.1 and Appendix B),
the generic precision analysis (Subsection 2.2 and Appendix C), and the
perception-based hybrid fault model (Subsection 2.3). Section 3 is devoted
to an in-depth investigation of Marzullo’s functionM, which plays a central
role in the analysis of OA in Section 4 and Appendix A. Our major results,
namely, worst-case bounds for accuracy and precision of OA, are provided in
Section 5. Some conclusions in Section 6, an appended road-map showing the
interdependency of the major parts of the analysis, and a glossary eventually
round off the paper.

2 Interval-based Clock Synchronization

The core idea of the interval-based paradigm introduced in [Mar84] is to rep-
resent real-time (= external time) t not just by a time-dependent local clock
value C(t), but rather by a local interval clock C(t) = [C(t)− α−(t), C(t) +
α+(t)]. Any C(t) must be maintained appropriately to secure the accurate-
ness property t ∈ C(t), which is of course increasingly meaningful if α(t)
becomes small. Note carefully that an interval, that is, a range of values

3



where t could lie, is the best deterministic information one can get in prac-
tice, since the exact value of t is usually not known explicitly: Even the
1 pulse-per-second (1pps) output of a GPS timing receiver, which indicates
something like “now it is 10:00,” actually means “the real-time when the
1pps signal actually occurred lies somewhere within 10:00 ± 150 ns,” ( see
[Dan97], [HS97]).

Interval clock readings A = [T − α−, T + α+] = [T ± α] taken at some
fixed real-time t0, that is, A = C(t0), as well as intervals derived from those
by means of the basic operations introduced in Subsection 2.1, are called
accuracy intervals . They are the basic units of information processed by
interval-based clock synchronization algorithms and disseminated via mes-
sages, and consist of A’s reference point (logical time2) T and its interval
of accuracies α taken relatively to the reference point. Note carefully that,
given some A = [T ±α] representing real-time t, we can never assume T = t,
and not even t ∈ A if and only if A is not accurate, that is, faulty.

2.1 Generic Algorithm

The system model of [SS97a] assumes a distributed system consisting of
n nodes, which communicate with each other by message passing over a fully
connected point-to-point or broadcast network. Each node is equipped with
a processor (with integer arithmetic only) for executing the clock synchro-
nization algorithm, a network interface, and a local interval clock Cp(t) that
continuously displays p’s local accuracy interval. Consult [SKM+00] for de-
tails of an advanced prototype implementation based upon our Network Time
Interface M-Module.

An interval-based clock synchronization algorithm is in charge of main-
taining Cp(t) in a way that secures the following properties:

(P) Precision requirement : There is some fixed precision πmax ≥ 0 such
that |Cp(t)− Cq(t)| ≤ πmax for all nodes p, q that are non-faulty up to
real-time t.

(A) Accuracy requirement : The interval of accuracies αp(t) is such that
−α+

p (t) ≤ Cp(t) − t ≤ α−p (t) for all nodes p that are non-faulty up to
real-time t.

2Note that we employ the usual notation of lower case letters like t for real-time values
and upper case letters like T for logical time ones.
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Note that we restrict our attention to α+
p (t), α−p (t) = O(t), with the implied

constant3 M being (much) smaller than 1. This forces Cp(t) to be within
a linear envelope of real-time, thereby excluding “degenerated” cases like
Cp(t) ≡ 0, (see [DHS86]).

The generic interval-based clock synchronization algorithm of [SS97a] (re-
stated as Definition 9 in Appendix B) employs the usual round-based struc-
ture of traditional internal synchronization algorithms. Starting from an
initially synchronized state, where (P) and (A) is somehow enforced, any
node periodically executes the following steps whenever its local clock reads
kP , k ≥ 1:

1. Initiation of a full message exchange (FME) to provide each node with
the accuracy intervals of all other nodes in the system.

2. Preprocessing of the set of received accuracy intervals to make them all
“compatible”, that is, represent the same real-time.

3. Application of a suitable interval-valued convergence function to the set
of preprocessed intervals to compute and subsequently apply a clock
correction upon Cp(t) for resynchronization.

4. Keeping track of real-time by means of Cp(t) up to the next resynchro-
nization.

The algorithm relies upon two basic operations called drift compensation
and delay compensation. Drift compensation —required in Step 2 and 4
of the algorithm— allows to shift (“drag”) an accuracy interval in time by
means of the local clock while maintaining accurateness of the resulting in-
terval. Since the local clock can drift with respect to real-time, this requires
sufficient enlargement (“deterioration”) of positive and negative accuracy ac-
cording to [SS97a, Def. 5]. The following Figure 1 shows an example of drift
compensated intervals based upon some initial interval A0 = [T0 ± α] rep-
resenting t0, which is of course assumed to be accurate (hence t0 ∈ A0).
This initial accuracy interval is then dragged to real-times ti characterized
by, say, C(ti) = Ti = T0 + i∆T for some fixed ∆T , i ≥ 1, leading to accuracy
intervals Ai = A0 + [i∆T ± i∆Tρ]. We assume a fast but deaccelerating
clock with a maximum drift ∈ [−ρ, ρ] here and ignore advanced issues like
clock granularity and discrete rate adjustment uncertainty for simplicity. For

3Throughout this paper, we use the O(·)-notation to characterize the order of mag-
nitude of neglected terms. An expression like α−p (t) = O(t) means that there is some
(reasonably small) fixed constant M > 0 such that |α−p (t)| ≤M |t|.
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accurateness, deterioration must ensure that any Ai intersects with the line
T = t.

-
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Figure 1: Example of drift compensation in case of a fast but deaccelerating
clock with maximum drift ∈ [−ρ, ρ]. Proper deterioration ensures intersection
with the line t = T .

The delay compensation operation employed in Step 2 of the algorithm
maintains accurateness of intervals that are transmitted over a network ex-
periencing variable transmission delays δ′ ∈ [δ ± ε], with δ denoting the
deterministic part of the delay. As before, positive and negative accuracy
must be enlarged according to [SS97a, Def. 6] to account for the maximum
uncertainty in transmission delay ε. This is illustrated in Figure 2, where
it is assumed that the actual transmission delay is δ′ > δ and the sender
node p’s clock is drift-free, that is, progresses as real-time does.

The middle time axis represents real-time, whereas the upper and lower
one show local time at node p and q, respectively. A line connecting two
points at different axes, like Tp and tp, indicates the “represents” relation;
since Ap is assumed to be accurate, we must have tp ∈ Ap here. When
interpreting Figure 2, one should consider the intervals Ap and Ap

q as “fixed”
(since they do not depend upon the actual transmission delay δ′), whereas
the reception time tpq and hence the interval A′p vary with δ′. It is apparent
that tpq ∈ Ap

q is always maintained if tpq remains within the dash-boxed region
of the t-axis, that is, if δ′ ∈ [δ ± ε].

Together, drift compensation and delay compensation are employed to
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Figure 2: Example of delay compensation when sending I from node p to q.
The received interval must be enlarged by ε to secure accurateness.

make all received intervals compatible, that is, represent a common real-
time tRq : For an accuracy intervalAp sent by node p 6= q at real-time tp, delay
compensation is applied to provide the receiver q with an interval Ap

q that
covers the sender’s current accuracy interval at the real-time of reception tpq .
This interval Ap

q is then dragged locally by means of the receiver’s clock
to some (common) point in real-time tRq defined by Cq(t

R
q ) = TRq , requiring

an appropriate drift compensation to obtain the final accuracy interval Ipq .
Provided that TRq is chosen large enough to ensure that the intervals of all
non-faulty nodes can be received and processed, it follows by construction
that Ipq is accurate if (1) Ap was accurate, (2) transmission delay was not
excessive, and (3) the receiver q is not faulty.

Finally, a suitable convergence function is applied to the set Iq of node q’s
intervals Ipq in Step 3, which provides a (small) interval that both contains
real-time tRq (that is, is accurate) and enhances precision —despite some
possibly faulty Ipq ’s. Fortunately, only a few properties of the convergence
function are actually required for predicting the entire clock synchroniza-
tion algorithm’s worst-case performance. Hence, the appropriate analysis in
[SS97a] was conducted for a generic convergence function CV , which can be
any interval-valued function that satisfies certain properties stated in Defi-
nition 11 in Appendix C.
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2.2 Generic Precision Analysis

Since all operations used in our interval-based clock synchronization algo-
rithm, namely, drift compensation, delay compensation, and finally applica-
tion of the convergence function, are explicitly designed to preserve accurate-
ness of the intervals involved, it is clear that accurateness of the local interval
clocks Cp(t) of all non-faulty nodes is maintained during all rounds. Apart
from the requirement of being accurate, which is a property of any single ac-
curacy interval, however, we also have the precision requirement that applies
to (the reference points of) a set of accuracy intervals. Precision and accu-
racy are in fact almost4 independent of each other, since the reference point
can in principle be placed arbitrarily within the accuracy interval. In the
remainder of this section, we will briefly sketch the interval-based precision
analysis framework established in [SS97a].

To that end, we first introduce the basic notation used throughout the
paper: Our elementary objects are real intervals I = [x, y], x ≤ y, with lower
edge x = left(I) and upper edge y = right(I); the empty interval ∅ satisfies
6 ∃t : t ∈ ∅. For an interval I = [x, y], |I| = y − x denotes its length and
center(I) = (x + y)/2 its centerpoint . The sum of two intervals is defined
by [x, y] + [u, v] = [x + u, y + v], the scalar product by s · [x, y] = [sx, sy]
for s ≥ 0, and the translation by I + a = I + [a, a] = [x + a, y + a] for
some arbitrary scalar a. For two intervals [x, y], [u, v], the intersection is
[x, y] ∩ [u, v] = [max{x, u},min{y, v}] if u ≤ y, v ≥ x, and ∅ otherwise; the
union reads [x, y]∪[u, v] = [min{x, u},max{y, v}]. Note that the definition of
the union is also valid for [x, y]∩ [u, v] = ∅, hence incorporates the closure of
two disjoint intervals as well. Note that both intersection and union extend
to a scalar operand in the obvious way, that is, [x, y] ∪ u = [x, y] ∪ [u, u].

Accuracy intervals, as introduced at the beginning of this section, are
intervals extended by a distinguished reference point r, which partitions the
interval into a negative accuracy α− and a positive accuracy α+ according to

A = [r ±α] = [r − α−, r + α+]. (1)

Herein, ref(A) = r denotes A’s reference point, α = [−α−, α+] its interval of
accuracies , and α = |α| = α+ + α− its length. Note that we use bold letters
likeA for both ordinary intervals and accuracy intervals, since its actual type

4They are not totally independent, as the computed reference point could lie outside
the accuracy interval, see Figure 6.
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is usually clear from the context. Similarly, calligraphic bold letters like A
are used to denote a set of intervals or accuracy intervals.

For accuracy intervals I = [r ± α] and J = [s ± β], we have left(I) =
r−α−, right(I) = r+α+, |I| = α+ +α− = α, center(I) = r+ (α+−α−)/2,
I+J = [r+s±γ] where γ = α+β = [−(α−+β−), α++β+], I+a = [r+a±α]
for an arbitrary scalar a, and sI = [sr ± µ] with µ = sα = [−sα−, sα+] for
any scalar s ≥ 0. Finally, there is also a notation to express intervals obtained
from (1) by swapping its positive and negative accuracy, namely

I = [r ±α] = [r ∓α] = [r − α+, r + α−] = [r ±α] (2)

where α = [−α+, α−] = −α.

Definition 1 (Interval Relations [SS97a, Def. 1]) Accuracy intervals are
categorized as follows:

1. Two accuracy intervals I = I(t1) representing t1 and J = J(t2) repre-
senting t2 are compatible if and only if t1 = t2.

2. Two compatible accuracy intervals I and J are consistent if and only
if I ∩ J 6= ∅.

3. An accuracy interval I = I(t) representing real-time t is accurate if
and only if t ∈ I.

Note that compatibility of two accuracy intervals means that they are com-
parable, that is, represent the same real-time. Bear in mind, however, that
the “represents” relation implies neither consistency nor accurateness in case
of faulty accuracy intervals.

The following definition of π-precision is a key for our interval-based
precision analysis. The underlying idea is to capture precision π of two
clocks Cp(t) and Cq(t), that is, |Cp(t)− Cq(t)| ≤ π, by means of consistency
of suitably constructed precision intervals.

Definition 2 (Precision Intervals [SS97a, Def. 2]) Given some fixed π
= [−π−, π+] with π−, π+ ≥ 0 and π = |π| = π− + π+, and a set of n ≥ 2
compatible accuracy intervals I = {I1, . . . , In} with Ij = [rj ± αj], the π-

precision interval Îj associated with Ij is defined as Îj = [rj ± π]. The set

I is called π-precise if and only if
⋂n
j=1 Îj 6= ∅.
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Figure 3 shows two accuracy intervals along with their associated pre-
cision intervals. Note carefully that associated π-precision intervals are not
maintained “online,” as are accuracy intervals, but rather computed from the
reference points by adding the “static” values of −π−, π+ provided by the
analysis. That is, it is sufficient for the clock synchronization algorithm to
dynamically maintain the interval of accuracies and its reference point only.

Item (2) of the following Lemma 1 reveals that π-precision implies (tra-
ditional) precision π = |π|. Its assertions are quite trivial, as can be seen
from the associated precision intervals shown in Figure 3.

Lemma 1 (π-Precision vs. Precision) Given a π-precise set I = {I1,
. . ., In} of n ≥ 2 compatible accuracy intervals Ij = [rj ±αj], then

1. |Î i ∪ Îj| ≤ 2π for any 1 ≤ i, j ≤ n,

2. |ri − rj| ≤ π for any 1 ≤ i, j ≤ n.

Proof See [SS97a], Lemma 3. 2

Although the definition of π-precision is a key for our precision analysis,
there are only a few occasions where π-precise intervals are encountered
explicitly. In most cases, the slightly stronger predicate of π-accurateness
(implying π-precision) is used, which is based on a suitable notion of an
internal global time τ = τ(t). More specifically, it was shown in [SS97a] that
it makes sense to stipulate an “artificial” internal global time τ k = τ k(t) =
τ k0 + (t − tk0) for each round k that progresses as real-time does. Herein, tk0
denotes the real-time when round k commences, and τ k0 = τ k(tk0) represents
τ k’s initial offset with respect to real-time. Like real-time, internal global
time is not directly accessible, and usually τ k(t) 6= t. However, internal global
time of any fixed round is equivalent to real-time for specifying durations,
and we can unambiguously write Î = Î(t) = Î(τ k) for τ k = τ k(t), meaning
that Î represents τ k(t) if and only if I represents t.

The concept of internal global time makes it possible to define an analogue
to accurateness as follows.

Definition 3 (π-correctness [SS97a, Def. 3]) For π = [−π−, π+] with
π−, π+ ≥ 0,

1. an accuracy interval I = I(t) is π-accurate (with respect to internal
global time τ k = τ k(t) of round k) if and only if the π-precision interval
Î = Î(τ k) associated with I satisfies τ k ∈ Î,
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2. an accuracy interval I is π-correct (with respect to real-time and in-
ternal global time of round k) if and only if I is both π-accurate and
accurate,

3. a set I of compatible accuracy intervals is π-correct if all members are
π-correct.

The following Figure 3 shows an example of two π-correct intervals.

t

t

tτ

� -

� -

α+
1

α+
2

π+

I1

I2

-�

-�-�

-�

-�-�

α−1

α−2

π−

π+π−

r1

r2

Î1

Î2

Figure 3: Example of two π-accurate intervals. Both accuracy intervals and
(bold) π-precision intervals are accurate with respect to t and τ , respectively.

Now we are ready to explain how the interval-based clock synchronization
algorithm outlined at the beginning of this section maintains precision. The
most important observation is that all steps of the algorithm, except the
application of the convergence function, maintain precision automatically by
maintaining accuracy. To understand why, assume that all members of the
set C(t) of non-faulty interval clocks are π0-correct at some real-time t0 in
round k, that is, their associated π0-precision intervals contain τ k(t0). In
order to capture real-time t by Cp(t), it must be deteriorated (enlarged)
appropriately to compensate for the drift of the local clock. However, if this
is done properly to ensure t′ ∈ Cp(t

′) for t′ > t0, then the associated πH-

precision interval Ĉp(t
′) captures internal global time τ k(t′) > τ k(t0) as well,

provided that πH is the result of enlarging π0 by the maximum amount any
Cq has been enlarged. This is a simple consequence of the fact that internal
global time progresses as real-time does. Note anyway that enlargement of
precision intervals is just a matter of analysis —the algorithm need not deal
explicitly with precision intervals at all.
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Whereas enlarging π0 to πH guarantees πH-correctness of all non-faulty
Cp(t

′), this cannot ensure bounded precision for t → ∞. Periodic resyn-
chronizations are required for this purpose, giving rise to our round-based
algorithm. More specifically, at the end of the kth round, the nodes’ current
πH-correct local interval clocks are set to newly computed accuracy intervals
that are π0-precise for some π0 ⊂ πH (= precision enhancement provided by
the convergence function). Note that we cannot safely assume π0-correctness
here, since it will usually happen that round k’s internal global time τ k does
not lie in the intersection of the new π0-precision intervals. However, if a
new initial offset τ k+1

0 for internal global time τ k+1(t) is defined for round
k+ 1, π0-correctness with respect to τ k+1 can of course be guaranteed. Con-
sequently, resynchronization starts the next round k+1, during which initial
precision π0 again deteriorates to πH .

Note carefully that only the interval clocks’ associated πH-precision in-
tervals experience (precision) enhancement during resynchronization. The
local interval clocks Cp itself must continuously track real-time t, so that the
accuracies could be monotonically increasing; the accuracy in round k can
in fact be viewed as an accumulation of the πH-precision intervals during
round 0, . . . , k. This eventually explains why t and τ will usually be apart,
as mentioned earlier.

