On Ajtai’s Lower Bound Technique for R-way
Branching Programs and the Hamming Distance
Problem

Jakob Pagter®

BRICS'
Department of Computer Science

University of Aarhus
Denmark

Abstract

Miklos Ajtai [Determinism versus Non-Determinism for Linear Time
RAMs with Memory Restrictions, 31st Symposium on Theory of Com-
putation (STOC), 1999] has proved that any R-way branching program
deciding the so-called Hamming distance problem (given n elements de-
cide whether any two of them have “small” Hamming distance): in time
O(n) must use space Q(nlgn).

We extend the proof to obtain a time-space trade-off for time between
n and an%&, for some suitable 0 < a < 1. In particular we prove that

if space is O(n'™*), then time is Q(n—g—lg1 lg"n .

1 Introduction

In [Ajt99b] Miklos Ajtai proved that any R-way branching program that de-
cides element distinctness using sub-linear space must use super-linear time.
The technical details of the proof are complicated. However, the basic ideas
underlying the proof are not, and this was exploited by Ajtai to prove an even
stronger bound for the so called Hamming distance problem (a generalization
of element distinctness) using much simpler arguments. An interesting aspect
of these bounds is that they are valid in the well known RAM model with word
size lg R, and thus bounds in this model are valid for RAMs independent on the
specific instruction set.

*E-mail: pagter@daimi.au.dk. Partially supported by the IST Programme of the EU
under contract number IST-1999-14186 (ALCOM-FT). Part of this work was done while the
author was visiting University of Toronto.

TBasic Research in Computer Science,

Centre of the Danish National Research Foundation.

The element distinctness theorem is the more interesting of Ajtai’s two the-
orems, as element distinctness is an interesting and very well-studied prob-
lem [BFMadH*87, Kar86, Yao94]. On the other hand, the Hamming distance
proof is arguably the more interesting of the two proofs, as it is gives the best
possible bound in the model using a clear and elegant proof.

The purpose of this paper is to study the latter proof from three angles:
1) To what extent does the Hamming distance proof generalize, i.e. for what
intervals of time and space do we have a lower bound in the form of a time-
space trade-off? 2) How strong is the proof, e.g. can the simpler of the two
proofs actually be used to prove something for element distinctness? 3) Can
the Hamming distance proof be used to give non-trivial lower bounds in the
Boolean model?

The answer to the two latter questions seems to be negative, but we can
generalize the proof to achieve the following:

Theorem 1 (General theorem, vanilla version) Any R-way branching pro-
gram deciding Hamming distance using time O(k(n)-n) , k(n) < alég]g"nl for a
suitable constant 0 < a < 1 must use space

nlgn

S(n) >5W;

for some constant 8 > 0.

The full version of this theorem (to be found in Section 5) will imply all
three answers. For now, let us just observe that Theorem 1 implies that any
R-way branching program, and thus eny RAM with word size 1g R, solving
the Hamming Distance problem using O(n'~¢) bits of space must use time
Q(néglﬁ). In terms of time this is the strongest result that can be achieved
using our results. To our knowledge this is the quantitatively best known lower
bound for a decision problem in the R-way branching program model. Similarly,
using time O(né%)) implies using space Q(n!~¢) for some 0 < € < 1.

Using the combinatorics of Ajtai in conjunction with the technique of Beame
et al. [BST98], a theorem similar to Ajtai’s Hamming distance theorem can be
proved. In fact this gives rise to a Q(nlglgn) bound on time for space in
O(n'~¢). This connection was observed by Beame et al. [BSSV00] (indepen-
dently on this work). It is not surprising then that we can also prove Theorem
1 by combining the techniques of Beame et al. [BSSV00] with our generalized
version of Ajtai’s combinatorics (see [Pag01]). Since the initial version of our
paper (available as [Pag00]), Beame et al. [BSSV03] has provided an Q(nlgn)
bound on time for space in O(n'~¢) for the Hamming distance problem.

Our main contribution is the generalization of Ajtai’s technical lemmata.
Using the generalized version of Ajtai’s combinatorics we are able to prove lower

™) improving the (nlglgn) bound of Beame et

bounds for time up to Q(nl—lgl—
Ielgn glgmn
al., and the Q(nﬁﬁﬁ) bound, which follows by the immediate generalization

!Following [Knu98] we use “Ig” to denote the logarithm in base 2.

of Ajtai’s work (where constants are systematically replaced by functions of n
without modifying the proof as such). We observe that the proof also works for
randomized branching programs with one-sided error.

2 Previous work

Proving lower bounds in general models of computation is notoriously hard.
Early approaches restricted the computational model, for example to compar-
ison based models, but natural models (such as the RAM) do not obey such
restrictions. Another approach has been to restrict the resources available, e.g.
limiting the amount of space which we allow a given algorithm to use. This
gives rise to time-space trade-offs, for which several breakthroughs have been
achieved recently [Ajt99a, Ajt99b, BST98].

