
Computation at a Distance

Samuel A. Kutin∗ David Petrie Moulton∗ Lawren M. Smithline∗

May 4, 2007

Abstract

We consider a model of computation motivated by possible limitations on quantum comput-
ers. We have a linear array of n wires, and we may perform operations only on pairs of adjacent
wires. Our goal is to build a circuits that perform specified operations spanning all n wires.
We show that the natural lower bound of n− 1 on circuit depth is nearly tight for a variety of
problems, and we prove linear upper bounds for additional problems. In particular, using only
gates adding a wire (mod 2) into an adjacent wire, we can realize any linear operation in GLn(2)
as a circuit of depth 5n. We show that some linear operations require depth at least 2n + 1.

1 Introduction

We consider the following model of computation: We have n wires, labeled 〈1〉 through 〈n〉. Each
wire carries a single bit. We are allowed to perform reversible linear operations on adjacent wires:
〈i〉 ⊕= 〈i + 1〉 or 〈i〉 ⊕= 〈i− 1〉. We assume throughout that n is at least 2.

Our goal is to perform some calculation spanning all n wires; for example, we might want to
set 〈n〉 ⊕= 〈1〉 and leave the other n− 2 wires unchanged. Our primary measure of complexity is
the depth of a circuit; we will also consider the size of the circuit (that is, the number of gates).

The motivation for this problem is quantum circuit design. In some proposed models of quantum
computation [2, 4, 7, 8], we can perform operations only on adjacent bits, so it is important to
consider the cost of computing with bits separated by a given distance. Since the eventual topology
of quantum computers is unknown, we choose to focus on linear arrays of bits. Results here should
at least be applicable to other topologies.

We note that our model is wholly classical; there are no quantum operations. To perform
a quantum gate, one could first move bits around using classical operations and then apply the
quantum gate to adjacent bits. We discuss the cost of this approach in Section 3.1.

It is often helpful to take an algebraic view of these circuit problems. We adopt the convention
that the wires of our circuit contain column vectors, and we describe the state of all of the wires
by the matrix whose ith column is the contents of wire 〈i〉. A cnot gate adds the vector on one
wire into the vector on another wire. Any circuit performs a series of column operations; note that
circuits act on the right .

Any function on n bits that can be built out of additions may be viewed as an element of
the group GLn(2) of n × n invertible matrices over the field F2 of two elements. A single gate is

∗Center for Communications Research, 805 Bunn Drive, Princeton, NJ 08540.
Email: {kutin,moulton,lawren}@idaccr.org

1



represented by an elementary matrix consisting of the identity matrix with a single 1 either just
above or just below the main diagonal. These matrices generate the group, so we can build any
reversible linear operation on our wires using these gates.1

It is not hard to show that any element of GLn(2) can be constructed from O(n2) gates, that
is, as a product of O(n2) of the above generators. A simple counting argument gives a lower bound
of Ω(n2/ log n) for generic circuits. In Section 7.4, we give a lower bound of (1− o(1))n2 for generic
elements of GLn(2).

Our primary complexity measure is depth, rather than size, so the generating set of interest is
different. We allow any set of 1s just off the diagonal, as long as all the row and column indices are
distinct; we cannot have two gates using the same wire at the same time. All of our questions can
be rephrased in this setting: What is the shortest product of these generators equal to a particular
element of the group?

We label the wires by 〈1〉 through 〈n〉 and their initial values by a1 through an. In our diagrams,
we draw the wires horizontally, with time proceeding from left to right, wire 〈1〉 at the top, and
wire 〈n〉 at the bottom. We analyze the costs of the following problems:

Add Perform 〈n〉 = a1 ⊕ an; for each other i, leave 〈i〉 = ai.

Swap Set 〈n〉 = a1 and 〈1〉 = an; for each other i, leave 〈i〉 = ai.

Rotate Set 〈n〉 = a1; for each i < n, set 〈i〉 = ai+1.

Reverse Set 〈n + 1− i〉 = ai for each i.

Permute Set 〈σ(i)〉 = ai for each i, given some σ ∈ Sn.

Compute Apply an arbitrary M ∈ GLn(2) to the n wires.