Generally speaking, the major advantage of the interval-based precision
analysis developed in [SS97a]5 is conceptual beauty and considerable flexi-
bility with respect to incorporating non-standard features like clock granu-
larity, broadcast latencies, etc. This is primarily a consequence of our notion
of internal global time and π-accurateness, which allows us to reason about
precision by considering each local interval clock separately, that is, without
explicitly relating it to the other clocks in the system. Even more, there is no
need to consider the “absolute position” of intervals, that is, clock values, at
all. In fact, any information required on some I(t) = [T ±α] is provided by
its interval of accuracies α and the associated π-precision interval: Since all
(non-faulty) accuracy intervals must contain real-time t and internal global
time τ by construction, the latter ones serve as a “common reference” for
relating different intervals. Of course, the particular reference point ref(I)
may lie anywhere in [t − α+, t + α−] and [τ − π+, τ + π−], according to the
actually experienced clock drift, transmission delay, and initial accuracy, but

5Note that we provide a few extensions of the generic analysis ([SS97a]) in Appendix C,
which are used instead of the original version where required.
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there is no need for dealing with it explicitly.

2.3 Fault Model

In [SS97a], we argued that it does not make sense to stipulate a particular
fault model for the generic algorithm. After all, it is primarily the conver-
gence function that is concerned about faults. Now that we have to plug in a
particular convergence function, we have to address this issue in full detail.

We will introduce a perception-based hybrid fault model for this purpose,
which is a refinement of the “abstract fault model” suggested in [SS97a].
Conventional “global” fault models, like the one that at most f nodes may
behave byzantine, rest upon the total number of faults in the entire system.
An abstract (perception-based) fault model solely relies upon the number of
faults in (any) two non-faulty nodes’ perceptions of the system, that is, the
intervals gathered by a node in an FME. Hence, the omniscient system-wide
perception of faults is replaced by the local perceptions of (any) two non-
faulty participants in the system. This way, both node and link faults can
be accurately modeled.

As in most other work dealing with byzantine faults in distributed sys-
tems, we assume that faulty nodes and network devices can take arbitrary
steps and transmit (and “receive”) any number of arbitrary messages. We
only exclude (serious) “global” disturbance of system operation, for example:
impersonating other nodes or flooding/jamming “foreign” links respectively
the broadcast network.

A faulty sender node or link can hence affect a receiving node only by
means of the intervals Iq = {Isq : 1 ≤ s ≤ n} received and preprocessed
at any non-faulty node q during an FME, recall Subsection 2.1. Since the
precision requirement (P) only demands that any two non-faulty clocks must
satisfy |Cp(t) − Cq(t)| ≤ π, without regard to the other nodes in the system,
the pair of perceptions Ip, Iq can be considered in isolation; faulty receiv-
ing nodes (which may behave arbitrarily anyway) can entirely be ignored.
Therefore, global fault assumptions —like the one that all receivers perceive
a certain fault consistently— are not required.

Rather than on the system-wide number of faults during a round (say,
f ≤ b(n − 1)/3c), we can hence rely upon the number of faulty pairs of
intervals {Isp ∈ Ip, Isq ∈ Iq} at two non-faulty nodes p, q 6= p. It is important
to note, though, that the issue of faulty vs. correct intervals is more subtle
than it meets the eye. First of all, we cannot usually assume Isp = Isq even if
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there is no fault at all: Since we are dealing with time-dependent intervals,
transmission delays, clock granularities and drift rates usually cause Isp and
Isq to differ slightly. This fact requires special treatment in our analysis, see
Lemma 4. In addition, the above effects could lead to a perturbed and even
inconsistent perception of (sender) faults, since a faulty interval from s might
nevertheless produce a correct Isp or Isq.

From the above description, it is immediately apparent that a global fault
assumption like “at most f nodes may be byzantine” also implies “at most
f (pairs of) intervals in Ip, Iq may be byzantine,” for any non-faulty p, q.
Our perception-based fault model thus covers the corresponding global one
as well, which also reveals that the traditional impossibility results ([DHS86])
remain valid. The opposite covering, however, cannot be assumed in general
since the faulty (pairs of) intervals in two different pairs of perceptions Ip,
Iq and Iv, Iw need not originate in the same set of sending nodes.

For that reason, our perception-based fault model also allows to accu-
rately model link faults , ranging from packet losses due to unrecognized
packet headers and receiver overruns up to inconsistent timing and value
faults. Although such faults are quite likely in practice, they are difficult to
capture by means of a conventional global fault model: “Artificially” map-
ping link faults to node faults and stipulating at most f faults within the
whole system is both unnecessarily restrictive and unrealistic. A natural
model of, for example, receive omissions is to grant each receiving node a
certain maximum number of those, independently of the situation at other
nodes. Still, allowing even a single receive omission at each node could easily
eat up all sending nodes, such that all n nodes must be considered faulty in
a conventional fault model. By contrast, in our perception-based model, at
most two faulty (pairs of) intervals can show up in this case.

We start our formal definitions with possible faults of a single interval,
which is primarily required for accuracy analysis.

Definition 4 (Single Faults) An interval I representing t can suffer from
the following faults:

• Omission: Missing interval, expressed by I = ∅.

• Non-accurate interval: t 6∈ I.

• Unbounded accuracy: t ∈ I but |I| too large according to some condi-
tion (that need not be known explicitly).

14



Remarks 1. Non-accurate intervals can be caused by timing faults due to
a faulty sending node/clock or excessive transmission delays, or by accuracy
faults due to a faulty sending node/clock or a damaged message.

2. Masking or detecting, and thus ruling them out completely, unbounded
accuracy faults is impossible in most circumstances. Indeed, although it is
sometimes possible to determine the border between faulty and non-faulty
accuracy values (see Theorem 4), it is nevertheless true that even limiting
α−, α+ accordingly cannot prevent faulty nodes from considerably spoiling
the “average” behavior.

3. Whereas it is usually impossible to decide locally whether an interval
I is accurate or not, it is of course possible to detect omission faults. Hence,
given a set I of n ≥ 1 compatible intervals with f ′o ≥ 0 of them exhibit-
ing omission faults, it is trivial to discard the f ′o omissive ones from I and
to proceed with the reduced set J containing the n′ = n − f ′o non-empty
intervals only.

For our precision analysis, the single-interval faults of Definition 4 must
be complemented by faults of pairs of intervals Isp and Isq obtained at nodes p
and q, respectively, in the broadcast from a single node s. Different classes of
faults (crash/symmetric/asymmetric) will be introduced to facilitate a hybrid
fault model , (refer to [AK96], [WS00]). It will allow us to exploit the fact
that masking f symmetric faults with OA requires only n ≥ 2f+1, whereas
n ≥ 3f + 1 is needed if all faults are asymmetric ones ([DHS86]). Since a
large number of asymmetric faults is very unlikely in practice, see [Sch95],
this effectively leads to a smaller n for tolerating a given number of faults,
see (3).

The following Definition 5 exhaustively specifies all possible faults of pairs
of intervals.

Definition 5 (Pairwise Faults) A pair of compatible accuracy intervals
{Isp, Isq} originating in a single sending node s and representing real-time t
suffers from

• a crash fault if and only if Isp = Isq = ∅,

• a symmetric fault if and only if either

1. both Isp and Isq are not accurate in the sense of t < left(Isp) and
t < left(Isq), or else t > right(Isp) and t > right(Isq),
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2. without loss of generality, Isp = ∅ and Isq 6= ∅ does not suffer from
an unbounded accuracy fault,

• an asymmetric fault if and only if either

1. both Isp and Isq are not accurate in the sense of t > right(Isp) and
t < left(Isq) or else t > right(Isq) and t < left(Isp) (true byzantine
fault),

2. without loss of generality, Isp 6= ∅ is faulty and Isq 6= ∅ is arbitrary
(and none of the other faults applies).

Remarks 1. The “classical” asymmetric fault ([WS00]) is one that is per-
ceived differently at p and q. Its distinguishing property is that node p arrives
at the conclusion that the sender’s clock is, say, too fast, whereas q thinks
that it is too slow (or correct). This could occur, for example, when the
transmission delay to p respectively q is excessively low respectively high
or if the sending node exhibits byzantine behavior. In our context, an un-
bounded accuracy fault must also be counted as asymmetric, see Remark 2
on Lemma 2.

2. The “classical” symmetric fault ([WS00]) is caused by disseminating
information that is perceived identically at p and q. This type of fault is
usually produced by a sender clock that runs too slow or too fast. In our
context, “pure” receive omissions must also be counted as a symmetric fault.

3. A crash fault causes an omission both at node p and q. Note carefully,
though, that it is impossible for either node to decide locally (without further
information) whether its omission is due to a crash fault or a more severe
receive omission.

4. We do not consider systemwide consistently perceived benign faults
([WS00]) explicitly, since they are simple to accommodate in our context:
To tolerate fb benign faults, n ≥ fb + 1 is sufficient.

5. Note that Definition 5 does not cover the case where a more severe fault
comes out as a less severe one. For example, it is reasonable to assume that
an asymmetric fault could just be a symmetric or even a crash fault only. In
this paper, we will typically use phrases like “asymmetric (or weaker) fault”
to indicate such extensions.

We should finally mention that our definition of symmetric and asymmet-
ric faults extends and, in some cases, apparently contradicts the “classical”
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meaning of those terms. Still, we think that their usage is legitimate due
to the fact that our extension preserves the essentials of their meaning: The
meaning of symmetric / asymmetric fault is basically received identically /
not identically at different nodes. In our context, however, we had to relax
the meaning of “received identically” since we cannot assume identical in-
formation at different nodes even in the faultless case, as explained earlier.
We also had to accept the fact that the interval-based paradigm introduces
unbounded accuracy faults, which are not known in conventional settings but
can create an asymmetric perception.

Whereas the above definitions are sufficient for “pure” accuracy intervals
and precision intervals, they cannot be applied literally to the “combination”
of both required for OA’s final analysis in Section 4, recall Figure 3. For
the final fault model, we have to take into account that faults may occur
in precision and accuracy intervals quite independently of each other. More
specifically, we must distinguish faults affecting an accuracy interval and
its associated precision interval either consistently (t/τ -symmetrically) or
inconsistently (t/τ -asymmetrically): Let a single accuracy interval I that
is faulty with respect to real-time t and/or internal global time τ be called
t/τ -symmetrically faulty if either

t < left(I) and τ < left(Î), or t > right(I) and τ > right(Î);

otherwise, it is considered t/τ -asymmetrically faulty. A set F of faulty ac-
curacy intervals is identically t/τ -symmetrically faulty if t (and hence also
τ) is either to the left or to the right for all members of F .

Assumption 1 (Perception-based Hybrid Fault Model F) Let a pair
of accuracy intervals {Isp, Isq} originating in a single sending node s and

representing real-time t, with the associated precision intervals {Î
s

p, Î
s

q} rep-
resenting τ , be called

1. simple faulty if it suffers from a crash fault or a symmetric fault with
respect to t and/or τ and both faulty intervals (only present if no omis-
sion took place) are identically t/τ -symmetrically faulty,

2. arbitrary faulty if it suffers either from an asymmetric fault with re-
spect to t and/or τ , or a symmetric fault involving at least one t/τ -
asymmetrically faulty interval. Alternatively, an arbitrary fault could
also be just a simple one.
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For all pairs of non-faulty nodes p and q, consider the ordered sets6 of inter-
vals Ip = {I1

p, . . . , I
n
p} and Iq = {I1

q, . . . , I
n
q } obtained after reception and

preprocessing of the accuracy intervals disseminated in an FME, according
to the generic interval-based clock synchronization algorithm of Definition 9.
We assume that at most fa respectively fs of the n pairs of intervals {Isp,
Isq}, 1 ≤ s ≤ n, suffer from arbitrary respectively simple faults, where fa and
fs are such that

n ≥ 3fa + 2fs + 1. (3)

3 Marzullo’s Function

This section is devoted to an in-depth investigation of a fault-tolerant inter-
section function M, which plays a central role in our orthogonal accuracy
convergence function. M was introduced in Marzullo’s thesis [Mar84] and
termed Marzullo function in [Lam87]. Although its relevance was recog-
nized in several papers (for example, see [Lam87], [Mar90], [OSF92], [Sch95],
[Mil95]), it has been studied thoroughly in the context of replicated sensors
only, see [Mar90] and [BI96]. For clock synchronization purposes, a number
of additional properties are required, which will be established subsequently.

Definition 6 (Marzullo Function) Given a set I = {I1, . . . , In} of n ≥
1 (non-empty) compatible intervals with at least n − f ≥ 1 of the intervals
being accurate,Mn−f

n (I) is defined as the largest interval whose edges lie in
the intersection of at least n− f different Ij’s.

Therefore, to compute the left and right edge of Mn−f
n (I), one has to

“sweep” over the set of intervals from left to right and right to left, respec-
tively, and stop when n−f intervals intersect for the first time. M is transla-
tion invariant, that is,Mn−f

n ({I1+∆, . . . , In+∆}) =Mn−f
n ({I1, . . . , In})+

∆ for any real ∆, and can be computed in O(n log n) time by sorting the in-
tervals’ edges, see [Mar90]. Figure 4 shows an example for n = 4 and f = 1.
Note that the unknown t cannot lie in the region between right(I3) and
left(I4) in this example. However, since there is no way to decide whether
t lies in the area left or right of this region, both areas must be covered by
M3

4.

6We use the term ordered sets for Ip and Iq to stress the fact that the intervals in
both input sets can be uniquely grouped as n pairs {Isp ∈ Ip, I

s
q ∈ Iq} originating in the

same sending node s, 1 ≤ s ≤ n.
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t (unknown)

I3

I4

I2

I1

incorrect

M3
4(I)

Figure 4: Example of the Marzullo function M for n = 4 and f = 1. The
edges of the result lie in n− f = 3 input intervals.

The most important feature ofM is fault-tolerance with respect to faulty
input intervals. For example, Figure 4 shows thatM3

4 provides an accurate
result despite the fact that I4 was non-accurate. We will now embark for-
mally on M’s capabilities in this respect, according to the following road-
map:

1. We start with the “single node case,” whereM’s result M p computed
at a particular non-faulty node p is considered in isolation. It suffices
to account for single faults according to Definition 4 here, which affect
M’s input intervals at node p.

• Lemma 2 gives the number of non-faulty input intervals required
for tolerating a certain number of faults, and provides both a lower
and an upper bound on M p.

• Lemma 3 provides a few monotonicity properties of M, that is,
upper bound results likeMn−f

n (I) ⊆Mn−(f+k)
n (I).

Note that those results are primarily required for accuracy analysis.

2. For precision analysis, we also require pairwise properties, that is, state-
ments relating the resultsM p andM q ofM computed at two different
nodes p and q. Therefore, we have to consider pairwise faults accord-
ing to Definition 5 here, which affect the pair {Isp, Isq} received in the
broadcast from node s.
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• Lemma 4 gives the number of non-faulty pairs of intervals required
for tolerating a certain number of faults, and provides both a lower
bound on M p ∩M q and an upper bound on M p ∪M q.

• Lemma 5 adopts Lemma 4 to a slightly extended fault model and,
most importantly, shows what happens to M p ∪M q when the
fault assumptions are violated.

We should add here that all lemmas of this section deal with elementary
intervals only, even without reference points. Dealing with fully-fledged π-
accurate intervals (incorporating both precision and accuracy intervals) ac-
cording to Figure 3 will be postponed to the final analysis ofOA in Section 4.

The following Lemma 2 reveals howM behaves in the presence of faults
according to Definition 4. Extending the accomplishments of [Mar84] and
[Mar90], it answers the question of how many non-faulty intervals are required
for tolerating a certain number of non-accurate intervals (fn) and unbounded
accuracy faults (fu). The most important property shown is thatM’s result
lies within the intersection of n− 2fn − 3fu ≥ 1 non-faulty input intervals.

Lemma 2 (Accuracy M) Let J = {J1, . . . ,Jn} be a set of n ≥ 1 non-
empty compatible accuracy intervals representing t, and define wh to be the
length of the largest intersection of h ≥ 1 non-faulty intervals among them,
that is, wh = max{|W | : W ∈Wh} for

Wh = {W : W =
h⋂
i=1

Jwi with indices wi 6= wj for i 6= j

and Jwi ∈ J being non-faulty}.

If f ′u ≥ 0 of the J j suffer from unbounded accuracy faults and f ′n ≥ 0 are
non-accurate, where f ′u ≤ fu and f ′n ≤ fn with f ′u+f ′n = f ′ ≤ fu+fn = f < n
(so that n− f ′ ≥ n− f > 0 of the n intervals are non-faulty), then

1. M =Mn−f
n (J ) is accurate and contains any intersection W ∈Wn−f

of n − f ≥ 1 different non-faulty input intervals Jw1 , . . . ,Jwn−f , that
is,

W =
n−f⋂
j=1

Jwj ⊆M , (4)

so that |M | ≥ wn−f (minimal intersection property),
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2. there are at least n− 2f − f ′u ≥ n− 2f − fu different non-faulty input
intervals J b1 , . . . ,J bn−2f−f ′u

∈ J such that

M ⊆
n−2f−f ′u⋂
j=1

J bj ⊆
n−2f−fu⋂
j=1

J b′j , (5)

where the set of indices {b′j}1≤j≤n−2f−fu is obtained from {bj}1≤j≤n−2f−f ′u
by discarding fu − f ′u elements. Hence, |M | ≤ wn−2f−f ′u ≤ wn−2f−fu.

3. there are at least f − f ′ + 1 ≥ 1 non-faulty intervals J `k respectively
J rk , 1 ≤ k ≤ f−f ′+1, in J satisfying left(M) ≤ left(J `k) respectively
right(M) ≥ right(J rk).

Proof Since M = Mn−f
n (J ) contains any intersection of at least n − f

input intervals by definition, it obviously contains any intersection of n − f
non-faulty intervals W =

⋂n−f
j=1 Jwj ∈Wn−f . Note that wj, 1 ≤ j ≤ n− f ,

just denote the indices of the contributing intervals with respect to J here.
Therefore, it follows that t ∈M and |M | ≥ wn−f as asserted in item (1) of
the lemma.