Branching programs have been very useful for this line of study. In particular
much insight has been gained using the R-way branching program model of
Borodin and Cook [BC82]. Results include general lower bounds for sorting
[Bea91, BC82] and universal hashing [MNT93]. The problems for which these
techniques work are characterized by having a large output domain, which is
essential for the employed proofs. It was only recently that non-trivial lower
bounds for a decision problem were obtained in this model [Ajt99b, BST98].

When proving upper bounds for problems like Hamming distance, element
distinctness, sorting and universal hashing, one popular model has been the
word RAM, or RAM, (see e.g. [Hag98]). Much debate has taken place over
which instruction sets to allow, giving rise to some confusion in the literature.
However, one of the very nice properties of R-way branching programs is that
they are strictly more powerful than any RAM with word size lg R (regardless
of instruction set). This means that the bounds obtained in this model will hold
for any RAM no matter what specific instruction set we are working with.

The first non-trivial bound for a decision problem in the R-way branching
program model was given by Beame et al. [BST98|, who exhibited a problem
for which they could prove a lower bound of Q(nlglgn) bound on time, when
restricting space to being O(n). As mentioned earlier, this bound also applies
to the Hamming distance problem.

Independently of our work Beame et al. [BSSV00] generalized the element
distinctness proof of Ajtai, and obtained a lower bound of Q(n+/lgn/1glgn) for
Element Distinctness in the R-way model. Our results differ from this result
in two aspects: 1) we focus on the “easy” version of Ajtai’s original proof—the
Hamming distance proof, and 2) quantitatively our bounds are better (albeit
for Hamming distance and not element distinctness). Since the initial version
of our paper Beame et al. [BSSV03] (a revision of [BSSV00]) has provided an
Q(nlgn) bound on time for space in O(n'~(¢) for the Hamming distance prob-
lem, improving on our bounds.

Many of the results achieved in the R-way branching program model were
stepping stones or “side-effects” in the quest for a non-trivial (i.e. T € w(n) or
even just T > n) for a decision problem in a Boolean model, which for a great

many people is the holy grail of computational complexity. The first non-trivial
bound for a decision problem in the Boolean branching program model was
given by Beame et al. [BST98], who exhibited a problem for which they could
prove a lower bound of 1.0178n (sic) on time for space restricted to being sub-
linear. Ajtai [Ajt99a] extended his own work for element distinctness in the R-
way model to give a non-trivial lower bound in the Boolean branching program
model. The aforementioned work of Beame et al. [BSSV00] generalizes [Ajt99a]
(as well as [Ajt99b]) to obtain lower bounds for time up to Q(n+/lgn/lglgn)
in the Boolean branching program model.

Despite the exciting developments in the Boolean model, our focus remains
the R-way model. We only treat the Boolean model via the fact that bounds in
the Boolean branching program model can be derived from bounds obtained in
the R-way model—at a cost.

Proposition 1 Suppose we can prove a lower bound of f(n) for some problem
in the R-way branching program model, then this translates into a f(n)/1gR
lower for the same problem in the Boolean branching program model. Likewise
for space.

Proof: In the Boolean model we measure the size of the input, n, in bits. In
the R-way model n refers to the number of words each consisting of 1g R bits.
Thus, if we translate inputs of size n from the R-way model, they will become
inputs of size nlg R bits in the Boolean model. O

So if we have that R € n°®®", we need w(nlgn) bounds in the R-way model
to infer w(n) bounds in the Boolean model. None of the results mentioned for de-
cision problems in the R-way branching program model—our results included—
meet this requirement.

The results of Beame et al. [BSSV00, BSSV03] holds for randomized branch-
ing programs with two-sided error. These are the first non-trivial lower bounds
for randomized branching programs in both the R-way and the Boolean branch-
ing program model.

3 Model of computation

We employ the R-way branching program model, which is at least as strong
as a RAM with word size [lg R] and any instruction set. We will only give an
informal presentation of the model. For a detailed account see [BC82] or [Sav98].
Boolean branching programs are the special case of R = 2, corresponding to
looking at one bit at a time.

An R-way branching program is a directed acyclic graph. It has one node
with in degree 0 which is called the start node. Every node with out degree
0 is called a terminal node, and is labelled either “YES” or “NO”, depending
on whether the branching program accepts or rejects the given input. Every
node which is not a terminal node is called a computation node and is labelled

with some index i (referring to the i’th word of the input). A computation
node has exactly R outgoing edges, each with a unique label from 1,..., R. The
input to the branching program consists of n elements from some universe of
size R (which may be a function of n), and computation proceeds as follows:
given input = € {1,..., R}"™, we start in the start node where we read the word
indexed by the label of this node; if the value in this word is r, then we follow
the outgoing edge with label r. We continue this procedure for the computation
nodes we encounter until we end up in some terminal node which tells us the
result of the computation.