The first two tasks require us to perform an operation on 〈1〉 and 〈n〉, leaving the other bits
untouched. The next three tasks require us to reorder the bits; this might be useful if a quantum
circuit will perform complex calculations on different subsets of the bits. The final task encompasses
any possible linear computation.

It is immediate that each of these tasks requires depth n − 1, since we need to move the
information in a1 at least n− 1 times.2 We encourage the reader to work out low-depth solutions
to the above problems before reading further.

We will prove the following results. In each case, our proof is via an explicit construction.

Theorem 1.1. We can add across n wires in depth n + 4.

Theorem 1.2. We can swap across n wires in depth n + 8.

Our swapping circuit works by moving a1 and an to two adjacent wires in depth roughly n/2,
swapping the values, and then moving the wires back. Instead of swapping the values, we could
apply any 2-qubit gate to the two wires. So, we can apply any 2-qubit quantum gate spanning n
wires in depth n + O(1). In Section 3.1, we will generalize the above argument. We can apply any
m-qubit gate whose total span is at most n in depth n + O(m).

1To implement reversible affine operations, we would need to allow unary negation gates as well. All such negations
could be deferred to one final time-slice.

2For permutation and arbitrary computation, this lower bound applies in the worst case.

2



Theorem 1.3. We can rotate n wires in depth n + 5.

Theorem 1.4. We can reverse n wires in depth 2n + 2.

We will show in Section 5.2 that reversal requires a depth of at least 2n + 1.

Theorem 1.5. For any σ ∈ Sn, there is a circuit implementing σ of depth at most 3n.

Theorem 1.6. For any M ∈ GLn(2), there is a circuit implementing M of depth at most 5n.

We will show in Section 7.4 that, for any ε > 0, almost every matrix in GLn(2) requires depth
at least (2− ε)n. One natural problem is to close the gap between this lower bound and the upper
bound of 5n. We discuss this, and other open questions, in Section 8.

2 Addition

Theorem 2.1. We can add across n wires in depth n + 3 for even n and in depth n + 4 for odd n.
The circuit has size 4n− 7.

An example of the construction for n = 10 appears in Figure 1.

Proof. Let k = dn/2e. We will construct a subcircuit of depth k + 1 and size 2n − 4 that has the
following effects:

1. 〈k〉 = a1.

2. an contributes only to wire 〈k + 1〉.

Next, we perform 〈k + 1〉 ⊕= 〈k〉; this just replaces an by an ⊕ a1 in the only location where an

appears. Finally, we undo the subcircuit. When we are done, we have 〈n〉 = an ⊕ a1, and each
other wire has its initial value. The overall circuit size is 4n− 7, and the depth is 2k +3 as desired.

It remains only to discuss the subcircuit, which is described in Figure 2. We begin with the first
two loops, or “cascades”. The first loop writes ai ⊕ ai+1 to 〈i〉 for i < k. After the second loop, 〈i〉
contains a1 ⊕ ai+1 for i < k, and 〈k〉 contains a1. Notice that we can start the second loop during
the third time-slice, so the two cascades together have depth k + 1.

The third and fourth loops can be similarly analyzed. After both loops are completed, we have
written ai−1 to 〈i〉 (for i > k + 1) and

⊕n
j=k+1 aj to 〈k + 1〉. As desired, an affects only 〈k + 1〉.

The depth is (n− 1− k) + 2 ≤ k + 1.

3 Swap

Theorem 3.1. We can swap across n wires in depth n + 7 for even n and in depth n + 8 for odd
n. The circuit has size 6n− 9.

An example of this construction for n = 9 appears in Figure 3.

Proof. We use the same basic idea as in the proof of Theorem 2.1. As before, let k = dn/2e. Before,
we built a subcircuit guaranteeing that 〈k〉 = a1 and that an contributes only to wire 〈k + 1〉. For
a swap, we need something stronger:

3



〈1〉 e r r e
〈2〉 r e e r r e e r
〈3〉 r e e r r e e r
〈4〉 r e e r r e e r
〈5〉 r e r e r
〈6〉 e r e r e
〈7〉 e r r e e r r e
〈8〉 e r r e e r r e
〈9〉 e r r e e r r e
〈10〉 r e e r a1 ⊕ a10

Figure 1: Addition across 10 wires (k = 5) in depth 13. The central cnot is shown in red.

for i = 1 to k − 1:
〈i〉 ⊕= 〈i + 1〉

for i = 1 to k − 1:
〈i + 1〉 ⊕= 〈i〉

for i = n− 1 down to k + 1:
〈i〉 ⊕= 〈i + 1〉

for i = n− 1 down to k + 1:
〈i + 1〉 ⊕= 〈i〉

Figure 2: Subcircuit for addition. We take k = dn/2e.