Turning our attention to item (2), it is apparent that the total number
of intersections of left and right edge of M with non-faulty input intervals
is g′l + g′r ≥ 2(n − f) − 2f ′u − f ′n, because an interval J j suffering from an
unbounded accuracy fault (f ′u) could intersect with both edges ofM , whereas
a non-accurate interval (f ′n) can only intersect with one edge of M due to
t /∈ J j but t ∈ M . However, since there are only g′ = n − f ′ different
non-faulty intervals in J = {J1, . . . ,Jn}, the pigeonhole principle reveals
that

g′l + g′r − g′ ≥ 2n− 2f − 2f ′u − f ′n − n+ f ′ = n− 2f − f ′u
of the intersected accurate intervals, say J b1 , . . . ,J bn−2f−f ′u

, must be the same.

Therefore, M must lie in the intersection of those intervals and |M | ≤
wn−2f−f ′u as asserted. The upper bound in (5) follows immediately from
f ′u ≤ fu.

Finally, to prove item (3), consider without loss of generality the left edge
of M . We show by contradiction that the left edge of at least f −f ′+1 non-
faulty intervals lies at or right of left(M): If there were at most f − f ′ such
intervals, all n− f ′ − (f − f ′) = n− f remaining non-faulty intervals would
have their left edge strictly left of left(M). However, this would contradict
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the minimal intersection property established in item (1), completing the
proof of our lemma. 2

Remarks 1. We excluded omission faults in our lemma, sinceM as defined
in Definition 6 cannot deal with empty intervals. However, as mentioned in
Remark 3 following Definition 4, intervals with omission faults can easily be
discarded beforeM is applied. Therefore, if f ′o of presumed n intervals suffer
from an omission fault, we just have to set n := n − f ′o and f := f − f ′o in
Lemma 2 to obtain the results for this case as well. Note that it is feasible
to let f depend on f ′o, see Lemma 4 below.

2. Interpreting item (2) of Lemma 2 and the previous remark in terms of
the usual fault-tolerance degree notion, it follows that n ≥ f ′o + 2f + f ′u + 1
nodes are required to guarantee that M remains bounded by the length of
at least one non-faulty input interval. Hence, as many as

n ≥


f ′o + 1 for f ′o omission faults,
2fn + 1 for f ′n ≤ fn non-accurate intervals,
2fu + f ′u ≤ 3fu for f ′u ≤ fu unbounded accuracy faults

nodes are required for tolerating faults of the given type. It is thus apparent
thatM can tolerate b(n− 1)/2c non-accurate intervals but only b(n− 1)/3c
intervals that suffer from unbounded accuracy faults, see [Mar90]. Note
carefully that the numbers above do not solely depend on the actual number
of faults (f ′u), but also on their maximum number (fu); this is due to the fact
that the latter is compiled into the superscript argument ofM.

3. The lower bound on |M | in item (1) expresses the rather obvious
fact that M cannot improve the accuracy beyond the one “hidden” in the
input intervals; the term minimal intersection property was coined in [Mar84].
Note that M contains any intersection of n − f intervals, hence includes
intersections involving unbounded accuracy faults as well.

4. Item (3) just says that M contains the left and right edge of at least
one (not necessarily the same) non-faulty interval.

The following Lemma 3 establishes a few useful monotonicity relations
with respect to both parameters and input arguments ofM.

Lemma 3 (Monotonicity M) Let I = {I1, . . . , In} be a set of n > f ≥ 0
compatible non-empty accuracy intervals representing t, with f ′, 0 ≤ f ′ ≤
f , faulty ones among them. Then, Mn−f

n (I) is accurate and satisfies the
following monotonicity relations:
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1. Mn−f
n (I) ⊆Mn−(f+k)

n (I) for any integer k with 0 ≤ k < n− f ,

2. Mn−f
n (I) ⊆Mn−f

n (J ) for any J = {J1, . . . ,Jn} with I l ⊆ J l for
1 ≤ l ≤ n,

3. For f ≥ f ′ ≥ 1, if L = I\{Ij} is obtained by discarding some faulty

interval Ij from I,M(n−1)−(f−1)
n−1 (L) =Mn−f

n−1(L) is accurate and sat-
isfies

Mn−f
n−1(L) ⊆Mn−f

n (I). (6)

Proof In the proof of item (1) of Lemma 2, we argued that M =Mn−f
n (I)

contains any intersection of at least n−f input intervals by definition, hence
must be accurate. Since the interval containing any intersection of n− f − k
input intervals obviously contains any intersection of n − f input intervals,
item (1) of the lemma follows.

Turning our attention to item (2), it is clear that any particular intersec-
tion of n − f intervals in J contains the intersection of the corresponding
intervals in I if it is non-empty at all. By the same token as before, it hence
follows thatMn−f

n (J ) must containMn−f
n (I) as well.

For proving item (3), the same argument is used again. First of all,

n > f ≥ 1 implies that n−1 > f−1 ≥ 0, hence M
(n−1)−(f−1)
n−1 (L) is accurate.

Moreover, discarding a faulty Ij in I and simultaneously reducing f by 1

leaves the superscript argument (n − 1) − (f − 1) = n − f in Mn−f
n−1(L)

unchanged. Since the interval containing any intersection of n − f input
intervals in I must contain the interval containing any intersection of n− f
intervals in L ⊆ I , the statement given in item (3) of our lemma follows. 2

Remarks 1. It is immediately apparent from the definition of M that
M1

n(I) =
⋃
i I i andMn

n(I) =
⋂
i I i, henceMn−f

n “changes” from union to
intersection as n− f goes from 1 to n.

2. It is not difficult to show that M is optimal with respect to worst-
case accuracy in presence of non-accurate intervals among all interval-valued
functions of n interval arguments, as pointed out already in [Lam87]: Sup-
pose there were a function F that provides an accurate interval satisfying
M(I) 6⊆ F(I), then M ′ =M(I)\ (M(I)∩F(I)) 6= ∅ and there must be
an intersection of n−f accurate intervals A =

⋂n−f
i=1 Ibi so that A∩M ′ 6= ∅.

However, the (valid) assumption that t ∈ A∩M ′ reveals that F(I) cannot
be accurate, providing the required contradiction.

23



3. Regarding item (2) of Lemma 3, it is important to note that enlarging
an input interval (even by a minor amount) can cause a discontinuous jump of
an edge ofMn−f

n (J ) if a “new” intersection of n−f intervals comes up. Just
consider shrinking or moving right the faulty interval I4 in Figure 4, which
causes the right edge ofM3

4(I) to shrink to right(I3) as soon as left(I4) >
right(I1). This implies that M does not satisfy a Lipschitz condition with
respect to moving (edges of) input intervals, as already noted in [Lam87].

4. Item (3) of Lemma 3 implies that one should always try to detect and
discard faulty intervals beforeM is applied, since this can only improve the
result.

For establishing precision results, we also require certain “pairwise” prop-
erties ofM, that is, statements relating the results M p and M q ofM com-
puted at different nodes p and q. This is provided by the following Lemma 4,
which is an advanced version of a lemma introduced in [Sch95]. It gives
the number of non-faulty pairs of intervals required for tolerating a certain
number of

• crash faults (f ′c ≤ fc),

• symmetric faults (f ′s ≤ fs),

• asymmetric faults (f ′a ≤ fa).

The most important result of Lemma 4 is an upper bound on the union
M p∪M q, which must lie within at least n−min{f ′c+f ′s, 2fc−f ′c}−2fs−3fa ≥
1 unions Isp∪Isq of non-faulty input intervals. Note that the union takes into
account that two different nodes p and q usually receive slightly different
intervals in the broadcast of a single node s, even if there is no fault.

Lemma 4 (Precision M) Let Ip = {I1
p, . . . , I

n
p} and Iq = {I1

q, . . . , I
n
q }

be two ordered sets of n > fc + fs + fa, fc, fs, fa ≥ 0, compatible (or empty)
accuracy intervals representing t, where f ′a ≤ fa, f

′
s ≤ fs, and f ′c ≤ fc of the

n pairs of intervals {I ip, I iq} exhibit asymmetric, symmetric, and crash faults,
respectively, and the remaining ones are non-faulty. Define uh respectively
vh to be the length of the largest intersection of h ≥ 1 unions respectively
intersections of pairs of non-faulty intervals, formally uh = max{|U | : U ∈
Uhpq} respectively vh = max{|V | : V ∈ Vhpq} for

Uhpq = {U : U =
h⋂
i=1

Iuip ∪ Iuiq with ui 6= uj, i 6= j,
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and non-faulty Iuip ∈ Ip, Iuiq ∈ Iq}

Vhpq = {V : V =
h⋂
i=1

Ivip ∩ Iviq with vi 6= vj, i 6= j,

and non-faulty Ivip ∈ Ip, Iviq ∈ Iq}.

Let dp, 0 ≤ dp ≤ f ′s, denote the (unknown) number of empty intervals
caused by symmetric faults at node p, and J p = {J1, . . . ,Jnp} be the set of
np = n − op non-empty intervals obtained from Ip by discarding any of the
(known) op = f ′c+dp ≤ fc+fs empty intervals caused by crash and symmetric
faults. Using the upper bound fp = fs+fa−max{0, op−fc} on the number of
intervals in Jp that (still) may be faulty in presence of op omissions, define
M p =Mnp−fp

np (J p), and analogously M q =Mnq−fq
nq (J q). Then,

1. both M p and M q are accurate and

M p ∩M q ⊇
n−f ′c−fs−fa⋂

j=1

Ivjp ∩ Ivjq = V (7)

for any subset V ∈ Vn−f ′c−fs−fapq , so that |M p ∩M q| ≥ vn−f
′
c−fs−fa

(distributed minimal intersection property),

2. there are at least n − min{f ′c + f ′s, 2fc − f ′c} − 2fs − 2fa − f ′a pairs of
non-faulty intervals {Iukp , Iukq } with Iukp ∈ J p and Iukq ∈ J q such that

M p ∪M q ⊆
n−min{f ′c+f ′s,2fc−f ′c}−2fs−2fa−f ′a⋂

k=1

Iukp ∪ Iukq (8)

and hence |M p ∪M q| ≤ un−min{f ′c+f ′s,2fc−f ′c}−2fs−2fa−f ′a.

Proof First of all, we note that fp gives indeed an upper bound on the
number of intervals in J p that still may be faulty in presence of op = f ′c +
dp ≤ fc + f ′s ≤ fc + fs omissions, since fp = fs + fa if op ≤ fc, and fp =
fs + fa − (op − fc) otherwise (accounting for op − fc > 0 symmetric faults
that must have caused omissions at node p), hence

fp ≤ fs + fa. (9)

Evidently, at least np−fp of the intervals inJ p must be non-faulty. Rewriting
the definition

np−fp = n−op−fs−fa+max{0, op−fc} = n−fs−fa+max{−op,−fc} (10)
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and applying max{0, x} ≥ x for any x, and the simple fact that

max{−op,−fc} ≤ −f ′c

since obviously op ≥ f ′c and f ′c ≤ fc, it follows easily that

n− fc − fs − fa ≤ np − fp ≤ n− f ′c − fs − fa ≤ n− fs − fa. (11)

Of course, analogous bounds hold for nq − fq.
Lemma 2 is applicable, and it follows that M p and M q are both accurate

and satisfy the (local) minimal intersection property. That is, M p contains
any intersection of np − fp ≤ n− f ′c − fs − fa non-faulty intervals present in
J p. If {vj}1≤j≤n−f ′c−fs−fa denotes any set of different indices of non-faulty
pairs of intervals Ivjp ∈ Ip, Ivjq ∈ Iq (of course also present in J p, J q), we
thus have

W p =
n−f ′c−fs−fa⋂

j=1

Ivjp ⊆
np−fp⋂
j=1

Ivjp ⊆M p

and, for the same set {vj}, W q =
⋂n−f ′c−fs−fa
j=1 Ivjq ⊆ M q. By elementary

set algebra, it thus follows that V = W p ∩W q ∈ Vn−f
′
c−fs−fa satisfies (7).

Finally, |M p∩M q| ≥ vn−f
′
c−fs−fa is a simple consequence of the definition of

vh as the maximum length of V ∈ Vhpq. This completes the proof of item (1).
For item (2), we distinguish two cases:

1. If —without loss of generality— M p determines both left and right
edge of M p∪M q, Lemma 2 applies with n := np, f := fp, and f ′u ≤ f ′a
(as well as fu ≤ fa). Hence, by item (2) of this lemma, we know
that there are at least np − 2fp − f ′u non-faulty intervals in J p the
intersection of which majorizes M p. Using (10) and the definition of
fp, straightforward algebra yields

np − 2fp − f ′u ≥

≥ n+ max{−op,−fc}+ max{0, op − fc} − 2fs − 2fa − f ′a
≥ n+ max{−op, op − 2fc} − 2fs − 2fa − f ′a
≥ n+ max{−f ′c − f ′s, f ′c − 2fc} − 2fs − 2fa − f ′a.
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Abbreviating µ = min{f ′c + f ′s, 2fc − f ′c}, we thus obtain

M p ∪M q ⊆M p ⊆
n−µ−2fs−2fa−f ′a⋂

j=1

Ibjp (12)

⊆
n−µ−2fs−2fa−f ′a⋂

j=1

Ibjp ∪ Ibjq ∈ Un−µ−2fs−2fa−f ′a
pq .

Note that any corresponding Ibiq must also be present in J q, since our
choice of fp ensures that we got rid of any interval involved in a faulty
pair. This eventually confirms (8) in this case.

2. If without loss of generality the left respectively right edge of M p ∪
M q is determined by M p respectively M q, where the left respectively
right edge of M p respectively M q intersects with gp,l respectively gq,r
intervals belonging to a non-faulty pair of intervals in Ip, Iq, we must
have

gp,l ≥ np − fp − f ′a − (sleft − dp,left)

≥ n− fs − fa + max{−op,−fc} − f ′a − sleft + dp,left

gq,r ≥ nq − fq − f ′a − (sright − dq,right)

≥ n− fs − fa + max{−oq,−fc} − f ′a − sright + dq,right.

Herein, sleft + sright = f ′s ≤ fs are the number of symmetrically faulty
pairs of intervals lying left respectively right of t, and dp,left + dp,right =
dp, dq,left + dq,right = dq denote the number of omissions among them at
node p respectively q; the lower bounds follow immediately from (10).

However, we only have g = n − f ′c − f ′s − f ′a different non-faulty pairs
of intervals. Thus, the usual pigeonhole argument reveals that

gp,l + gq,r − g ≥

≥ 2n+ max{−op,−fc}+ max{−oq,−fc} − 2fs − 2fa − 2f ′a − f ′s
+dp,left + dq,right − n+ f ′c + f ′s + f ′a

≥ n+ max{−f ′c − dp,right,−fc + dp,left}
+ max{−f ′c − dq,left,−fc + dq,right}+ f ′c − 2fs − 2fa − f ′a

≥ n+ max{−2f ′c − f ′s,−2fc}+ f ′c − 2fs − 2fa − f ′a
≥ n−min{f ′c + f ′s, 2fc − f ′c} − 2fs − 2fa − f ′a
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of them must be the same. Abbreviating µ = min{f ′c + f ′s, 2fc − f ′c},
we can conclude that there are at least n − µ − 2fs − 2fa − f ′a pairs

of accurate intervals, say, Ib1p ∪Ib1q , . . . , I
bn−µ−2fs−2fa−f ′a
p ∪I

bn−µ−2fs−2fa−f ′a
q

with Ibip ∈ J p and Ibiq ∈ J q satisfying

M p ∪M q ⊆
n−µ−2fs−2fa−f ′a⋂

j=1

Ibjp ∪ Ibjq ∈ Un−µ−2fs−2fa−f ′a
pq , (13)

which proves (8) for this case as well.

To complete the proof of Lemma 4, it only remains to justify |M p ∪M q| ≤
un−µ−2fs−2fa−f ′a , which is a trivial consequence of (12) and (13). 2

Remarks 1. Note carefully that Lemma 2 could also be used to deduce
a precision-related result: Since M p and M q are both accurate and hence
contain t, it follows from item (2) that |M p ∪M q| ≤ 2wn−2f−fu . However,
comparison with item (2) of Lemma 4 reveals that this result is roughly twice
as large and hence insufficient for precision enhancement.

2. Our crash faults are more severe than the (systemwide consistently
perceived) benign faults of [AK96], since it cannot be decided locally whether
an omissive interval belongs to a crash fault or to an (inconsistent) receive
omission. However, it is of course possible to “merge” crash and symmetric
faults, in the sense that the former are counted in f ′s respectively fs and
f ′c = fc = 0 (note that np − fp = n − fs − fa in this case). After all, we
already accounted for symmetric faults involving empty intervals in the proof
of Lemma 4.

3. Interpreting the accomplishments of Lemma 4 and the previous remark
in terms of the usual fault-tolerance degree notion, it turns out that n ≥
min{f ′c + f ′s, 2fc − f ′c} + 2fs + 2fa + f ′a + 1 nodes are required to guarantee
that M p ∪M q remains bounded by the length of the union of at least one
pair of non-faulty input intervals. Hence, as many as

n ≥


min{f ′c + f ′s, 2fc − f ′c}+ 1 for f ′c crash faults,
2fs + 1 for f ′s ≤ fs symmetric faults,
2fa + f ′a + 1 ≤ 3fa + 1 for f ′a ≤ fa asymmetric faults

nodes are required for tolerating faults of the given type.
4. It should be clear from the proof of Lemma 4 that the property that

really pins down symmetric faults is the following one: If a symmetrically
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faulty interval Isq intersects, say, with the right edge of M q (correctly ac-
counted for in sright), then its corresponding Isp must not intersect with the
left edge of M p (since it is not accounted for in sleft). This is the reason
why Isp 6= 0 being faulty and Isq 6= 0 being non-faulty must be counted as an
asymmetric fault in item (2) of Definition 5.

The following lemma shows that the results of Lemma 4 remain valid if
a more severe fault comes out as a less severe one, and shows what happens
if certain fault assumptions are violated. Note that crash faults are counted
as symmetric ones here for simplicity.

Lemma 5 (Precision and Graceful Degradation M) Let

Ip = {I1
p, . . . , I

n
p} and Iq = {I1

q, . . . , I
n
q }

be two ordered sets of n > fs+fa, fs, fa ≥ 0, compatible (or empty) accuracy
intervals representing t, where f ′s ≤ fs respectively f ′a ≤ fa of the n pairs of
intervals {I ip, I iq} exhibit symmetric (or weaker) respectively asymmetric (or
weaker) faults, and the remaining ones are non-faulty. As in Lemma 4, define
uh respectively vh to be the length of the largest intersection of h ≥ 1 unions
(∈ Uhpq) respectively intersections (∈ Vhpq) of pairs of non-faulty intervals.