As measures of complexity we define time T to be the height of our branching
program, and space S to be [lg #nodes].

For the rest of this paper we will assume all branching programs to be
levelled, which means that we can partition the nodes into 7' disjoint sets
Vi, Va,...Vr, such that all edges originating from V; go to V;y1. For asymp-
totic purposes we may assume this without loss of generality. For proofs and
definition see e.g. Borodin et al. [BFK*81].

In this model of computation all “internal” computation is free, we only
“pay” for reading the input.

4 The n-ary independence problem for a binary
relation

We now describe a particular class of decision problems that are the focus of this
paper. This class was introduced by Ajtai. Let A C U x U be a binary relation
on universe U. Say that an input z = ((1),2(2),...,z(n)) is A-independent if
there is no i # j such that A(z(i),z(j)). The n-ary independence problem for
A is the decision problem Da on U™ defined by Da(z) = “YES” if and only if
z is A-independent.

For example, in the case that A is the equality relation EQ = {(z,z)|z € U},
the n-ary independence problem for E(Q) is equivalent to element distinctness on
un.

As a consequence of the fact mentioned above that all internal computation
is free, we have the following easy proposition.

Proposition 2 We can decide the n-ary independence problem, Da, for any
binary relation, A, on U in time T and space S such that

T-S € O(n®lgR),

for time between n and n>.

Proof: First observe that in time n we may decide A using R™ nodes or nlg R
bits of space, using an R-way decision tree—i.e. reading all the inputs once,
remembering them, and then exploit the free internal computation.

This easily generalizes by splitting the input into b(n) blocks each containing
n/b(n) words. Now what we will do is do decide A for each of the O(b(n)?)

pairs of blocks; each time we read a block we also decide A for every pair
of elements in that block. For each pair we may do the computation in time
2n/b(n) using 2(n/b(n)) lg R bits of space; deciding A internally on the blocks is
free as we remember the entire block. In total we use time O(nb(n)) and space
O((n/b(n))1g R), yielding the desired trade-off. O

For time n this construction of course works for any problem, which shows
that for time ©(n) one cannot give space-bounds better than Q(nlgn) (when
R = 2¢18™) ie. we cannot hope for a better general bound for any such
independence problem in this model.

In this paper we focus on the case that U = {0,1}°18" (where ¢ will be a suit-
able fixed natural number) with |U| = n°. Recall that our n-ary independence
problems for binary relations are defined on z = (z(1),z(2),...,z(n)) € U"; we
emphasize the difference in notation between z; € U™ (an entire input consist-
ing of n elements from U) and z(:) € U (the i’th element from U of the input

We will be concerned with the independence problem for another relation:
the Hamming distance relation. For 0 < 7 < i we define the parameterized
Hamming distance relation HD, (a,b) C {0,1}°'8"x{0,1}¢'8" which relates a
and b if and only if they differ in at most yclgn positions. To alleviate notation
HD will refer to HD, ;4 and Hamming distance, or Dy p, will refer to the n-ary
independence problem for this relation with v = 1/4. equality is the problem of
deciding whether the input contains to identical words. It should be clear that
Hamming distance is a natural generalization of equality 2.

A relation A is said to be A(n)—full iff for any pair of subsets of U of size
bigger than A(n)|U| there exists a pair of elements, one from each of the two
subsets, satisfying the relation. Formally, A is A(n)—full if the following holds

VA, BCU: |A|,|B|>AXn)|U| = 3Ja€A beB: Aa,b) (1)
It should be clear that equality is % — full, as any two subsets of U containing
more than half of U will have a non-empty intersection. In [Ajt99b] it is proved
that for all 0 < v < %, HD.,, and in particular HD, is 27°%8" — full on U =
{0,1}¢!8™ where ¢ and § are natural numbers suitably chosen (independent on
n, but depending on) such that ¢ > §. This means that if we have two subsets
of U of size bigger than 2(c~9)18" e are guaranteed to have two elements with
low Hamming distance.

A relation A is said to be {(n)—sparse iff the number of inputs of length n for
which the n-ary independence problem Da(z) = “YES” is less than {(n)|U|™
(a ¢(n) fraction of all possible inputs). Intuitively this means that the n-ary
independence problem for the binary relation, A, has many “NO” instances.
In [Ajt99b] it is proved that for all 0 < v < 3 HD,, is 1 — sparse for a fixed

2
¢ € N (recall that |U| = n°) and n sufficiently large. This means that for at

2When Ajtai says element distinctness in [Ajt99b], he actually means the dual problem
equality.

least half of all input to Hamming distance the answer is “NO”. Ajtai [Ajt99b]
also proves that equality is c— — sparse for a suitable fixed c= > 0.