Let J p = {J1, . . . ,Jnp} be the set of np = n − op non-empty intervals
obtained from Ip by discarding any of the op empty intervals caused by omis-
sions. Using the upper bound fp = fs + fa− op on the number of intervals in
Jp that (still) may be faulty in presence of op omissions, define

M p =Mnp−fp
np (J p) =Mn−fs−fa

np (J p),

and analogously M q =Mn−fs−fa
nq (J q). Then,

1. both M p and M q are accurate and

M p ∩M q ⊇
n−fs−fa⋂
j=1

Ivjp ∩ Ivjq = V (14)

for any possible subset V ∈ Vn−fs−fapq , so that |M p ∩M q| ≥ vn−fs−fa

(distributed minimal intersection property),
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2. there are at least n− 2fs− 2fa− f ′a ≥ n− 2fs− 3fa pairs of non-faulty
intervals {Iukp , Iukq } with Iukp ∈ J p and Iukq ∈ J q such that

M p ∪M q ⊆
n−2fs−2fa−f ′a⋂

k=1

Iukp ∪ Iukq ⊆
n−2fs−3fa⋂

k=1

Iu
′
k
p ∪ Iu

′
k
q , (15)

where {u′k}1≤k≤n−2fs−3fa is obtained from {uk}1≤k≤n−2fs−2fa−f ′a by dis-
carding fa−f ′a arbitrary elements. Hence, |M p∪M q| ≤ un−2fs−2fa−f ′a ≤
un−2fs−3fa.

3. Assume that the fault model is violated in the sense that f ′ = f ′s + f ′a >
fs + fa but still n ≥ 2f ′ + f ′u + 1, where f ′u ≤ f ′a denotes the num-
ber of pairs of intervals that involve unbounded accuracy faults. If
M p and M q exist, that is, sufficiently many intersecting input in-
tervals exist to compute M, then there are n − 2f ′ − f ′u non-faulty

intervals Ip1
p , . . . , I

pn−2f ′−f ′u
p in J p and n−2f ′− f ′u non-faulty intervals

Iq1q , . . . , I
qn−2f ′−f ′u
q in J q such that

M p ∪M q ⊆

n−2f ′−f ′u⋂
j=1

Ipjp

 ∪
n−2f ′−f ′u⋂

j=1

Iqjq

 . (16)

Hence, |M p ∪M q| ≤ wn−2f ′−f ′u
p + wn−2f ′−f ′u

q , where whp respectively whq
denote the length of the largest intersection of h accurate intervals in
Ip respectively Iq.
Nevertheless, M p and M q are not necessarily accurate and possibly not
even consistent; accurateness is guaranteed, however, if f ′ ≤ fs + fa
but all f ′ faults are asymmetric ones.

Proof Since crash faults are now considered as symmetric ones and hence
accounted for in f ′s and fs, see Remark 2 on Lemma 4, items (1) and (2)
follow directly from adopting the results of Lemma 4 to f ′c = fc = 0. Note
that np − fp = n − fs − fa here. To confirm the assertions for asymmetric
faults appearing as weaker ones, just consider the expressions supplied by
Lemma 4 when temporarily setting fa := fa − 1 and fs := fs + 1.

To show item (3), we first note that we only have to consider the case
where np = n− op ≥ n− fs − fa, since otherwise there would have been too
many omissions to compute M p. Thus,

M p =Mn−fs−fa
np (J p) ⊆Mn−f ′

np (J p) (17)
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according to item (1) of Lemma 3. Lemma 2 is now applicable to the right-
hand side of (17) and it follows by its item (2) that

M p ⊆
n−2f ′−f ′u⋂

j=1

Jpjp .

An analogous result holds forM q. Of course, the majorizing intersections for
M p and M q involve non-faulty intervals only, hence are accurate and thus
consistent. This justifies (16) and thus the condition on |M p ∪M q| given in
the lemma. Note carefully, however, that this does not imply that M p and
M q are accurate or even just consistent! On the other hand, if f ′ ≤ fs + fa,
it follows from item (1) of Lemma 2 applied to the left-hand side of (17) that
M p (and analogously M q) is accurate. 2

Remarks 1. It follows from item (3) of the above lemma that there are
two possibilities in case of a violation of the fault assumptions: Either a
node recognizes this fact because there are not enough accurate intervals to
compute M, or the computed interval is not “too wrong” (covered by an
interval that is at most about twice as large as the usual one, see item (2)
of Lemma 5). Obviously, this is some form of graceful degradation of the
algorithm’s performance.

2. Evidently, the worst situation with respect to the number of faults
where one can hope to get a meaningful result is n ≥ 2f ′ + 1. Item (3) of
Lemma 5 can be used to deduce a result for this case as well: Setting f ′u = 0
and declaring any interval with an unbounded accuracy fault as being non-
faulty, we get from (16) that M p ∪M q lies in the union of the intersection
of n− 2f ′ “non-faulty” intervals in J p respectively J q.

4 Orthogonal Accuracy Convergence Func-

tion

WhereasM is optimal with respect to the length of the resulting accuracy
interval, it can nevertheless exhibit large discontinuous jumps even for minor
shifts of a faulty input interval, recall Remarks 2 and 3 on Lemma 3. For
that reason, it has already been argued in [Lam87] that a “naive” clock
synchronization algorithm that places the reference point (= clock value) to
the centerpoint of M’s result is incapable of guaranteeing small precision
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if the input intervals are comparatively large. Our example run in Figure 5
justifies this claim: Consider a system of four nodes A, B, C, D with interval
clocks having the following characteristics:

• A’s interval clock is deteriorated by ±2 units during the resynchroniza-
tion period P , but actually runs at perfect rate,

• B’s interval clock is deteriorated by ±1 unit and is actually one unit
ahead of real-time after one period P ,

• C’s interval clock is deteriorated by ±1 unit and is actually one unit
behind of real-time after one period P ,

• D’s clock exhibits byzantine faulty behavior in the sense that D’s ac-
curacy interval received by node p mimics p’s current interval clock.

Assuming fault-free, zero-delay communication and initially perfectly syn-
chronized interval clocks Cp(0) = [0 ± 1] for p = A,B,C, we obtain the
scenario depicted in Figure 5.

ttt

t = 0 ttt

t = P t tt

t = 2P

A

B

C

D arb. fault arb. fault arb. fault

t tt

t = 3P

arb. fault

-
t

Figure 5: Example showing the lacking precision enhancement property of
Marzullo’s functionM with centerpoint setting. Since node D mimics Cp(t)
when received at any node p, the interval computed byM3

4 at t = P, 2P, . . . ,
reconfirms the current Cp(t).

Each node receives the interval clocks Cp of the non-faulty nodes A, B,
C exactly as shown at t = kP , k ≥ 1. One observes that the interval M p

obtained by applyingM3
4 to the Iqp’s received by node p is always exactly Cp

—no precision enhancement will ever take place here; the reference points of
CB and CC will drift apart perpetually.
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Our algorithm will fix this problem by applyingM3
4 to the associated πH-

precision intervals Î
q

p instead of Iqp, recall our exposition in Subsection 2.2.
In the example of Figure 5, πH must satisfy |πH | = 2+4 units because of the
initial precision (= 2 units) plus twice the maximum deterioration during P
(= 2 · 2 units). The intervals fed intoM3

4 are hence trimmed to length πH ,
and considering the resulting intervals M̂ p and M̂ q at two different nodes p
and q, one finds that the reference points cannot be further apart than πH/2
(centerpoint setting assumed), since M̂ p ∪ M̂ q has length at most πH by
item (2) of Lemma 4.

Since the above considerations are only meaningful for maintaining preci-
sion, that is, setting the reference point of Cp, the optimality ofM neverthe-
less recommends its use for determining left and right edge of Cp. However,
this requires some care since the reference point computed via the associated
precision intervals might lie outside of the accuracy interval. This is demon-
strated by the following example: Reconsider our system of four nodes A, B,
C, D, now with the following characteristics:

• A’s interval clock is deteriorated by ±1 unit and is actually one unit
ahead of real-time after one period P ,

• B’s, C’s interval clocks are deteriorated by ±1 unit and are actually
one unit behind real-time after period P ,

• D’s clock exhibits symmetric faults.

Assuming fault-free, zero-delay communication and initially synchronized
clocks satisfying Cp(t0) = Ĉp(t0) for p = A,B,C and π0 = [−1, 1], so that
πH = [−2, 2] (since maximum deterioration during P is ±1), consider the
evolution of accuracy intervals during two rounds depicted in Figure 6.

At t1, applying M3
4 to the received accuracy intervals respectively the

associated πH-precision intervals (which satisfy Cp
q(t1) = Ĉ

p

q(t1) for p, q ∈
{A,B,C} here) yields CA(t1) = [t1± 0] and CB(t1) = CC(t1) = [t1− 2± 2]
at the respective nodes; recall that the reference point of Cq is computed as

the centerpoint ofM applied to the Ĉ
p

q ’s. In order to ensure π0-correctness
of clock A and B, internal global time τ1 must be set to t1 − 1 to lie in the
intersection of the renewed π0-precision intervals. Although τ1 does not lie
in CA(t1), this situation is still feasible due to the fact that we decoupled
precision and accuracy in the definition of π-precision intervals. However, the
problem shows up when setting the reference point of clock A at t2: Applying
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Figure 6: Example of a reference point setting outside the accuracy interval
at t2. The accuracy interval CA(t2) computed by applyingM3

4 to the received
intervals does not contain the reference point computed as the centerpoint of
M3

4 applied to the associated πH-precision intervals.

M to the received accuracy intervals at A provides [t2±0], but the reference
point evaluates to t2− 1, which lies outside. If we ignored this, that is, if we
set the reference point to t2, precision would be violated. Therefore, [t2 ± 0]
must be enlarged to the left by 1 to include the reference point. Note also
that internal global time τ2 must be set to t2 − 2 here.

Viewed from a different angle, this problem can be seen as a consequence
of the fact that internal global time may drift away from real-time. In Fig-
ure 6, it is node D’s faulty behavior that slows down the overall progress
of internal global time relative to real-time. For that reason, we eventually
decoupled accuracy and precision in Definition 2, viewing them as orthog-
onal issues. Note that orthogonality actually opens up the possibility of
employing virtually any internal synchronization algorithm for maintaining
precision, and to enlarge accuracy as needed, see Remark 3 on Theorem 2.
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We should add that a similar approach was taken for the adaptive inter-
section algorithm ([Mil95]) of NTP, which is also based upon M. Besides
trying to dynamically figure out a reasonable f (thereby sacrificing guaran-
teed accurateness), it extends the resulting interval appropriately to include
the reference points of all apparently non-faulty input intervals. This way, it
is guaranteed that the final reference point (computed according to maximum
likelihood principles) lies within the final accuracy interval.

In order to formalize our orthogonal accuracy convergence function, we
first have to introduce a discrete, asymmetric reference point setting opera-
tion π-centerGS . It is a generalization of centerpoint setting, which partitions
an interval according to the proportion of π− : π+ while accounting for the
fact that the CPU used for computing the reference point has integer arith-
metic only: According to Definition 9 in Appendix B, we require all quantities
manipulated by our clock synchronization algorithm to be integer multiples
of the clock-setting granularity GS > 0. Therefore, an integer division (rather
than an exact one) is employed in π-centerGS , so that the analysis must deal
with the truncation error.

Unfortunately, we cannot simply use exact (= non-discrete) reference
point setting plus a remainder term O(GS) in our analysis. Since we are
aiming at hardware-assisted clock synchronization with worst case accuracy
and precision in the µs-range and below, see [SKM+00], this simplification
would spoil the very accurate generic analysis of [SS97a]: Although GS is
smaller than clock granularity G for most adjustable clock implementations,
it is nevertheless much larger than the O(·)-terms present in the results of
[SS97a], see Remark 1 on Theorem 3. Therefore, we have to take the trouble
of tracking the truncation errors explicitly.

Definition 7 (Discrete Reference Point Setting) Let an interval I =
[a, b] with a, b being integer multiples of GS > 0 and some arbitrary π =
[−π−, π+] satisfying π = π− + π+ > 0 be given. With bxcGS denoting trun-
cation of x to the next integer multiple of GS being ≤ x, and dxeGS denoting
rounding up x to the next integer multiple of GS being ≥ x, we define

π-centerGS(I) =
⌊π−b+ π+a

π

⌋
GS
. (18)

A few technical lemmas dealing with the properties of π-centerGS are
provided in Appendix A.
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Now we are ready for the formal definition of the orthogonal accuracy
convergence function OA. Basically, the result of OA is the interval pro-
vided by M applied to the accuracy intervals of the input set J , possibly
extended appropriately to include the reference point. The latter is computed
independently (“orthogonally”) as the πH-centerGS of the interval obtained

by applyingM to the associated πH-precision intervals in the input set Ĵ .

Definition 8 (Convergence Function OA) Let I be a set of n compati-
ble accuracy intervals and J ⊆ I with |J | = n′ ≤ n be the set of non-empty
intervals among them. With Ĵ denoting the set of associated πH-precision
intervals for some given πH with πH−, πH+ being integer multiples of GS,
and f denoting a given fault-tolerance parameter, the orthogonal accuracy
convergence function OAπH

n−f (J ) (abbreviated by OA) is defined by

ref(OA(J )) = πH-centerGS(Mn−f
n′ (Ĵ )) and (19)

OA(J ) = Mn−f
n′ (J ) ∪ ref(OA(J )). (20)

In order to analyze the performance of the interval-based clock synchro-
nization algorithm of Definition 9 employing OA, it is sufficient to evaluate
the characteristic functions ofOA according to Definition 11. Plugging those
into the generic results of [SS97a], as done in Section 5, the final expressions
for precision, accuracy, etc. follow immediately. To improve readability, we
provideOA’s characteristic functions via two theorems: All precision-related
results can be found in Theorem 1, whereas the more complicated derivations
for accuracy-related quantities are covered by Theorem 2.

Theorem 1 states how OA affects precision. It determines, for any pair
of nodes p and q, (1) how the application of OA affects precision in the
current round, and (2) what precision is obtained at the beginning of the
next round. As an input, our theorem takes [1] a bound πH on the precision
of all non-faulty input intervals, and [2] the maximum “difference” πI of the
intervals received from a single non-faulty sender s at node p respectively q.
We particularly emphasize the quite simple proof of Theorem 1, which can
be attributed to the power of our generic analysis based upon internal global
time.

Theorem 1 (Precision OA) Let Ip = {I1
p, . . . , I

n
p}, Iq = {I1

q, . . . , I
n
q }

be two ordered sets of n compatible accuracy intervals (all representing the
same real-time t) obtained at nodes p respectively q at the end of a round,
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which are in accordance with the fault model of Assumption 1. Moreover,
let the subsets of non-empty accuracy intervals among them be J p ⊆ Ip,
|J p| = np ≤ n and J q ⊆ Iq, |J q| = nq ≤ n and assume that

[1.] any non-faulty I ip ∈ Ip as well as any non-faulty I iq ∈ Iq is πH-correct
for some given πH with πH+, πH− being integer multiples of GS,

[2.] any pair of non-faulty intervals {I ip, I iq} is πI-precise for some given
πI ⊆ πH , where πI is an integer multiple of GS with ζ = (πH −
πI) min{πH−, πH+}/πH > GS.

The convergence function OAπH

n−fs−fa applied to J p respectively J q at
node p respectively q is translation invariant and provides intervals Rp =
OA(J p) = [T ′p ±α′p] respectively Rq = OA(J q) = [T ′q ±α′q] with reference
points being integer multiples of GS. Its precision-related characteristic func-
tions, which are monotonic with respect to any interval argument as long as
πH−/πH remain invariant, are as follows:

1. The precision preservation function Φ(·), which ensures that Rp and
Rq are Φ(πH)-correct, is

Φ(πH) = πH . (21)

2. The precision enhancement function Π(·), which ensures that the set
{Rp,Rq} is π0-precise with π0 = Π(πH ,πI) < πH , evaluates to

Π(πH ,πI) = max
{⌈
πH+ +

πH−

πH
πI
⌉
GS
,
⌈
πH− +

πH+

πH
πI
⌉
GS

}
. (22)

Proof From Definition 8 of OA, it is immediately apparent that OA is
translation invariant since M is. Moreover, the reference point of Rp =
OA(J p) respectively Rq = OA(J q) is determined by applyingM to the
πH-precision intervals associated with I ip ∈ J p respectively I iq ∈ J q, result-
ing in

R̃p =Mn−fs−fa
np (Ĵ p) and R̃q =Mn−fs−fa

nq (Ĵ q).

Since any non-faulty I ip is πH-correct according to precondition [1], it is

guaranteed that Î
i

p contains internal global time τ , and that |Î
i

p| ≤ πH , so
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that any intersection of such intervals has these properties as well. Lemma 2
applies with n := np and f := fs+fa− (n−np), hence it follows that τ ∈ R̃p

by its item (1) and |R̃p| ≤ πH by its item (2) since

np − 2f − f ′u ≥ n− 2fs − 3fa + n− np ≥ n− 2fs − 3fa ≥ 1, (23)

recall Assumption 1. Since OA sets the reference point T ′p of R̃p = [T ′p±πp]
to πH-centerGS(R̃p), applying Lemma 6 provided in Appendix A yields

π−p =
⌊πH−
πH
|R̃p|

⌋
GS
≤ πH−

πH
|R̃p| ≤ πH−

and

π+
p =

⌈πH+

πH
|R̃p|

⌉
GS
≤
⌈πH+

πH
πH
⌉
GS

= πH+;

recall that πH+ was assumed to be an integer multiple of GS. Since ref(Rp) =
ref(R̃p), the asserted πH-correctness of Rp and hence expression (21) for
Φ(·) follows. The required monotonicity of Φ(πH) with respect to πH is
immediately apparent.

Of course, exactly the same reasoning holds for Rq, completing the proof
of item (1).

As far as item (2) is concerned, we first recall that any pair of πH-correct
intervals I ip ∈ J p and I iq ∈ J q was assumed to be πI-precise in precondition

[2]. Hence it follows that |Î
i

p ∪ Î
i

q| ≤ πH + πI , since |Î
i

p|, |Î
i

q| ≤ πH and

|ref(I ip) − ref(I iq)| ≤ πI by item (2) of Lemma 1. This implies |R̃p ∪ R̃q| ≤
πH+πI due to R̃p∪R̃q ⊆

⋂n−2fs−3fa
k=1 Î

ik
p ∪ Î

ik
q , recall item (2) of Lemma 5 and

(23). Now we can apply Lemma 7 provided in Appendix A with πp = πq =
π̄p = π̄q := πH and π := πH+πI , which eventually yields |ref(Rp)−ref(Rq)| =
|ref(R̃p)− ref(R̃q)| ≤ Π(πH ,πI) as given by (22). This ensures π0-precision
for any π0 with |π0| = π0 as asserted. The required relation π0 < πH is
verified via

π0 −GS ≤ max
{
πH+ +

πH−

πH
πI , π

H− +
πH+

πH
πI
}

= πH − ζ < πH −GS,

which follows from (22) and the condition imposed on πI in precondition [2]
of our theorem.

Finally, the required monotonicity of Π(πH ,πI) with respect to πH and
πI is obvious from (22) by recalling that the potentially problematic frac-
tions πH−/πH and πH+/πH were assumed to be invariant. This eventually
completes the proof of Theorem 1. 2
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Remarks 1. The above theorem considers the most general case where |R̃p|
and |R̃q| may even be zero. A smaller Π(·) could be derived if a (reasonably
large) non-zero lower bound on |R̃p| and |R̃q| could be guaranteed.

2. Observe that Π(πH ,πI) given in (22) is minimized when πH is sym-
metric, that is, when πH+ = πH−. In that case, we obtain

π0 =
⌈πH + πI

2

⌉
GS
≤ πH + πI

2
+
GS

2
.

This gives the maximum precision enhancement of our convergence function,
refer to [Sch87]. The convergence factor is 1/2, which is the same as provided
by the well-known fault-tolerant midpoint (FTM) convergence function, see
[LWL88].

3. The fact that Rp is πH-correct easily provides the “accuracy” α of our
convergence function in the terminology of [Sch87], which gives the maximum
amount the computed clock value can differ from any non-faulty input clock
value. More specifically, since any non-faulty input interval is πH-correct, it
follows (see [SS97a, Lem. 7]) that |α| ≤ πH . Hence, OA provides the same
“accuracy” as FTM and most other convergence functions, however, with
the notable exception of the optimal algorithms ([FC95b] and [Sch97a]).

The following Theorem 2 shows how OA affects accuracy intervals, that
is, the on-line bound on a node’s maximum deviation from real-time. As an
input, it takes the same precision-related quantities [1], [2] as Theorem 1,
the intersection of certain precision intervals [3], and the accuracies of all
non-faulty input intervals [4]. Consult the discussion prior to Definition 11
in Appendix C for details.

Theorem 2 (Accuracy OA) Let Ip = {I1
p, . . . , I

n
p}, Iq = {I1

q, . . . , I
n
q }

be two ordered sets of n compatible accuracy intervals (all representing the
same real-time t) obtained at nodes p respectivelyq at the end of a round,
which are in accordance with the fault model of Assumption 1. Moreover,
let the subsets of non-empty accuracy intervals among them be J p ⊆ Ip,
|J p| = np ≤ n and J q ⊆ Iq, |J q| = nq ≤ n and assume that

[1] any non-faulty I ip ∈ Ip as well as any non-faulty I iq ∈ Iq is πH-correct
for some given πH with πH+, πH− being integer multiples of GS,

[2] any pair of non-faulty intervals {I ip, I iq} is πI-precise for some given
πI ⊆ πH , where πI is an integer multiple of GS with ζ = (πH −
πI) min{πH−, πH+}/πH > GS,
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[3] for any s with both Isp and Isq being non-faulty, the intersection of the

associated precision intervals Î
s

p∩Î
s

q∩Î
minp

p ∩Î
minq

q respectively Î
s

p∩Î
s

q∩
Î

maxp

p ∩ Î
maxq

q , where minx respectively maxx represents that non-faulty

node that leads to the leftmost right(Î
minx

x ) respectively the rightmost

left(Î
maxx

x ) for x ∈ {p, q}, has length at least ι+s ≥ 0 respectively ι−s ≥ 0
(integer multiples of GS),

[4] the accuracies of any non-faulty I ip = [T ip ± αip] are integer multiples

of GS satisfying αip ⊆ βip ∈ Bp for a given set of accuracy bounds

Bp = {β1
p, . . . ,β

n
p} (and analogous for I iq with set of accuracy bounds

Bq).

The convergence function OAπH

n−fs−fa applied to J p respectively J q at
node p respectively q provides accurate intervals Rp = OA(J p) = [T ′p ±α′p]
respectively Rq = OA(J q) = [T ′q ± α′q] with reference point and accuracies
being integer multiples of GS. Its accuracy-related characteristic functions,
which are monotonic with respect to any interval argument as long as πH−/πH

remains invariant, are as follows:

1. The conditional accuracy preservation functions ℵ−(·), ℵ+(·), which
guarantee α′p ⊆ [−ℵ−(Bp,πH ,∀s : ι−s ),ℵ+(Bp,πH ,∀s : ι+s )], read

ℵ−(Bp,πH ,∀s : ι−s ) = βx,−p +
⌊πH+

πH
(πH − ι−x )

⌋
GS
, (24)

ℵ+(Bp,πH ,∀s : ι+s ) = βx,+p +
⌈πH−
πH

(πH − ι+x )
⌉
GS
, (25)

where x denotes the node with the n−2fs−3fa-largest accuracy bounds
among Bp, that is,

βx,−p = max
i:n−2fs−3fa

{βi,−p } and βx,+p = max
i:n−2fs−3fa

{βi,+p }

with maxi:m B denoting the m-th largest element of the set B = {βi :
1 ≤ i ≤ n}.

2. The conditional intersection enhancement functions =−(·) respectively

=+(·), which ensure that the set {Rp,Rq} is π
ι−pq
0 -precise respectively

π
ι+pq
0 -precise with π

ι−pq
0 = =−(πH ,πI) respectively π

ι+pq
0 = =+(πH ,πI) for
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worst-case settings with respect to negative respectively positive accu-
racy, evaluate to

=−(πH ,πI) =
⌈πH−
πH

πI
⌉
GS

respectively =+(πH ,πI) =
⌈πH+

πH
πI
⌉
GS
.

(26)

Proof From Definition 8, it is evident that the accuracies α′+p , α′−p in Rp

and α′+q , α′−q in Rq —as well as their reference points— are integer multiples
of GS. Finally, item (1) of Lemma 2 applied to (20) makes sure that Rp and
Rq are accurate.

Therefore, it only remains to bound α′p (without loss of generality, since
the analogous result forRq is obtained by exchanging p and q in our theorem).
For that purpose, we need an arrangement of input intervals that maximizes,
say, the positive accuracy α′+p subject to the given lower bounds ∀s : ι+s on
the intersection of certain non-faulty input precision intervals. Note that this
worst-case scenario must also cover situations where the reference point lies
outside of the accuracy interval, recall our considerations at the beginning of
this section.

Abbreviating the n − 2fs − 3fa-largest of p’s accuracy bounds by β =
maxi:n−2fs−3fa{βi+p }, the worst-case scenario for α′p

+ is depicted in Figure 7.

Note that we will provide the detailed argument for α′+p only; α′−p is derived
analogously.

First, let ~I = [T − π−, T + α+] be the mixed interval of an arbitrary
accuracy interval I = [T ± α] with its associated π-precision interval Î =
[T ± π]. Mixed intervals are in fact ideally suited for attacking our prob-
lem: Since left and right edge of the result of M (and hence OA) are

computed independently of each other, and right(~I
s

p) = right(Isp) respec-

tively left(~I
s

p) = left(Î
s

p), it follows that right(~Rp) = right(Rp) respectively

left(~Rp) = left(R̂p) as well. Analyzing the result of M in terms of mixed
intervals, however, is easy since the hybrid fault model in Assumption 1 guar-
antees that the sets of mixed input intervals ~I

s

p,
~I
s

q are in accordance with
the fault model of Definition 5, which underlies the results on Marzullo’s
functionM derived in Section 3.

To see that Figure 7 provides a worst-case scenario for α′p
+ = β′, we first

argue that |~Rp| cannot be larger than β+πH−, since item (2) of Lemma 2 in

conjunction with (23) reveals that ~Rp lies within at least n− 2fs − 3fa ≥ 1
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Figure 7: Worst-case scenario for α′p
+ = β′ with resulting precision ζ ′. The

intersection of the leftmost non-faulty precision interval Î
min

p/q with any non-

faulty Î
x

p has length ιx. The n− 2fs− 3fa unions of input intervals ~I
ui

p ∪ ~I
ui

q

contain the resulting ~Rp ∪ ~Rq.

non-faulty input intervals ~I
bk

p ∈ J p. Note that it is assumed in Figure 7

that Iuip = Ibip has the i-th largest accuracy bound βi+p and ~I
ui+1

p ⊆ ~I
ui

p .

This implies that left(~Rp) cannot be further left. Moreover, in an attempt to
maximize β′, it could not be set further right either due to the monotonicity
property (57) of π-centerGS .

Next, from item (2) of Lemma 5 it follows that there are at least n −
2fs− 3fa pairs of non-faulty intervals {Iukp , Iukq } (present in J p respectively

J q) such that ~Rp ∪ ~Rq ⊆
⋂n−2fs−3fa
k=1

~I
uk

p ∪ ~I
uk

q . Since the reference points
(and hence the left edges of the mixed intervals) of any non-faulty pair Isp,

Isq can be at most πI apart according to precondition [2], left(~Rq) cannot be
further left than shown in Figure 7.

42



Finally, as far as the worst position of right(R̃p) is concerned, we know

from precondition [3] of our theorem that no non-faulty precision interval Î
s

p,

Î
s

q can have a right edge left of R in Figure 7. Hence, from the distributed
minimal intersection property ofM in item (1) of Lemma 5, it follows that
both R̃p and R̃q must have this property as well. It follows that we have
to consider right(R̃p) = R and right(R̃q) = R for worst-case settings with
respect to β′ only, since the monotonicity property (57) of π-centerGS implies
again that setting right(R̃p) further right would provide a smaller β′ only.
Similarly, setting right(R̃q) further right could only decrease ζ ′, which would
enlarge ι′x in the next round and hence provide a smaller β′ then, see below.

Evaluating β′ for the above situation is simple: By using (58) and −dxe =
b−xc (see [Knu73, Sec. 1.2.4, Ex. 4]), we find

β′ = β + πH− −
⌊πH−
πH

ιx
⌋
GS

= β +
⌈πH
πH

πH− − πH−

πH
ιx
⌉
GS
, (27)

which easily yields expression (25) for ℵ+(·). The required monotonicity is
immediately apparent, given that πH+/πH and πH−/πH were assumed to be
invariant.

Next, we have to prove the expression for =+(·) = ref(Rp)−ref(Rq) given
in item (2) of our theorem, which is bounded by ζ ′ in Figure 7. Noting that
left(Rp)− left(Rq) = πI here, we obtain

ζ ′ = πI +
⌊πH−
πH

ιx
⌋
GS
−
⌊πH−
πH

(πI + ιx)
⌋
GS

=
⌊πH−
πH

ιx
⌋
GS

+
⌈πH+

πH
πI −

πH−

πH
ιx
⌉
GS

≤
⌈πH+

πH
πI
⌉
GS
, (28)

where we used the “triangle inequality” dx + ye ≤ dxe + dye (see [Knu73,
Sec. 1.2.4, Ex. 7]). This eventually confirms the expression for =+(·) in (26).
The required monotonicity of =+(·) is again immediately apparent.

The analogous expressions for ℵ−(·) respectively =−(·) can be obtained by
considering Figure 7 mirrored at the (dashed) vertical line R and exchanging
πH+ and πH− etc. Comparing (58) and (59) reveals that ℵ−(·) given by (24)
follows from replacing b.c by d.e in (27). Similarly, we find

ζ ′ = πI +
⌈πH+

πH
ιx
⌉
GS
−
⌈πH+

πH
(πI + ιx)

⌉
GS
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=
⌈πH−
πH

πI +
πH+

πH
(πI + ιx)

⌉
GS
−
⌈πH+

πH
(πI + ιx)

⌉
GS

≤
⌈πH−
πH

πI
⌉
GS

+
⌈πH+

πH
(πI + ιx)

⌉
GS
−
⌈πH+

πH
(πI + ιx)

⌉
GS

=
⌈πH−
πH

πI
⌉
GS
,

which confirms the expression for =−(·) in (26).
To complete the proof of our theorem, it only remains to show that the

worst-case scenario considered here is also globally valid. It is of course locally
valid, in the sense that there is no scenario that provides a worse β′ for the
given ιx. However, the resulting ζ ′ is quite small, and since ζ ′ determines ιx
—and hence β′— in the next round7, the question arises whether a locally
suboptimal setting could provide a worse overall accuracy. In view of (25)
and (24), it is sufficient to check whether β′ + ζ ′ = right(Rp) − ref(Rq) is
maximal in the scenario of Figure 7, which is of course true by construction.
This eventually completes the proof of Theorem 2. 2

Remarks 1. There is a straightforward modification of OA that improves
accuracy by exploiting further information from reference point setting. More
specifically, any interval I ∈ J satisfying Î∩Mn−fs−fa

n′ (Ĵ ) = ∅ is faulty since
its associated πH-precision interval does not contain internal global time τ
and may thus be discarded prior to computing the accuracy interval in (20).
Item (3) of Lemma 3 implies that the accuracy of this modified version is
not worse than OA’s, and should in fact be better in most executions, in
particular, if accuracies are large.

2. Apart from clock state synchronization elaborated on in this paper,
Theorems 1 and 2 can also be used immediately for clock rate synchroniza-
tion. The latter is an interesting alternative to high-performance quartz
clocks when targeting clock synchronization with very high precision, where
decreasing any clock’s drift rate to, say, ρ ≤ 10−7 is mandatory. Interestingly
enough, this problem is also tractable by interval-based techniques: A generic
analysis for clock rate synchronization, which relies on the same paradigm as
[SS97a], was conducted in [Sch97c]. It shows that any convergence function
suitable for interval-based clock synchronization —like OA— can be reused
in the rate setting as well.

7Note that ιx does actually not depend upon x since ζ ′ is uniformly valid, see Theo-
rem 4.
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3. It is interesting to note that statements and proof of our major Theo-
rems 1 and 2 apply literally when the Marzullo function employed for com-
puting the reference point (19) in OA’s Definition 8 is replaced by certain
other interval-based functions. For example, it is possible to recast the well-
known fault-tolerant midpoint convergence function (FTM) of [LWL88] into
an equivalent interval-based version FTM-I (similar to the one employed in
[Lam87]) that operates on equally-sized intervals. Recall that the input pre-
cision intervals in (19) are obtained by mounting the same interval πH at
the accuracy intervals’ reference points, resulting in identical length. Similar
pigeonhole principle proofs as in Section 3 can then be used to show that the
pivotal upper bounds of Lemma 2 and 4 forM apply to FTM-I as well.

5 Orthogonal Accuracy Algorithm

In this section, we will plug in the characteristic functions of the orthogonal
accuracy convergence function OA into the generic expressions for preci-
sion, accuracy, etc. of Theorem 5 in Appendix C. This provides a complete
characterization of the worst-case performance of the orthogonal accuracy
algorithm OA. In order to briefly introduce the various parameters of our
system model arising in the resulting expressions, we restated the generic
algorithm’s definition ([SS97a, Def. 7]) in Definition 9; consult [SS97a, As-
sum. 1–4] for additional information.

The first of our major theorems describes the worst-case performance
of OA with respect to precision. It assumes instantaneous clock correction
in Step (T) of OA, although most results carry over literally to continuous
amortization, see [SS97a, Thm. 2] for details.

Theorem 3 (Precision Algorithm OA) For the system model complying
to [SS97a, Assum. 1–4] and the fault model in Assumption 1, the orthogonal
accuracy algorithm with instantaneous clock correction, transmission delay
compensation

∆ ≥ 2εmax + ε+
max + (B + 3)umax + 2G+GS + δmax(1 + ρ−max)

+(2P + Λ + Ω + 2Γmax − 2Γmin − 2δmin)ρmax

+O(Pρ2
max +Gρmax + εmaxρmax), (29)

and the (symmetric!)