5 The result

We are now ready to state the result.

Theorem 2 (General theorem, full version) Let A be a A(n)—full and (non-
trivial) ((n)—sparse relation on UxU with |U| = R. Consider an R-way branch-
ing program deciding Da, in time T'(n) = k(n)-n and space S(n). If,

72k(n)lgk(n) <lg ﬁ, (2)
and I 1
I ERRLE - Yen]
l& 7y < k(n)3k(m) " 3)
Then,
S(n) > 718 5y (4)
(n) 2 () (n)

Let us discuss this theorem. First of all, many of the constants in the above
statement may possibly be improved, albeit not significantly.

What kind of fullness is required to achieve a non-trivial result? ;From
Ajtai’s paper it might seem as if the Hamming distance proof works only for what
we might call polynomial fullness, i.e., 1/|U|°()-fullness, whereas the element
distinctness (or rather equality) proof handles constant fullness. If k(n) € O(1),
we see from (2) that constant fullness, specifically A(n) < 27144, actually does
give rise to a non-trivial lower bound. However, it does not seem to be the case
that the parameters of the proof can be improved enough to achieve anything
for % — fullness, i.e., we cannot prove anything for element distinctness, but we
can get closer than what Ajtai’s original statement suggests.

If A(n)|U| < 1 the relation in question would be trivial to decide (as two
subsets of size 1 would then be enough to ensure satisfaction of the fullness
property), hence we can assume that A\(n)|U| > 1. Combining this with (2)
yields, .

Ig|U| > g) > 72k(n)lgk(n).
Recalling Proposition 1, we see that the best result we can achieve in the Boolean
model is,
T (n) < k(n)-n € o(n).
Ig|U| ~ 126 k(n)lgk(n)
In conclusion, no matter how we might chose the parameters, we can get no
non-trivial implications for the Boolean model.

As stated previously, on U = {0,1}¢!8" Hamming distance is n’ — full and
% — sparse, giving Theorem 1 as corollary to Theorem 2. Interesting special
cases include Ajtai’s original theorem: time in O(n) implies space in Q(nlgn),

and space O(n'~¢) implies time Q(n lé%g"n).

6 Proof of Theorem 2

We would like to stress that almost all the arguments closely follow those of
Ajtai [Ajt99b]. We give the proof in full detail for two reasons: 1) in the
generalized version many constants, say ¢, are replaced by functions, ¢(n), and
it is imperative to give the full proof to see exactly where the proof holds and
where it breaks down; 2) it makes it clear exactly where we deviate from the
original proof.

The proof presented here deviates from that of Ajtai in two aspects. When
counting we use tighter estimates where it is possible, this has little effect on
Ajtai’s original proof, but significantly extends the interval of time for which
the generalized proof works—an immediate generalization will work for time up
to roughly ”ég]glg]gn_n: whereas our proof works up to @(néﬁ&). Another devia-
tion is our proof of Lemma 1 (corresponding to Lemmas 7 and 8 in [Ajt99b]).
Besides these technical differences, changes have also been made for reasons of
presentation.

The overall intuition behind Ajtai’s proof is as follows. We use the time and
space restrictions to construct a large set of inputs that are all rejected by the
algorithm. The structure and size of this set will be such that we can utilize the
fullness property of our problem to ensure that at least one input, which we will
call g1, in the above set must be accepted. This of course gives a contradiction
on the assumed time and space restrictions of the algorithm.

Assume we have an R-way branching program, A, deciding DA in time k(n)n
and space S(n) satisfying (2) and (3) but not (4). We will show that then there
exists an input z such that A(z) = “NO” but Da(z) = “YES”, contradicting
our assumption that is, assuming (2) and (3) we may conclude (4).

Define state(z, t) as the state of A (one of 25(™)) after time step ¢ on input
z. For a time interval I, define state(x,l) to be state(x,tr), where ¢y is
the last element of I that is, given x and a time interval I we get the state
of the program when leaving I. An arbitrary set of times 7" may be written
as a disjoint union of maximal intervals I;, i.e. T = U;I;. If we assert that
state(z,T) = state(y,T) we mean that Vj : state(z, ;) = state(y, ;).