πH = π0 + 2umax +G+ εmax + (P + Γmax − Γmin − δmin)ρmax
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+O(Pρmax +G+ εmax)ρmax (30)

used in OAπH

n−fs−fa requires O(n log n) computation time to synchronize the
(non-faulty) clocks of n nodes as follows:
1. Initial worst-case precision (that is, the precision at the beginning of each
round of the slowest non-faulty clock)

π0,max = π0+umax+G+(Γmax−Γmin)ρmax+O(Pρ2
max+Gρmax+εmaxρmax) (31)

where π0 = [−π−0 , π+
0 ] is given by

π−0 =
1

2

(
εmax +Bumax +G+GS + (Λ + Ω + ∆ + Γmax − δmin)ρmax

)
+2u+

max + ε+
max + (P + Γmax − Γmin − δmin)ρ+

max

+O(Pρ2
max +Gρmax + εmaxρmax) (32)

π+
0 =

1

2

(
εmax +Bumax +G+GS + (Λ + Ω + ∆ + Γmax − δmin)ρmax

)
+2u−max + ε−max +G+ (P + Γmax − Γmin − δmin)ρ−max

+O(Pρ2
max +Gρmax + εmaxρmax), (33)

so that

π0 = 2εmax + (B + 2)umax + 2G+GS (34)

+(P + Λ + Ω + ∆ + 2Γmax − Γmin − 2δmin)ρmax

+O(Pρ2
max +Gρmax + εmaxρmax). (35)

2. Overall worst-case precision πmax satisfying

πmax = 2εmax + (B + 3)umax + 3G+GS

+(2P + Λ + Ω + ∆ + 2Γmax − Γmin − 2δmin)ρmax

+ max
{
ε+

max + 2u+
max + (2Γmax − 2Γmin − δmin)ρ+

max,

ε−max + 2u−max +G+ (2Γmax − 2Γmin − δmin)ρ−max, 0
}

+O(Pρ2
max +Gρmax + εmaxρmax). (36)

3. Any two non-faulty nodes p, q resynchronize within real-time tRp − tRq
satisfying

Γp − Γq − πP ≤ tRp − tRq ≤ Γp − Γq + πP
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for
πP = π0 + umax + Pρmax +O(Pρ2

max +Gρmax + εmaxρmax). (37)

4. Adjustments of at most Υ are applied to the local clock of any non-faulty
node, which are bounded according to −π− ≤ Υ ≤ π+ with

π− = 2εmax + (B + 3)umax + 2G+GS (38)

+(2P + Λ + Ω + ∆ + 2Γmax − Γmin − 2δmin)ρmax + ε+
max + u+

max

+(Γmax − Γmin − δmin)ρ+
max +O(Pρ2

max +Gρmax + εmaxρmax),

π+ = 2εmax + (B + 3)umax + 3G+GS (39)

+(2P + Λ + Ω + ∆ + 2Γmax − Γmin − 2δmin)ρmax + ε−max + u−max

+(Γmax − Γmin − δmin)ρ−max +O(Pρ2
max +Gρmax + εmaxρmax).

Proof The computational complexity of the orthogonal accuracy algorithm
is primarily determined by the complexity of computing the convergence
functionOA, which is O(n log n) due to the two evaluations ofM employed
in OA, recall Definition 8 and 6.

By item (1) of Theorem 5, π0 is the solution of the equation |π0| =
Π(πH ,πI) involving OA’s precision enhancement function Π(·) given by
(22). Precision enhancement is optimal if πH given by (79) is a symmetric
interval, recall the remarks following Theorem 1. Note that the condition
imposed on πI in precondition [2] of Theorem 1 is also amply fulfilled in this
case, just compare (80) and (30). Hence, writing πH = π0 + π1 with

π1 = 2umax +G+ εmax + (P + Γmax − Γmin − δmin)ρmax (40)

+O(Pρmax +G+ εmax)ρmax,

we exploit the freedom of choosing an arbitrary reference point of π0 to
enforce this symmetry: Setting

π0 =
[
−
(
dπI/2eGS + π+

1

)
, dπI/2eGS + π−1

]
(41)

such that π0 = 2dπI/2eGS + π1 provides a symmetric interval

πH = π0 + π1 =
[
−
(
dπI/2eGS + π1

)
, dπI/2eGS + π1

]
(42)

with πH = 2dπI/2eGS + 2π1. Evaluating Π(πH ,πI) given by (22) yields

max
{⌈
πH+ +

πH−

πH
πI
⌉
GS
,
⌈
πH− +

πH+

πH
πI
⌉
GS

}
=

47



=
⌈πH + πI

2

⌉
GS

=
⌈
dπI/2eGS + π1 + πI/2

⌉
GS

= 2dπI/2eGS + π1 = π0 (43)

as required; recall that π1 and all other precision values are integer multiples
of GS since its constituting parameters have this property, see Definition 9.
Plugging in π+

1 , π−1 resulting from (40) and dπI/2eGS ≤ πI/2 + GS/2 with
πI = |πI | from (80) into (41) confirms the values of π−0 , π+

0 given in (32) and
(33). Addition or, alternatively, substitution in (43) provides the value of π0

stated in (35). Last but not least, (31) providing π0,max is only a restatement
of (75).

Next, the value πP given in (37) is obtained by plugging in (conserva-
tive) maximum bounds for up/q and ρp/q in (83). Plugging in the swapped

Φ(πH) = πH according to item (1) of Theorem 1 and the definition (30) of
πH into (82) provides

π = π0 + 2umax +G+ εmax +
(
P + Γmax − Γmin − δmin

+O(Pρmax +G+ εmax)
)
ρmax

+π0 + umax +
(
P +O(Pρmax +G+ εmax)

)
ρmax,

from where the values of π−, π+ given in (38) and (39) follow easily. Now it
is possible to evaluate (81) in Theorem 5, which confirms the value of πmax

stated in (36).
The proof of Theorem 3 is almost completed; we only have to justify

the value of ∆ given in (29). Plugging in the expressions for π0 and π =
O(εmax +G+ Pρmax) into the definition of ∆ in (66), we easily obtain

∆ ≥ 1

1 + ρ+
max

(
2εmax + (B + 3)umax + 2G+GS + δmax + ε+

max

+(2P + Λ + Ω + ∆ + 2Γmax − 2Γmin − 2δmin)ρmax

+O(Pρ2
max +Gρmax + εmaxρmax)

)
=

Z + ∆ρmax

1 + ρ+
max

.

Solving this for ∆ yields

∆ ≥ Z

1− ρ−max

= Z
(
1 + ρ−max +O((ρ−max)2)

)
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= 2εmax + ε+
max + (B + 3)umax + 2G+GS + δmax

+(2P + Λ + Ω + 2Γmax − 2Γmin − 2δmin)ρmax

+δmaxρ
−
max +O(Pρ2

max +Gρmax + εmaxρmax).

This eventually completes the proof of Theorem 3. 2

Remarks 1. For usual settings, the O(·)-terms in our theorem are very
small and can be neglected in practice. Their only purpose is to specify the
order of magnitude of the neglected terms.

2. The precision results above are valid for any setting of the parameters
defined in the system model. Our analysis hence provides the worst-case
behavior of the algorithm under the worst setting of parameters, like ρp =
ρmax for any node p. One could derive improved worst-case results for more
relaxed parameterizations, although our algorithm does not benefit much
from such situations unless refined worst-case bounds are compiled into it,
after all, OA depends on πH !

3. With respect to worst-case precision, our orthogonal accuracy al-
gorithm is equivalent to the well-known fault tolerant midpoint algorithm
(FTM) of [LWL88], see Remark 3 following Theorem 2. FTM has the same
computational complexity O(n log n) and the same worst-case precision

πmax ≈ 5ε+ 4Pρ

(in a comparable setting); our terminology relates to the one of [LWL88]
by πmax = γ, εmax = 2ε and ρmax = 2ρ. Both algorithms require initially
synchronized clocks as well. Our algorithm is hence slightly suboptimal with
respect to worst-case precision: πmax exceeds the provably necessary and
tight lower bound 4ε + 4Pρ (see [FC95a], [FC95b]) by ε. The maximum
correction Υ ≈ 5ε + 4Pρ applied to the clock of a non-faulty node exceeds
the tight lower bound of 2Pρ considerably.

The next theorem provides algorithm OA’s worst-case behavior with re-
spect to accuracy.

Theorem 4 (Accuracy Algorithm OA) For the system model complying
to [SS97a, Assum. 1–4] and the fault model in Assumption 1, the accura-
cies αk+1,−

q , αk+1,+
q of a non-faulty node q’s accuracy interval Ak+1

q (tk+1
q ) =

[T k+1
q ± αk+1

q ] at the beginning of round k + 1, k ≥ 0, as computed by the
orthogonal accuracy algorithm OA with transmission delay compensation ∆
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given by (29) and πH given by (30), are integer multiples of GS satisfying
the following properties:
The interval of accuracy satisfies αk+1

q ⊆ βk+1
q with

βk+1,−
q = max

p:n−2fs−3fa

{{
βk,−p + u−p + u−q +G+GA + ε−pq + (P −∆− Γp)ρ

−
p

+(Γq + ∆− δpq)ρ−q + (Λ + Ω) max{ρ−q − ρ−p , 0}
}
p6=q

∪
{
βk,−q + u−q + Pρ−q

}}
+bπH/4cGS +O(Pρ2

max +Gρmax + εmaxρmax) (44)

≤ max
p:n−2fs−3fa

{βk,−p }+ u−max +G+GA + ε−max

+(P −∆− Γmin)ρ−max + u−q + (Γq + ∆− δmin)ρ−q

+bπH/4cGS +O(Pρ2
max +Gρmax + εmaxρmax), (45)

β0,−
q = α0,−

q + dπH/4eGS , (46)

βk+1,+
q = max

p:n−2fs−3fa

{{
βk,+p + u+

p + u+
q +GA + ε+

pq + (P −∆− Γp)ρ
+
p

+(Γq + ∆− δpq)ρ+
q + (Λ + Ω) max{ρ+

q − ρ+
p , 0}

}
p6=q

∪
{
βk,+q + u+

q + Pρ+
q

}}
+dπH/4eGS +O(Pρ2

max +Gρmax + εmaxρmax) (47)

≤ max
p:n−2fs−3fa

{βk,+p }+ u+
max +GA + ε+

max + (P −∆− Γmin)ρ+
max

+u+
q + (Γq + ∆− δmin)ρ+

q

+dπH/4eGS +O(Pρ2
max +Gρmax + εmaxρmax), (48)

β0,+
q = α0,+

q + bπH/4cGS , (49)

where maxp:m B denotes the m-th largest element of the set B = {βp : 1 ≤
p ≤ n}, α0

q ⊆ π0 is the initial interval of accuracies, and

πH = 3εmax + (B + 4)umax + 3G+GS

+(2P + Λ + Ω + ∆ + 3Γmax − 2Γmin − 3δmin)ρmax

+O(Pρ2
max +Gρmax + εmaxρmax), (50)

note that bπH/4cGS ≤ πH/4 and dπH/4eGS ≤ πH/4 +GS/2.

50



The maximum deviation of node q’s reference point T k+1
q from real-time tk+1

q

(“traditional accuracy”) at the beginning of round k + 1, k ≥ 0, reads

T k+1
q − tR,kq ≤ π−0 + (k + 1)

(
2u−max +G+ ε−max

+(P + Γmax − Γmin − δmin)ρ−max

+O(Pρ2
max +Gρmax + εmaxρmax)

)
, (51)

T k+1
q − tR,kq ≥ −π+

0 − (k + 1)
(
2u+

max + ε+
max

+(P + Γmax − Γmin − δmin)ρ+
max

+O(Pρ2
max +Gρmax + εmaxρmax)

)
, (52)

where π−0 and π+
0 are given by (32) and (33), respectively.

The inverse rate rq = limk→∞
tR,kq −t0q
Tk+1
q −T 0

q
, where T 0

q = Cq(t
0
q) is node q’s local

time at the beginning of round k = 0, of the synchronized clock at node q lies
within [

1±
(
ρmax +

2umax +G+ εmax + (Γmax − Γmin − δmin)ρmax

P

+O(Pρmax +G+ εmax)ρmax

)]
. (53)

Proof We showed in the proof of Theorem 3 that πH given by (30), which im-
mediately leads to (50), is a symmetric interval, hence πH+/πH = πH−/πH =
1/2. Since both πH− and πH+ are integer multiples of GS, it follows that the
error in estimating dπH/4eGS by πH/4 is at most GS/2 as asserted.

According to item (0) of Theorem 5, the bounds βk+1,−
q respectively βk+1,+

q

are just OA’s accuracy preservation functions ℵ−(·) respectively ℵ+(·) de-
rived in item (1) of Theorem 2: For round k = 0, evaluating (74) according
to the initial synchronization assumption in item (0) of Definition 9 forces us
to assume a zero-length common intersection ι0,−s = ι0,+s = 0 for any node s.
Plugging this into (24) respectively (25) governed by (67) and using (68)
provides

ℵ−(B1
q,π

H ,∀s : 0) = max
i:n−2fs−3fa

{β0,−
i + ωi,−q }+ πH+

= max
i:n−2fs−3fa

{α0,−
i + ωi,−q }+ dπH/4eGS + bπH/4cGS
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ℵ+(B1
q,π

H ,∀s : 0) = max
i:n−2fs−3fa

{β0,+
i + ωi,+q }+ πH−

= max
i:n−2fs−3fa

{α0,+
i + ωi,+q }

+dπH/4eGS + bπH/4cGS (54)

where we used πH/2 − dπH/4eGS = bπH/4cGS . For round k ≥ 1, we have
ιks = ιk,−s = ιk,+s = π0 − dπI/2eGS uniformly for any node s due to (72)
respectively (73) in conjunction with (26). Therefore,

1

2
(πH − ιks) =

πH − π0 + dπI/2eGS
2

=
π1 + dπI/2eGS

2
= πH/4,

where we used (42). Plugging this into (24) respectively (25) and using (67)
and (68) again provides

ℵ−(Bk+1
q ,πH ,∀s : ιk,−s ) = max

i:n−2fs−3fa
{βk,−i + ωi,−q }+ bπH/4cGS

ℵ+(Bk+1
q ,πH ,∀s : ιk,+s ) = max

i:n−2fs−3fa
{βk,+i + ωi,+q }+ dπH/4eGS . (55)

Replacing i by p and plugging in the definition of ωpq given in (68) and (69),
expressions (44) and (47) follow. Uniformly bounding the terms that depend
on p by their maximum values and applying Lemma 8 readily confirms (45)
and (48); note that a certain technical condition ([SS97a, (16)]), namely,
δminρmax ⊆ εmax, ensures that the derived bound is valid for p = q as well.
To justify the initial values (46) and (49), we just note that (54) and (55)
differ only by bπH/4cGS , which can conveniently be put into β0,+

q and β0,−
q .

Turning our attention to traditional accuracy, we first plug in OA’s pre-
cision preservation function Φ(πH) = πH into (85) to obtain

T k+1
q − tR,kq ∈ π0 + (k + 1)(πH − π0); (56)

inserting the swapped expression for πH−π0 obtained from (30) easily yields
(51) and (52). Finally, plugging in πH − π0 into (86) also justifies expres-
sion (53) for the inverse rate of the synchronized clock, completing the proof
of Theorem 4. 2

Remarks 1. OA provides the same, slightly suboptimal worst-case tradi-
tional accuracy and drift as the FTM algorithm of [LWL88]: The synchro-
nized clocks drift away from real-time by at most the maximum drift ρmax
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of the (worst) physical clock plus some smaller terms. Note that it has been
proved in [ST87] that the worst-case drift cannot be better than the drift of
the physical clocks. Algorithms that are optimal in this respect have been
provided in [ST87], [FC95b], and [Sch97a].

2. It is important to note that accuracy intervals can grow much faster
than traditional accuracy, which reveals the major weakness of the orthogonal
accuracy algorithm: Evaluating the results of Theorem 4 for the simplified
worst-case parameter setting ρp = ρmax := [−ρ, ρ], εpq = εmax := [−ε, ε],
umax := [−u, u], it is obvious that βkq = βk is the same for any q. Plugging
in those settings into expression (50) for πH , we find

πH/4 = 3ε/2 + (B + 4)u/2 + 3G/4 +GS/4

+
(
P +

Λ + Ω + ∆ + 3Γmax − 2Γmin − 3δmin

2

)
ρ

+O(Pρ2 +Gρ+ ερ),

and feeding everything into the formulas for negative accuracy (45) and pos-
itive accuracy (48) yields

βk+1,− ≤ βk,− + 5ε/2 + (B + 8)u/2 + 7G/4 +GA +GS/4

+(2P + Λ/2 + Ω/2 + ∆/2 + 5Γmax/2− 2Γmin − 5δmin/2)ρ

+O(Pρ2 +Gρ+ ερ)

βk+1,+ ≤ βk,+ + 5ε/2 + (B + 8)u/2 + 3G/4 +GA + 3GS/4

+(2P + Λ/2 + Ω/2 + ∆/2 + 5Γmax/2− 2Γmin − 5δmin/2)ρ

+O(Pρ2 +Gρ+ ερ).

Ignoring smaller order terms, this means that both positive and negative
accuracy could possibly grow as much as 2Pρ+ 5ε/2 during each round.

Plugging in the above parameter settings in (51) respectively (52), it turns
out that traditional accuracy can increase respectively decrease essentially by
Pρ + ε during each round. Therefore, either positive or negative accuracy
could grow more than twice as fast as traditional accuracy (although this
cannot happen simultaneously for both). Intuitively, this is due to the fact
that the reference point and any edge could move into opposite directions
at resynchronization, because faulty intervals might affect the accuracy and
precision algorithm differently. Remember that it can even happen that the
reference point is placed outside the originally computed accuracy interval.
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3. There are several directions one can follow in order to devise conver-
gence functions that behave better with respect to the accuracy bounds:

• One should consider algorithms that maintain precision and accuracy
not orthogonally but rather in an integrated way.

• One could try to reduce the “power” of the precision algorithm with
respect to causing internal global time to drift from real-time. In fact,
OA enforces precision by quite radical corrections (suboptimal max-
imum clock corrections Υ, see Remark 3 following Theorem 3) that
are incompatible with the progress of real-time. The optimal precision
convergence function OP analyzed in [Sch97a] shows how far one can
get with this approach.

• There might be ways of limiting the adverse effects of faulty clocks.

6 Conclusions

In this paper, we introduced and rigorously analyzed a novel convergence
function-based orthogonal accuracy clock synchronization algorithm OA. Be-
longing to the class of interval-based algorithms, it both guarantees bounded
internal synchronization precision and provides on-line bounds on the in-
stantaneous accuracy with respect to external time as well. OA employs the
orthogonal accuracy convergence function OA in the generic algorithm of
[SS97a], which encodes two (almost) independent algorithms for maintaining
precision and accuracy based on the Marzullo functionM.