We will construct zg; from another input z with some desirable proper-
ties. The first property is that Da(z) = “NO” and hence A(z) = “NO”, as
A is assumed to decide Da correctly. Suppose that we have two disjoint sub-
sets of indices Wy, Wa C {1,...,n} and two disjoint subsets of times T7,T> C
{1,...,k(n)-n}. Suppose now that on input z the indices of W; (i = 1,2) are
not read outside Tj; let

S7 C {z;|(obtained by modifying = on W; only)
A state(z,T;) = state(z;,T3)},

i.e. and z; are identical outside W; and each time we leave T; on both z and
x; we are in the same state. Hence A(z) = A(z;) for all z; € S¥ as the only
differences between the two inputs are in W; and hence “forgotten” when we
leave T}, the only place where W; is read.

Based on z we can thus construct z; and x2 such that A(z) = A(z1) =
A(ze) = “NO”. As Wy and W are disjoint we may make these two different
changes to x simultaneously, obtaining the input xf;. We would like to ensure
that A(z) = A(xgn) = “NO”, but currently this might not be the case. The
reason is that in the set of time intervals, say T3, A is in principle able to look
outside W; and hence 4 might look at W,. This is not a problem as long as z
on Ws is unchanged, but when making the two changes simultaneously we no
longer have any guarantee that the states are fixed. The way to eliminate this
problem is to enforce that the indices of W; are not read in T; on z;, removing
the possibility that 4 detects the change in W» when in T} and vice versa.

We can now construct gy such that A(zen) = A(z) = “NO” by making
changes to z on W; and W,. The plan is of course to choose zg,; such that
Da(za11) = “YES?, giving the desired contradiction. One way to achieve this
is to have so many choices for each of z; and z» that we can put the fullness
property into play. If S C U™, let S(I) be S projected onto the I’th dimension
(or index).

Proposition 3 Let W C {1,...,n} and let S C U™ be a set of inputs that are
all identical outside W. If |S| > (A(n)|U|)!W! then for at least onel € W it will
be the case that |S(1)| > A(n)|U]|, i.e. some z(l) (over x’s in S) must take on
more than A\(n)|U| values from U.

Proof: Suppose that VI € W it is the case that |S(I)] < A(n)|U| then clearly
S| < Am)|T)™ O

If we have many different inputs on W; to choose from, there will be an
index for which we have many values to choose from, allowing us to exploit the
fullness property.

Based on the above idea, we define a u(n)—hard set, H 4, for a branching
program A deciding Da in time k(n)-n.

Definition 4 (Hard Set) A set of inputs Hq C U™ is called a u(n)—hard set
for a branching program A deciding D in time k(n)-n and space S(n) if we
have

o Wi, W, C{1,...,n} with Wy N Wy =0 and |W;| > u(n)-n,
T, T, C{1,...,k(n)n} withTy NT> =0,

such that Vx € H4 :
Da(x) = “NO”.

The indices of W; are only read in T; (on).
state(z,I;;) is fized for all the intervals comprising T;—i.e. every time we
leave T;, A will behave identically for all z € H 4.

O

Further, if H is a hard set then for z € H 4 we define an input y to be H 4-
similar to x if there exists inputs z1,zs € H 4 such that x and z; differ only on
indices in W; and x and x5 differ only on indices in W5, and y is obtained from

z by changing the position indexed by W; to match x; and those indexed by
W3 to match z2. We then have the following:

Proposition 5 Let H4 be a hard set for a branching program A deciding D .
For x € Hya, if y is H4-similar to = then A(z) = A(y) = “NO”.

Proof: Assume now that 4 is able to distinguish z and y. This means that
these two inputs lead to different final states for the branching program. As z
and y are identical outside the indices of W; and W, then there must exist 4
and j such that state(x, I;;) # state(y, I;;), i.e., some interval I; C T;.
Assume, without loss of generality, that ¢ = 1. So, for some I;; C T}
state(z, ;) # state(y,l1;). Let I; be the first such interval during the
computation of A, hence = and y follow the same computation path until Iy;.
By construction, also #; and z» follow this same path as z. Inside I;; we only
read indices in W; and end up in a different state than state(z, I;;) following
a different path from z. However, we follow the exact same path as on z;
as y is identical to z; on Wi, so we have that state(z, ;) # state(z1,]1;)
contradicting that z and x; are in the same hard set. O

The proof of Theorem 2 splits naturally in three parts. In Lemma 1 we
show that if we have a large hard set, we may obtain z; and x5 in “many”
ways (relative to the fullness property). Then in Lemma 2 we show that given
the time and space restrictions there exists a “large” hard set (relative to the
sparseness property). Finally these two lemmata are combined.

Lemma 1 Let A be a A(n)— full relation on U, A be a branching program
deciding D in time k(n)-n and space S(n), and let H 4 be a u(n)—hard set for
A so that,

|Ha| > 4A(n)*™ U™,
then there exists some x € H 4 for which there exist sy which is H 4-similar

to x, i.e. with A(xpu) = “NO”, but with Da(xg4) = “YES”.

Proof: Define x|y, where W C {1,...,n}, to be x where all values at positions
in W are overwritten with some standard symbol, say | ¢ U. Suppose we have
some set of inputs H4 C U™ and some set of indices W C {1,...,n}; define

5% ={y € Halryw = yjw}, (5)

i.e. the set of elements in H 4 which are identical to x outside W. We claim the
following

: [Hal .
#x € Hy with |S%| < %W is less than 1|H4|. (6)

Given W, define a partition of H 4 according to S%, i.e. ¢ and y are in the same
class if and only if S* = SY (thus y € S%, and z € SY). Clearly there are no

10

more than |U |”’|W| classes, as we have at most this many ways of choosing a
y which is different from z outside W. The number of inputs in classes of size
at most +|H |/(JU|"~W) is at most this number (the maximum size of these
classes) times [U|"~ "I (the maximum total number of classes), implying (6).

Based on a hard set Hy, let S? be defined as in (5) based on H4 and
W;. Clearly (6) holds for ST and S5, so these sets are relatively large for most
inputs in H 4. We would like an z for which both S{ and S3 are large, but in
principle the 2’s that give large S¥ might not be the same as those that give
large S§ (and vice versa). According to (6), |S¥| > L|H.|/(|U™" W) for 2
of the elements in H 4, hence for % of these elements both S{ and S§ are no
smaller than 1|H 4|/(|JU|"~IW"); certainly for any H.4, W; and Ws, this gives us
an input 2’ such that both ¥ and SZ’ have this size.

Consider this particular input 2'. Each pair of 2; € S{“‘I and zo € 52”1
gives rise to a different y H 4-similar to z'. Since |W;| > p(n)-n we have that
HHA/UY) > Am)|U])YH, yielding that |SF'| > (A(n)|U])"+/. Hence,
by Proposition 3 there must exists a pair of indices k; € Wy and ky € Wy
taking on more than \(n)|U| different values for all the inputs in S¥ and S%’
respectively. By the fullness property this implies that there exists | € .5’1”' and
xh € SZ' so that A(z) (1), zh(ks)). Define g to be the input H 4-similar to z'
obtained from 2’ by modifying z' on W7 and W, using 2} and z), respectively.
Thus Da(2an) = “YES”. By Proposition 5 A(Zfaq) = “NO” as xgay is Ha-
similar to z'. d

Lemma 2 Let A be a {(n)— sparse relation on U, A be a branching program
deciding Da in time k(n)-n and space S(n), and let p(n) = k(n)~**™ . A has
a u(n)—hard set of size

Cmlu]”
() (B(n))34m) 28k S

p(n)-n

|Hal >

Proof: We start by constructing a partitioning P, of the indices as follows.
Split time into 9k2(n) intervals of length® n/(9%(n)). Two indices i and j are
in the same class of P, if and only if they are read in exactly the same intervals
on input z. P! is P, restricted to classes of P, whose members are queried in
at most 2k(n) time intervals on z. Finally T, is P, restricted to classes whose
size is at least n/(4|Py|).

For w € T, define intervals(z, W) to be the intervals in which W is
queried on input z. By construction, intervals(z, W) contains at most 2k(n)
intervals for all W € T',,.

Our restricted partitioning I',, has the following properties,

YW eTy,: |W| > un)-n, (7

3The interval length is parameterized in [Ajt99Db], however the present choice leaves little
room for improvement.

11

Vo : IWy, Wy € T, : intervals(z, Wi) N intervals(z, W2) =0. (8)

It is a fact that no more than n/2 elements can be queried in more than 2k(n)
intervals, since the branching program has length at most k(n)-n; hence P,
covers at least n/2 elements. Classes of P, with size no greater than n/(4|P;|)
can cover at most n/4 indices (as we have most |P.| such classes). Thus I,
covers at least § — 7 = 7 indices.

Each class of P! is uniquely identified by the corresponding set of at most
2k(n) intervals in which the indices of the class are read. Hence we may bound
the number of classes in P, by the number of ways to choose up to 2k(n) intervals

from 9k%(n),

2k(n) 9
9k%(n)
P <
s ()
_ 29k2(n)H(%(n))—%1g9k2(n)+0(1)
< k(n)*,

according to [GKP94, p. 492]*, H(m) is the entropy function mlg Lt + (1 —
m)lg ﬁ By the lower bound on the size of the classes in I'; we have proved
(7).

We will now prove (8); in fact we will prove the stronger statement that
VW) € T, AW, € T, : intervals(z, W;) N intervals(z, Ws) = 0. (9)

Since intervals(z,W;) has at most 2k(n) intervals, and each such interval
contains at most n/9k(n) indices, the total number of indices queried within
those intervals is at most 2n/9. As there are n/4 indices covered by I';, we can
choose an index j covered by I';, that is not queried within intervals(z, W),
and so the class W, € T, containing j satisfies (9). This in turn imply (8).