Our comprehensive analysis utilized the powerful interval-based frame-
work established in [SS97a]. Based upon a thorough investigation of the
worst-case performance ofM, we provided accurate expressions for all worst-
case performance measures, like precision, maximum clock correction, ac-
curacy, etc. With respect to worst-case precision, it turned out that OA
performs equivalent to the well-known fault-tolerant midpoint (FTM) algo-
rithm of [LWL88]: Maximum precision 5ε+ 4Pρ, maximum clock correction
5ε+4Pρ, and global drift ρ + smaller terms are hence all slightly sub-optimal.
The major weakness of OA lies in the fact that its worst case accuracy bounds
could grow by 2Pρ + 5ε/2 during each round, which is more than twice the
worst-case growth Pρ+ ε of actual (traditional) accuracy.
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A general advantage of our results over traditional ones is that they are
suitable for very high-accuracy clock synchronization as well. This is pri-
marily a consequence of a very detailed system model, which incorporates
several non-standard issues like non-zero clock granularity and broadcast la-
tencies. An novel perception-based hybrid fault model covering arbitrary and
restricted node and link faults is also utilized; among its particular strengths
is proper modeling of independent receive omissions. The most important
fact revealed by our detailed formulas is that clock granularity (G) and, in
particular, rate adjustment uncertainty (usually u = G/m, for some small
positive integer m) of discrete rate-adjustment techniques have a consider-
able impact (as much as 12u+ 4G) upon achievable worst-case precision and
accuracy. This makes clear that any attempt to approach 1 µs worst-case
precision —as targeted by our SynUTC-project, see [SKM+00]— must utilize
clocks with G, u� 1µs.

Future work in this area will primarily be devoted to an improvement
of the definitely sub-optimal accuracy interval of any orthogonal accuracy
algorithm. We are currently looking at a promising candidate algorithm that
maintains precision and accuracy in an integrated way, which will hopefully
provide considerably improved accuracy bounds.

Appendix A: Technical Lemmas

Lemma 6 (Properties of Discrete Reference Point Setting) Let I =
[a, b] with 0 ≤ a ≤ b being integer multiples of GS > 0 and an arbitrary
interval π = [−π−, π+] with π = π− + π+ > 0 be given. Then,

π-centerGS([a, b]) ≤ π-centerGS([a+ x, b+ y]) (57)

for any x, y ≥ 0 being integer multiples of GS, and the accuracies in the inter-
val [r±α] obtained from I by setting the reference point to r = π-centerGS(I)
satisfy

α− =
⌊π−
π
|I|
⌋
GS
, (58)

α+ =
⌈π+

π
|I|
⌉
GS
. (59)

Proof Monotonicity (57) follows immediately from the definition (18) of
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π-centerGS and monotonicity of bxc. The expressions for positive and nega-
tive accuracy yield

α− =
⌊π−b+ π+a

π

⌋
GS
− a =

⌊π−b+ π+a− πa
π

⌋
GS

=
⌊π−
π
|I|
⌋
GS

and

α+ = b−
⌊π−b+ π+a

π

⌋
GS

= b+
⌈
−π

−b+ π+a

π

⌉
GS

=
⌈π+

π
|I|
⌉
GS
,

where we used the well-known fact −dxe = b−xc (see, for example [Knu73,
Sec. 1.2.4, Ex. 4]). 2

Lemma 7 (Precision Enhancement) Let Ip, Iq be two consistent inter-
vals with length 0 ≤ |Ip| ≤ π̄p, 0 ≤ |Iq| ≤ π̄q being integer multiples of
GS, and ref(Ip) = πp-centerGS(Ip), ref(Iq) = πq-centerGS(Iq) for some
πp = [−π−p , π+

p ] and πq = [−π−q , π+
q ]. If |Ip ∪ Iq| ≤ π with max{π̄p, π̄q} ≤

π ≤ π̄p + π̄q, then
|ref(Ip)− ref(Iq)| ≤

≤


max

{⌈
π−q
πq
π̄q +

π+
p

πp
(π − π̄q)

⌉
GS
,
⌈
π−p
πp
π̄p +

π+
q

πq
(π − π̄p)

⌉
GS

}
if

π−q
πq
≥ π+

p

πp
,

max
{⌈

π+
p

πp
π̄p +

π−q
πq

(π − π̄p)
⌉
GS
,
⌈
π+
q

πq
π̄q +

π−p
πp

(π − π̄q)
⌉
GS

}
otherwise.

Proof Apart from discreteness of πp-centerGS , this is a straightforward lin-
ear programming problem. One has to look out for an arrangement of the
consistent intervals Ip = [a, b] and Iq = [c, d] that maximizes the distance of
their reference points. More specifically, recalling the definition of π-centerGS
(Definition 7), we are interested in

u = min
{⌊π+

p a+ π−p b

πp

⌋
GS
−
⌊π+

q c+ π−q d

πq

⌋
GS

}
(60)

subject to b − a ≤ π̄p, a − b ≤ 0, d − c ≤ π̄q, c − d ≤ 0, b ≤ π, d ≤ π,
c ≤ b, a ≤ d, where a, b, c, d ≥ 0 are integer multiples of GS. Note that (60)
covers arrangements where ref(Ip) ≤ ref(Iq) only; minimizing provides the
maximum distance for negative values only. However, since the problem is
symmetric in p and q, the maximum value for reverse arrangements follows
immediately by exchanging p and q.
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Fortunately, it is not difficult to identify the worst-case scenario. Ignoring
discreteness for the moment, that is, assuming GS = 0, if

π−q
πq
≥
π+
p

πp
, (61)

the maximum distance of the reference points occurs when Iq is made as
large as possible, that is, |Iq| = π̄q, leaving at most |Ip| = π − π̄q for Ip;
recall that we assumed π ≤ π̄p + π̄q.

Returning to the discrete case, this suggests that the minimum value of
(60) satisfies

−u =
⌈π+

p

πp
bπ − π̄qcGS

⌉
GS

+ b
π−q
πq
π̄qcGS ≤

⌈π+
p

πp
(π − π̄q) +

π−q
πq
π̄q
⌉
GS
, (62)

recall Lemma 6; the upper bound follows easily from moving the second term
into the first one and then omitting b·cGS .

However, we have to confirm that discreteness of π-centerGS does not
impose a different maximum value. More specifically, we have to show that
—starting from (62)— shrinking |Iq| = π̄q by kGS for some integer k ≥ 0
and simultaneously enlarging |Ip| = bπ− π̄qcGS ≤ π− π̄q by the same amount
does not lead to a larger value of −u. For any k ≥ 0, we find

−u(k) =
⌈π+

p

πp
(bπ − π̄qcGS + kGS)

⌉
GS

+
⌊π−q
πq

(π̄q − kGS)
⌋
GS

≤
⌈π+

p

πp
(bπ − π̄qcGS + kGS) +

π−q
πq

(π̄q − kGS)
⌉
GS

≤
⌈π+

p

πp
bπ − π̄qcGS +

π−q
πq
π̄q
⌉
GS
, (63)

by virtue of condition (61), thus confirming our conjecture (62).
If, on the other hand, condition (61) is not true, the minimum (considering

GS = 0 first) occurs when Ip is made as large as possible, providing the value

−u′ =
π+
p

πp
π̄p +

π−q
πq

(π − π̄p). (64)

As before, this suggests the minimum value

−u′ = d
π+
p

πp
π̄peGS +

⌊π−q
πq
bπ − π̄pcGS

⌋
GS
≤
⌈π+

p

πp
π̄p +

π−q
πq

(π − π̄p)
⌉
GS

(65)
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for the discrete case. For any k ≥ 0, we find

−u′(k) =
⌈π+

p

πp
(π̄p − kGS)

⌉
GS

+
⌊π−q
πq

(bπ − π̄pcGS + kGS)
⌋
GS

≤
⌈π+

p

πp
(π̄p − kGS) +

π−q
πq

(bπ − π̄pcGS + kGS)
⌉
GS

≤
⌈π+

p

πp
π̄p +

π−q
πq
bπ − π̄pcGS

⌉
GS
,

which also confirms (65) and completes the case of arrangements ref(Ip) ≤
ref(Iq).

To establish the result for reverse arrangements, we only have to exchange
p and q. Rewriting condition (61) appropriately reads

π−p
πp

= 1−
π+
p

πp
≥ 1−

π−q
πq

=
π+
q

πq
,

which is fulfilled if and only if (61) is satisfied. Exchanging p and q in (62) and
(65) and taking the maximum of the appropriate values eventually completes
the proof of the lemma. 2

Lemma 8 (Uniform Bounds m-Maxima) Let S = {zi}1≤i≤n with zi =
xi+yi and y be given, such that xi ≤ xj for i < j and yi ≤ y for 1 ≤ i, j ≤ n.
If S = {wi}1≤i≤n with wi = xi + y for 1 ≤ i ≤ n, then the respective m-th
largest elements satisfy maxm S ≤ maxm S.

Proof If maxm S = zv for some 1 ≤ v ≤ n, we claim that there exists
some index p ≤ n −m + 1 such that zv ≤ zp, since otherwise z1 < zv, z2 <
zv, . . . , zn−m+1 < zv. However, zv is the m-largest element in S, which means
that there are only n −m zi’s that could possible satisfy zi < zv, providing
the required contradiction. Since of course wi ≤ wj for i < j, we have
maxm S = zv ≤ zp ≤ wp ≤ wn−m+1 = maxm S. 2

Appendix B: Generic Algorithm

This appendix contains a restatement of the generic interval-based clock
synchronization algorithm of [SS97a], along with a brief mentioning of the
many parameters found in our system model. It is provided for the ease of
reference only; please consult the original paper for details.
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Definition 9 (Generic Algorithm [SS97a, Def. 7]) The parameters re-
quired for the instance of the algorithm running at node q,

• node q’s intrinsic inverse rate deviation bound ρq and uniform bound
ρmax ⊇

⋃
p ρp with ρmax = |ρmax| = ρ−max + ρ+

max ([SS97a, Assum. 2]),

• clock granularity G, clock setting granularity GS, node q’s maximum
rate adjustment uncertainty uq = [−u−q , u+

q ], and uniform maximum
rate adjustment uncertainty umax ⊇

⋃
p up with umax = u−max + u+

max

([SS97a, Assum. 2]),

• transmission delay characteristics δsq, εsq for all nodes s 6= q, uniform
bounds 0 ≤ δmin ≤ minp,q{δpq}, δmax ≥ maxp,q{δpq}, εmax ⊇

⋃
p,q εpq

with εmax = |εmax| = ε−max+ε+
max satisfying εmax ⊃ δminρmax, “indicator”

of broadcast network B ∈ {1, 2}, and accuracy transmission loss GA

([SS97a, Assum. 4]),

• computation delay compensation Γq (integer multiple of G) guarantee-
ing node q’s maximum computation time γq ([SS97a, Assum. 1]), cho-
sen according to

Γq ≥
γq + u−q
1− ρ−q

,

and uniform bounds Γmax ≥ maxp{Γp} and 0 ≤ Γmin ≤ minp{Γp};
usually Γp = Γmax = Γmin is the same for all nodes p,

• broadcast delay compensation Λ + Ω (integer multiple of G), chosen to
satisfy

Λ + Ω ≥ λmax + ωmax + u−max

1− ρ−max

;

in conjunction with ∆ below, it ensures that resynchronization starts
only after all CSMs broadcast by non-faulty nodes during an FME have
arrived ([SS97a, Assum. 4]),

• transmission delay compensation ∆ (integer multiple of G) chosen ac-
cording to

∆ ≥ π0 + umax + δmax + (P − Γmin + π−)ρmax + ε+
max

1 + ρ+
max

, (66)

where π0 and π− depend on the particular convergence function em-
ployed (provided by the appropriate analysis),
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• round period P ≥ Λ + Ω + ∆ + Γmax (integer multiple of G),

where all parameters are integer multiples of GS unless otherwise specified.
Our generic algorithm is defined as follows:

0. Initial Synchronization: At each node q, the local interval clock Cq

has to be initialized to the accuracy interval A0
q = [T 0

q − α0−
q , T 0

q +
α0+
q ] at some synchronous real-time t0q by some external means. This

initialization must ensure

• t0q ∈ A0
q,

• T 0
q ∈ [Λ + Ω + ∆ + Γq ± π],

• α0
q ⊆ π0,

where π and π0 depend on the particular convergence function employed
(provided by the appropriate analysis).

1. Periodic Synchronization: Close to the end of each round k ≥ 0,
every node q in the system performs the following operations (the de-
pendency of T I , tIq, etc. upon round k is suppressed for brevity):

(S) CSM Send: Periodically at times Cq(t
I
q) = T I = (k + 1)P , node q

initiates a broadcast. The message Mqp sent to node p at some real-time
tAqp during that broadcast operation contains the accuracy interval Aqp =
[TAqp ± αAqp] = Cq(t

A
qp). For the zero-delay “loop-back transmission” to

the own node q, tAqq = tIq so that TAqq = T I = (k + 1)P .

(R) CSM Reception: If a clock synchronization message Mpq from node
p arrives at node q at real-time tpq, when Cq(t

p
q) = T pq , the interval

Ipq =

{
Apq + [TRq − T pq + δpq ± 2GA + εpq] + (TRq − T pq )ρq + uq +G
Aqq + TRq − TAqq + (TRq − TAqq)ρq for p = q

is computed and stored in a set Iq. For the definition of the resynchro-
nization time TRq , see Step (T).

(C) Computation: At real-time tΛ+Ω+∆
q defined by

Cq(t
Λ+Ω+∆
q ) = TΛ+Ω+∆ = (k + 1)P + Λ + Ω + ∆,

the convergence function CV is applied to the compatible intervals sto-
red in Iq, yielding the interval Rq. In addition, Iq is re-initialized to
the empty set for the next round.
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(T) Termination and Resynchronization: At real-time tRq defined by

Cq(t
R
q ) = TRq = (k + 1)P + Λ + Ω + ∆ + Γq,

node q’s interval clock Cq is set to Rq (instantaneously or by continuous
amortization).

Appendix C: Generic Analysis

This appendix provides an extension of the definition of the generic conver-
gence function ([SS97a, Def. 7]) and the major theorem ([SS97a, Thm. 1]),
which considerably improve (and hence replace) the original versions. They
have been developed in the technical report [SS97b] and are restated here,
along with their justification and proofs, for further referencing.

We mentioned already that all results obtained in [SS97a] are generic in
the sense that they are expressed in terms of a few characteristic parameters
of the convergence function defined in [SS97a, Def. 11], namely,

• accuracy preservation function ℵ(·), giving bounds on the provided
interval of accuracies,

• precision preservation function Φ(·), giving the precision of the pro-
vided accuracy interval with respect to τ k,

• precision enhancement function Π(·), giving the precision of the pro-
vided accuracy interval with respect to τ k+1.

In our original Definition [SS97a, Def. 11], we required CV to be both
translation invariant and weakly monotonic according to the following defi-
nition ([SS97a, Def. 10]).

Definition 10 (Transl. Invariance & Weak Monotonicity) Given two
sets I = {I1, . . . , In} and J = {J1, . . . ,Jn} of n ≥ 1 accuracy intervals,
an interval-valued function f() of n ≥ 1 interval arguments is called

1. weakly monotonic if and only if Ij ⊆ J j with ref(Ij) = ref(J j) for all
1 ≤ j ≤ n implies f(I) ⊆ f(J ),
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2. translation invariant if and only if

f(I1 + ∆, . . . , In + ∆) = f(I1, . . . , In) + ∆

for any real ∆.

However, we recognized that there is no need to require weak monotonic-
ity for CV itself: Monotonicity is used in [SS97a] to justify that bounds on
input intervals carry over to bounds on the result. Still, there is no need to
establish this property for CV , since it suffices to show that all character-
istic functions are monotonic with respect to their interval arguments. The
modified definition of the generic convergence function in Definition 11 now
accounts for this fact.

More importantly, in the course of analyzing particular convergence func-
tions, we eventually recognized that applying the generic framework ([SS97a])
literally provides overly conservative8 worst-case accuracy bounds. Intu-
itively, this is due to the fact that we simply added up the worst-case en-
largement of, say, α+

p —provided by the convergence function’s accuracy
preservation function ℵ+(·)— in every round. The worst-case enlargement of
α+
p , however, cannot occur successively in consecutive rounds. This is due to

the fact that the occurrence of the worst-case setting usually yields an initial
precision (that is, after resynchronization) that is better than the worst-case
one. This means that the initial precision in the next round is smaller than
the worst-case one assumed for the previous round, which in turn prohibits
the occurrence of the worst-case enlargement of α+

p then.
The key idea used for improving our analysis is to take into account the

common intersection of those π-precision intervals associated with the con-
vergence function’s input intervals that eventually determine the worst-case
setting for, say, α+

p . By feeding its length ι as an additional parameter into
the accuracy preservation function ℵ+(·), the worst-case enlargement of α+

p

can be conditioned on the common intersection actually present. Note that
a lower bound was found to be sufficient for this purpose, since excessive ad-
justments happen for small intersections only.9 An additional characteristic
function =+(·) respectively =−(·) is introduced for keeping track of how the

8We do not mean the obvious lacking of a good worst-case bound on αp = α−p + α+
p

here. In fact, since the worst-case scenario for negative and positive accuracy cannot occur
simultaneously, simply adding the bounds on α+

p and α−p provides an overly conservative
bound on αp only.

9At least for any particular convergence function considered up to now.
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convergence function affects ι in worst-case scenarios with respect to positive
respectively negative accuracy. This (conditional) intersection enhancement
function effectively determines ι for the next round, that is, propagates the
required information over multiple rounds.

Making this idea working in practice, however, is tricky for several rea-
sons: First of all, it is the particular convergence function that determines
how many/which input intervals are involved in the worst case accuracy
setting. Leaving CV unspecified in our generic framework thus makes it nec-
essary to supply all the information required for constructing the particular
ι from our general expressions. Moreover, different ι− respectively ι+ are
usually required for computing the worst-case bound for α−p respectively α+

p .
In fact, it may even be the case that some ι depending upon p is required
for determining the worst case accuracy at node p, see [Sch97a] for an ex-
ample. It is worth noting, however, that something like ιp < ιq implies that
the computed worst-case accuracy bounds for nodes p and q cannot both be
tight.

To cope with those problems, we actually utilize individual lower bounds

ι+s and ι−s , 1 ≤ s ≤ n, on the length of the intersection Î
s

p∩ Î
s

q ∩ Î
minp

p ∩ Î
minq

q

and Î
s

p∩ Î
s

q∩ Î
maxp

p ∩ Î
maxq

q , respectively, where minx and maxx represent that

non-faulty node that leads to the leftmost right(Î
minx

x ) and the rightmost

left(Î
maxx

x ), respectively, for x ∈ {p, q}. Clearly, ι+s and ι−s are meant for the
worst-case accuracy setting for α+

p and α−p , respectively, so ∀s : ι+s and ∀s : ι−s
are supplied as parameters to ℵ+(·), =+(·) and ℵ−(·), =−(·), respectively, in
Definition 11.