To conclude the proof we will use I';, to construct a hard set. For each z € U™
with Da(z) = “NO” let W; and Wy be the set of indices whose existence is
promised in (8), and let T; = intervals(z, W;). Define H? to be the set of
y € U™ that satisfy,

e Da(z) = “NO”.
e T; = intervals(y, W;) (= intervals(z, W;)), hence W; is a class of both T',,
and I'y.

e state(z,T;) = state(y, T;).
Define F; to be a function that given z and T; lists state(x,I;;) where T; is
comprised of U;I;;; F; gives an ordered lists of the states of A each time we
leave T;.

The above is a hard set as (7) means that |W;| > u(n)-n as required, and
the indices of W; are certainly not read in T3, in fact they are only read in T;.

4These estimates are not correct for k(n) € O(1), in which case we can just use Ajtai’s
original estimate. Also, using (Z) < (%)k gives a bound that is almost as good, but we use
the above estimate to emphasize that significantly better estimates are not possible.

12

Each hard set HY is uniquely determined by the six-tuple
(W1, Wa, Ty,T5, F1,F5). If we can choose this six-tuple in at most h(n)
ways, there must be an z such that |H%| > C(Z)(Lgl as there are at least
¢(n)|U|™ inputs = with Da(z) = “NO”.

Observe that W; need not be bigger than p(n)-n; if we have more indices
than this, just take the first pu(n) - n. This may collapse a number of classes
into one, meaning that we may choose each class W; in (M(:-n) ways. This
restriction on the size of W; significantly increases the size 0% the interval in
which we can obtain a bound.

As T; consists of at most 2k(n) out of 9%(n) intervals, the number of ways to
choose T; is bounded by (9k(n))%*(") = (3k(n))**(™ (actually a better estimate
should be possible, but it will not improve the result significantly). Finally, as
T; consists of at most 2k(n) intervals we fix the state of our computation in at
most this many places, each with 25(") choices, meaning that F; can be chosen
in at most (25(")2k(") ways. In total we get that

(u(:)‘n)z . ((3k(n))4k(n))2 _ ((2S(n))2k(n))2

_ n ? 8k(n) odk(n)S(n)
iy) @I 2050,

h(n)

IA

O

Proof of Theorem 2: Let A be a A(n)—full and {(n)—sparse relation on
U. Assume that A is an R-way branching program deciding DA on U™ in
time k(n)-n and space S(n), such that (2) and (3) but not (4) holds. Based
on these assumptions our aim is to arrive at a contradiction, thus proving the
theorem. Specifically we will show that there exists an input zg; such that
DA (zgan) = “YES”, but the branching program answers A(zg;) = “NO”.
Combining Lemma 1 and Lemma 2 we see that we can find g, if

¢(n)|U]"

n 2
(un)” (Bk(n))sk(n) 2ak(m)S(n)

> AN(n)H™) U,

Using Stirling’s approximation for n! (see eg. [Knu97, p. 115]) we get that

n
1 lo —L-
¢ (gn) <Oy
for n sufficiently large, it is sufficient that
2+1g ﬁ + 6u(n)nlg ﬁ + 8k(n)lg 3k(n) + 4k(n)S(n) < p(n)nlg ﬁ

If k(n) < n (which it will be) then 8k(n)lg3k(n) + 4k(n)S(n) < 12k(n)S(n) as
S(n) > lgn (necessarily). Likewise the constant 2 is dominated by k(n)S(n).
Hence, the above is satisfied if

Ig ﬁ + 6u(n)nlg ﬁ + 13k(n)S(n) < p(n)nlg ﬁ

13

This certainly holds if each of the three terms on the left hand side is less than
a third of the term on the right hand side. We have the desired g, if

u(n s sy < Su(mnlg st

18 o0y < (NG Xty
13k(n)S(n) < sp(n)nlg ﬁ

Which is implied by (2), (3) and —(4), since u(n) = k(n) **(™. The last
equation—implied by —(4)—holds as k(n) > 1, because we must always use
time n. O

7 Randomization

Definition 6 (Randomized R-way branching program) A randomized R-
way branching program using r random bits, consists of a collection of 2" deter-
ministic R-way branching programs. Each execution of the randomized branch-
ing program starts by uniformly at random choosing one of the 2" deterministic
programs which is then executed.

We say that a randomized R-way branching program A deciding a problem
D has constant 1-sided error if for 0 < e < % the following holds®
e If D(x) = “YES”1 then our randomized branching program A answers cor-

rectly on input x.
o If D(z) = “NO” then Pr[A(z) = “NO”] > 1—e.
O

Corollary 3 The statement of Theorem 2 holds for randomized R-way branch-
ing programs with constant 1-sided error if we modify the constants slightly.