In order to be able to inductively compute an expression for, say, ι+p ,
the conditional intersection enhancement function =+(·) provides an upper

bound π
ι+pq
0 on the mutual precision of the CV ’s results {Rp,Rq} computed

at node p, q under the worst-case accuracy setting for α+
p . Since Rp and Rq

are both π0-correct, this implies that the mutual intersection R̂p ∩ R̂q for

any q (including q = minx) has length at least ι+p = π0 − maxq π
ι+pq
0 . Now,

since the drift and delay compensation operations applied for computing the
input intervals fed into the convergence function are accuracy preserving, it
follows that any initial intersection is necessarily preserved during a round.

Thus, any intersection of source intervals like Î
s

p∩Î
minq

q must also have length
at least ι+s , which implies that we can simply use ι+s = ι+s .

The above considerations lead to the following modified definition of the
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generic convergence function from [SS97a].

Definition 11 (Generic Convergence Function CV [SS97a, Def. 7])
Let Ip = {I1

p, . . . , I
n
p} respectively Iq = {I1

q, . . . , I
n
q }, q 6= p, be two ordered

sets of n compatible intervals (all representing the same real-time t) obtained
at nodes p respectively q at the end of a round, which are in accordance with
a given fault model F . Assuming that

[1] any non-faulty I ip is πip-correct for πip ∈ Pp = {π1
p, . . . ,π

n
p} denot-

ing a given set of precision bounds (and analogously for I iq with set of
precision bounds Pq = {π1

q, . . . ,π
n
q }),

[1’] P = {π1, . . . ,πn} with πip ∪ πiq ⊆ πi ⊆ πH , for some suitable πH ,
denotes a set of uniform precision bounds ensuring πi-correctness of
both I ip and I iq (if non-faulty),

[2] any pair of non-faulty intervals {I ip, I iq} is πI-precise for some πI ⊆
πH ,

[3] for any s with both Isp and Isq being non-faulty, the intersection of the

associated precision intervals Î
s

p∩Î
s

q∩Î
minp

p ∩Î
minq

q respectively Î
s

p∩Î
s

q∩
Î

maxp

p ∩ Î
maxq

q , where minx respectively maxx represents that non-faulty

node that leads to the leftmost right(Î
minx

x ) respectively the rightmost

left(Î
maxx

x ) for x ∈ {p, q}, has length at least ι+s ≥ 0 respectively ι−s ≥ 0
(integer multiples of GS),

[4] the accuracies of any non-faulty I ip = [T ip ± αip] are integer multiples

of GS satisfying αip ⊆ βip ∈ Bp for a given set of accuracy bounds

Bp = {β1
p, . . . ,β

n
p} (and analogously for I iq with set of accuracy bounds

Bq); let Rp = CV(Ip) = [T ′p ±α′p], and Rq = CV(Iq) = [T ′q ±α′q].

The generic convergence function CV must be translation invariant and
should provide accurate intervals with reference point and accuracies being in-
teger multiples of GS. Its behavior is characterized by the following functions,
which must be monotonic with respect to any interval argument:

1. Precision preservation function Φ(·), so that Rp is Φ(Pp,π
H ,πI)-

correct and Rq is Φ(Pq,π
H ,πI)-correct, with |Φ(P ,πH ,πI)| = O(πH)

for πH = |πH |.
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2. Precision enhancement function Π(·), so that the set {Rp,Rq} is π0-
precise for any π0 satisfying |π0| = π0 = Π(P, πH , πI), with Π(P,
πH ,πI) < πH = |πH |.

3. Conditional intersection enhancement functions

=−(·) respectively =+(·),

so that the set {Rp,Rq} is π
ι−pq
0 -precise respectively π

ι+pq
0 -precise with

π
ι−pq
0 = =−(Bp,Bq,Pp,Pq,π

H ,πI ,∀s : ι−s )

π
ι+pq
0 = =+(Bp,Bq,Pp,Pq,π

H ,πI ,∀s : ι+s )

for worst-case accuracy settings with respect to α−p respectively α+
p .

4. Conditional accuracy preservation functions ℵ−(·), ℵ+(·), so that

α′p ⊆
[
−ℵ−(Bp,Pp,π

H ,πI ,∀s : ι−s ),ℵ+(Bp,Pp,π
H ,πI ,∀s : ι+s )

]
.

Note that both the precision enhancement function Π(·) and the intersection
enhancement functions =−(·), =+(·) provide a worst-case precision, although
for different classes of input scenarios: Whereas Π(·) provides the precision
for any input scenario, =−(·) respectively =+(·) is valid for scenarios leading
to worst-case α−p respectively α+

p according to item (4) only.
Another issue that was left open by the analysis of [SS97a] is the determi-

nation of traditional accuracy , which gives the amount local time may drift
from real-time during a given time interval ∆t. Although worst-case bounds
on accuracy intervals obviously provide an upper bound on traditional accu-
racy as well, this usually leads to overly conservative estimates. Therefore,
an explicit expression for traditional accuracy is added to our major theorem.
Moreover, taking the limit ∆t → ∞, traditional accuracy leads to the rate
(and hence drift) of the synchronized clocks, which is more convenient for
comparison. Note that appropriate worst-case bounds for are available for
most existing internal synchronization algorithms, see, for example [LWL88],
[MS85], [Sch87], [ST87], [VR92], [DB93], [FC95b], [VRC97].

Our notion of internal global time makes it easy to deal with traditional
accuracy. We only have to bound the maximum “jump” internal global time
can experience when switching from one round to the next. This is sufficient
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since internal global time progresses as real-time does during a round, so that
no additional deviation from real-time occurs in between synchronization
instants.

The appropriately modified and extended major result of the generic anal-
ysis in [SS97a] for the case of instantaneous adjustment10 of the local clocks
in step (T) of the algorithm in Definition 9 reads as follows.

Theorem 5 (Instantaneous Correction [SS97a, Thm. 1]) Running in
a system complying to [SS97a, Assum. 1–4], the clock synchronization al-
gorithm of Definition 9 using the generic convergence function CV charac-
terized by accuracy preservation ℵ±(·), precision preservation Φ(·), precision
enhancement Π(·), and intersection enhancement =±(·) subject to a given
fault model F , guarantees accuracy and precision for all rounds k ≥ 0 as
follows:

0. The accuracy interval Ak+1
q = Ak+1

q (tR,kq ) = [T k+1
q ±αk+1

q ] provided by
the local interval clock of a non-faulty node q at the beginning of round
k + 1, k ≥ 0, satisfies αk+1

q ⊆ βk+1
q with

βk+1
q = (67)

=
[
−ℵ−(Bk+1

q ,Pq,π
H ,πI ,∀s : ιk,−s ),ℵ+(Bk+1

q ,Pq,π
H ,πI ,∀s : ιk,+s )

]
,

β0
q = α0

q,

where Bk+1
q = {β1,k+1

q , . . . ,βn,k+1
q } is defined by βp,k+1

q = βkp +ωpq with

ωpq = up + uq +G+ 2GA + εpq

+(P −∆− Γp)ρp + (Γq + ∆− δpq)ρq
+(Λ + Ω)[−max{ρ−q − ρ−p , 0},max{ρ+

q − ρ+
p , 0}]

+O(Pρmax +G+ εmax)ρmax for p 6= q, (68)

ωqq = uq + Pρq +O(Pρmax +G+ εmax)ρq, (69)

the set Pq = {π1
q, . . . ,π

n
q } of node q’s precision bounds πpq ⊆ πp ⊆ πH

(see item (1)) is defined by

πpq = π0 + up + uq +G+ εpq + (P −∆− Γp)ρp
10Consult [SS97a] for how to carry over this result to clock adjustment via continuous

amortization.
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+(Γq + ∆− δpq)ρq
+(Λ + Ω)[−max{ρ−q − ρ−p , 0},max{ρ+

q − ρ+
p , 0}]

+O(Pρmax +G+ εmax)ρmax for p 6= q, (70)

πqq = π0 + uq + Pρq +O(Pρmax +G+ εmax)ρq, (71)

and

ιk+1,−
q = π0 −max

j
=−(Bk+1

q ,Bk+1
j ,Pq,Pj,π

H ,πI ,∀s : ιk,−s ) ≥ 0, (72)

ιk+1,+
q = π0 −max

j
=+(Bk+1

q ,Bk+1
j ,Pq,Pj,π

H ,πI ,∀s : ιk,+s ) ≥ 0, (73)

ι0,−q = ι0,+q = π0 −max
j
{α0

j} ≥ 0. (74)

1. The interval clocks of non-faulty nodes are synchronized to the (observ-
able) initial worst-case precision (that is, the precision at the beginning
of each round of the slowest non-faulty clock)

π0,max = π0 + umax +G+ (Γmax − Γmin)ρmax

+O(Pρ2
max +Gρmax + εmaxρmax) (75)

with π0 = |π0|, where π0 is a solution of the equation

|π0| = Π(P ,πH ,πI) (76)

for the set P = {π1, . . . ,πn} of uniform precision bounds πp ⊆ πH

defined by

πp = π0 + up + umax +G+ εmax

+(P −∆− Γp)ρp + (Γmax + ∆− δmin)ρmax

+(Λ + Ω)[−(ρ−max − ρ−p ), ρ+
max − ρ+

p ]

+O(Pρmax +G+ εmax)ρmax, (77)

πq = π0 + uq + Pρq +O(Pρmax +G+ εmax)ρq (78)

πH = π0 + 2umax +G+ εmax + (P + Γmax − Γmin − δmin)ρmax

+O(Pρmax +G+ εmax)ρmax, (79)

πI = εmax +Bumax +G+ (Λ + Ω + ∆ + Γmax − δmin)ρmax

+O(Pρmax +G+ εmax)ρmax, (80)

where πq ⊆ πq denotes node q’s own (that is, non-remote) precision
bound.
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2. The (observable) worst-case precision πmax satisfies

πmax = max
{
π− + u+

max + (Γmax − Γmin)ρ+
max,

π+ + u−max + (Γmax − Γmin)ρ−max, π0 + umax + Pρmax

}
+G+O(Pρ2

max +Gρmax + εmaxρmax) (81)

with

π = Φ(P ,πH ,πI) + π0 + umax + Pρmax

+O(Pρmax +G+ εmax)ρmax, (82)

where Φ(·) denotes the result of Φ(·) with swapped positive and negative
accuracy.

3. Resynchronization of any two non-faulty nodes p, q occurs within real-
time tRp − tRq satisfying

tRp − tRq ⊆ Γp − Γq + [−π0, π0] + up + uq + P (ρp + ρq)

+O(Pρmax +G+ εmax)[−ρmax, ρmax], (83)

where clock adjustments Υq of at most Υq ∈ πq ⊆ π defined by

πq = Φ(Pq,π
H ,πI)+π0 +uq+Pρq+O(Pρmax +G+εmax)ρmax (84)

are applied to the clock of a non-faulty node q.

4. Let Φ =
⋃
q Φ(Pq,π

H ,πI) ⊆ Φ(P ,πH ,πI). For any round k ≥ 0,
τ k+1(t)− τ k(t) ∈ Φ−π0, and the traditional accuracy at the beginning
of round k + 1 satisfies

T k+1
q − tR,kq ∈ π0 + (k + 1)(Φ− π0). (85)

The inverse rate r−1
q,syn of the synchronized clock at any node q evaluates

to

r−1
q,syn = lim

k→∞

tR,kq − t0q
T k+1
q − T 0

q

∈
[
1± Φ− π0

P

]
, (86)

where T 0
q = Cq(t

0
q) is node q’s local time at the beginning of round k = 0.
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Proof With the exception of item (0) and item (4), the proof of Theorem 1
in [SS97a] applies without modification. We just replaced π in certain re-
mainder terms like (77) by the coarse bound π = O(Pρmax + G + εmax)
established in the proof of [SS97a, Lem. 12], and added (78) according to
[SS97a, Eq. (58)], which gives the precision bound πq that applies for local
(non-remote) intervals Iqq.

As far as item (0) is concerned, we found it convenient to introduce the
additional abbreviation ωpq in (68)/(69). Moreover, according to the modified
Definition 11 of the generic convergence function, we split up ℵ(·) in ℵ−(·)
respectively ℵ+(·) and extended the list of parameters to include ∀s : ιk,−s
respectively ∀s : ιk,+s . The justification of the appropriate definitions (72)–
(74) follows the line of reasoning outlined prior to Definition 11: An upper

bound π
ι+qj
0 on the precision of the set shiftt′({Ak

q ,A
k
j}) (shifting the intervals

to some common point in time t′ just makes them compatible) at the begin-

ning of a round k implies a lower bound ι+qj = π0 − π
ι+qj
0 on the length of the

mutual intersection of the associated π0-precision intervals Â
k

q ∩ Â
k

j . Taking

the minimum over all j gives a lower bound ι+q = π0 − maxj π
ι+qj
0 on that

mutual intersection for arbitrary nodes j, including j = minx. The required

π
ι+qj
0 , however, is given by the conditional intersection enhancement function
=+(·) for rounds k > 0, and by the initial synchronization assumption in
Definition 9 for round k = 0.

It only remains to confirm that the precision intervals associated with
any (non-faulty) Isp and Isq —fed into the convergence function at node p

and q— have a mutual intersection with either Iminp
p and Iminq

q of length at
least ι+s as well. However, the drift and delay compensation operations used
to obtain round k’s Isx from Ak

s have been explicitly designed to preserve
accurateness, so they must preserve any initial mutual intersection. Hence,
choosing ιk+1,+

q and ιk+1,−
q according to (72)–(74) is legitimate.

Turning our attention to item (4), we know that Ak+1
q is Φ(Pq,π

H ,πI)-
correct with respect to τ k by virtue of item (2) of Definition 11 and hence
Φ-correct. Note that Φ ⊆ Φ(P ,πH ,πI) is a simple consequence of mono-
tonicity of Φ(·). Moreover, from item (3) of Definition 11, it follows that

all Ak+1
p are π0-precise. Hence it is possible to choose τ k+1 ∈ ⋂p Âk+1

p , as
justified by Definition 2, and we claim that we may in fact choose τ k+1 so
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that
−(Φ+ − π+

0 ) ≤ τ k+1 − τ k ≤ Φ− − π−0 .

If this was not feasible, there would exist an interval Â
k+1

r of length π0 with

τ k+1 = left(Â
k+1

r ) or else τ k+1 = right(Â
k+1

r ) that satisfies τ k 6∈ Â
k+1

r + (Φ−
π0) = Φ. This, however, would contradict Φ-correctness of Ak+1

r .
The bound (85) is a simple consequence of the fact that internal global

time progresses as real-time does during a round, so that the maximum
deviation between internal global time and real-time remains the same during
any round. Therefore, we just have to add up the worst-case internal global
time “jumps” at each round. The initial deviation (in round 0) is zero since
choosing τ 0(t) = t is legitimate due to the initial synchronization assumption
in Definition 9. Hence, to complete the proof of (85), it only remains to add
the maximum deviation between τ k+1 and the reference point T k+1

q of Ak+1
q ,

which is trivial since the latter is π0-correct.
To derive expression (86) for the rate of the synchronized clocks, we mul-

tiply (85) by -1 to arrive at

tR,kq − t0q ∈ T k+1
q − T 0

q − (t0q − T 0
q ) + π0 + (k + 1)(Φ− π0). (87)

From the initial synchronization assumptions in item (0) of Definition 9, we
gather t0q − T 0

q ∈ α0
q ⊆ π0. Moreover, from step (T) of the algorithm in

conjunction with the fact that the maximum clock adjustment was shown
to satisfy Υq ∈ π in item (3) of this theorem, we obtain T k+1

q − T 0
q =

(k + 1)P +O(π). Plugging this into (87), we find

tR,kq − t0q
T k+1
q − T 0

q

∈ 1 +
[−π0, π0] + (k + 1)(Φ− π0)

(k + 1)P +O(π)
.

Taking the limit for k →∞ eventually provides (86) and completes the proof
of our theorem. 2
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Glossary

Name Meaning Page
ℵ+(·), ℵ−(·) accuracy preservation function 64
α = [−α−, α+] interval of accuracies of I = [r ±α] 8
α = α− + α+ length of α 8
α0
p = [−α0−

p , α0+
p ] initial accuracies at node p 59

C(t), Cp(t) ordinary clock (node p) 3
Cp(t) = [Cp(t)±αp(t)] local interval clock of node p 3
δmax, δmin uniform bounds on transmission delay charac-

teristics
59

∆ transmission delay compensation 59
εmax maximum transmission delay uncertainty 59
fa number of asymmetric respectively arbitrary

faults
17

fc number of crash faults 24
fs number of symmetric respectively simple

faults
17

fu number of unbounded accuracy faults 20
G clock granularity 59
GS clock setting granularity 59
Γmax,Γmin uniform bounds on computational delay char-

acteristics
59

=−(·), =+(·) intersection enhancement function 64
I, A (accuracy) intervals 8
I swapped interval [r ∓α] 9
Î π-precision interval associated with I 9
Ip ordered set received intervals at p 59
Λmax logical time maximum broadcast latency 59
M Marzullo’s function 18
maxi:m{si} m-th largest element among {si} 39
n number of nodes 4
ωmax logical time maximum broadcast oper. delay 59
OA orthogonal accuracy convergence function 36
P round period 59
Φ(·) precision preservation function 64
π = [−π−, π+] (generic) interval of precision 9
π = π− + π+ length of π 9
π0 = [−π−0 , π

+
0 ] ideal initial precision 66

πH = [−πH−, πH+] uniform precision exchanged intervals 66
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πI uniform precision of perceptions 66
π-accurate correct with respect to t and π-precise 9
π-center asymmetric reference point setting 35
π-correct correct with respect to both t and τ 10
π-precise precise interval set 9
Π(·) precision enhancement function 64
ref(I) reference point of interval I 8
τ , τk internal global time (of round k) 10
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