Proof: By a standard averaging argument, one of the 2" deterministic branch-
ing programs must correctly answer “NO” for at least a 1—e€ fraction of the
inputs with answer “NO”. Apply Theorem 2 to this deterministic branching
program computing Da. Hence we only reduce the size of our hard set with a
factor e. |

8 Acknowledgement

I would like to thank Faith Fich. I would also like to thank the anonymous
referees for many helpful comments. In particular one referee has provided
detailed suggestions on how to improve presentation as well as advice on how
to make some of the proofs simpler and more precise.

5Note that that the the standard definition for 1-sided error (e.g. the complexity class RP)
allows for error on the accepting answer D(z) = “YES”, whereas our definition allows error
on the rejecting answer (corresponding to CoRP).

14

References

[Ajt99a]

[Ajt99b]

[BC82]

[Bea91]

[BFK*81]

[BFMadH*87]

[BSSVO00]

[BSSV03]

[BST98]

[GKP94]

[Hag98]

[Kar86]

Miklés Ajtai, A Non-linear Time Lower Bound for Boolean
Branching Programs, 40th Annual Symposium on Foundations
of Computer Science, IEEE, 1999.

, Determinism versus Non-Determinism for Linear Time
RAMs with Memory Restrictions, Thirty-First ACM Sympo-
sium on Theory of Computing, ACM, 1999.

Allan Borodin and Stephen Cook, A Time-Space Tradeoff for
Sorting on a General Sequential Model of Computation, STAM
Journal on Computing 11 (1982), no. 2, 287-297.

Paul Beame, A General Sequential Time-Space Tradeoff for
Finding Unique Elements, STAM Journal on Computing 20
(1991), 270-277.

Allan Borodin, Michael J. Fischer, David G. Kirkpatrick,
Nancy A. Lynch, and Martin Tompa, A Time-Space Tradeoff
for Sorting on Non-Oblivious Machines, Journal of Computer
and System Sciences 22 (1981), 351-364.

Allan Borodin, Faith E. Fich, Friedhelm Meyer auf der Heide, Eli
Upfal, and Avi Wigderson, A Time-Space Tradeoff for Element
Distinctness, SITAM Journal on Computing 16 (1987), 97-99.

Paul Beame, Michael Saks, Xiaodong Sun, and Erik Vee, Super-
linear time-space tradeoff lower bounds for randomized compu-
tation, Tech. Report TR00-25, Electronic Colloquium on Com-
putational Complexity, 2000.

, Time-space trade-off lower bounds for randomized com-
putation of decision problems, Journal of the ACM 50 (2003),
no. 2, 154-195.

Paul Beame, Michael Saks, and Jayram S. Thathachar, Time-
Space Tradeoffs for Branching Programs, 39th Annual Sympo-
sium on Foundations of Computer Science, IEEE, 1998.

Ronald Lewis Graham, Donald Erwin Knuth, and Oren Patash-
nik, Concrete mathematics, 2nd ed., Addison-Wesley, 1994.

Torben Hagerup, Sorting and Searching on the Word RAM, Pro-
ceedings of the 15th Annual Symposium on Theoretical Aspects
of Computer Science (STACS ’98), Lecture Notes in Computer
Science, vol. 1373, Springer-Verlag, 1998, pp. 366—398.

Mauricio Karchmer, Two Time-Space Tradeoffs for FElement
Distinctness, Theoretical Computer Science 47 (1986), 237—-246.

15

[Knu97]

[Knu98]

[MNT93]

[Pag00]

[Pag01]

[Sav98]

[Ya094]

Donald Ervin Knuth, Fundamental Algorithms, 3rd ed., The Art
of Computer Programming, vol. 2, Addison-Wesley, 1997.

, Sorting and Searching, 2nd ed., The Art of Computer
Programming, vol. 3, Addison-Wesley, 1998.

Yishay Mansour, Noam Nisan, and Prasoon Tiwari, The Com-
putational Complezity of Universal Hashing, Theoretical Com-
puter Science (1993), no. 107, 121-133.

Jakob Pagter, On Ajtai’s Lower Bound Technique for r-way
Branching Programs and the Hamming Distance Problem, Tech.
Report BRICS-RS-01-2, BRICS, Department of Computer Sci-
ence, University of Aarhus, May 2000.

, Time-Space Trade-Offs, Ph.D. thesis, BRICS, Depart-
ment of Computer Science, University of Aarhus, 2001.

John Edmund Savage, Models of Computation, Addison-Wesley,
1998.

Andrew Chi-Chih Yao, Near-optimal Time-Space Tradeoff for
Element Distinctness, SIAM Journal on Computing 23 (1994),
966-975.

16