1. 〈k〉 = a1.

2. 〈k + 1〉 = an.

3. No other wire depends on a1 or an.

Our subcircuit will have size 3n− 6 and depth k + 3.
We begin by running the subcircuit. Next, we swap 〈k〉 and 〈k + 1〉; this requires three gates.

Finally, we undo the subcircuit. The overall size is 6n− 9.
The subcircuit is described in Figure 4. The first two loops are the same as in Figure 2. We

write a1 + ai+1 to 〈i〉 (for i < k) and a1 to 〈k〉. The next loop erases the a1 information; when it
concludes, we have 〈i〉 = ai+1 + ai+2 for i < k − 1, 〈k − 1〉 = ak, and 〈k〉 = a1. As before, we can
nest the cascades (see Figure 3); the depth is k + 3.

The remaining loops are similar. After the penultimate loop, we have 〈i〉 = ai−1 for i > k + 1
and 〈k + 1〉 =

⊕n
j=k+1 aj . The final loop accumulates upward; we obtain 〈i〉 =

⊕n−1
j=i−1 aj for

i > k + 1, and 〈k + 1〉 = an. The depth is (n− 1− k) + 4 ≤ k + 3.
Since the subcircuit has depth k + 3, and the central swap has depth 3, one might think the

overall depth would be 2k + 9. In fact, we can reduce the depth to 2k + 7. Two of the three
gates in the swap commute with adjacent gates and can be nested into the subcircuit, as shown in
Figure 3.

4



〈1〉 e r e e r e a9

〈2〉 r e e r r e e r r e e r
〈3〉 r e e r r e e r r e e r
〈4〉 r e e r r e e r r e e r
〈5〉 r e r r e r r e r
〈6〉 e r e e r e e r e
〈7〉 e r r e e r r e e r r e
〈8〉 e r r e e r r e e r r e
〈9〉 r e r r e r a1

Figure 3: Swap across 9 wires (k = 5) in depth 17. The central swap is shown in red.

for i = 1 to k − 1:
〈i〉 ⊕= 〈i + 1〉

for i = 1 to k − 1:
〈i + 1〉 ⊕= 〈i〉

for i = 1 to k − 1:
〈i〉 ⊕= 〈i + 1〉

for i = n− 1 down to k + 1:
〈i〉 ⊕= 〈i + 1〉

for i = n− 1 down to k + 1:
〈i + 1〉 ⊕= 〈i〉

for i = n− 1 down to k + 1:
〈i〉 ⊕= 〈i + 1〉

Figure 4: Subcircuit for swap. We take k = dn/2e.

5



3.1 Arbitrary Quantum Gates

As noted in the Introduction, we could replace the central swap with any operation on a1 and an;
in the quantum setting, we could use any 2-qubit gate. Hence, any 2-qubit gate spanning n wires
can be implemented in depth n + O(1).

Suppose that we wish to implement an m-qubit gate with span n. We need to operate on a set
of bits 〈i1〉 , . . . , 〈im〉 with 1 = i1 < i2 < · · · < im = n. Write b` = ai` . Let k = dn/2e as above, and
choose j with ij ≤ k < ij+1.

For each ` between 1 and m, we will move b` onto the wire 〈k − j + `〉, so the bits will lie on m
adjacent wires. We then perform the m-qubit gate. Finally, we undo the transformation.

We will begin with nested cascades as in our swap circuit; we use the top half of the subcircuit
of Figure 4, but we only let i range from ij to k − 1. When we finish, we have 〈k〉 = bj , and no
other wire depends on bj . The wires between 〈j〉 and 〈k − 1〉 contain some complicated functions
of various ai bits, but none of the b` bits are involved.

Next, if j > 1, we perform cascades moving bj−1 to 〈k − 1〉. We continue, performing a series of
j sets of cascades; the final set moves b1 into 〈k − j + 1〉. Since the cascades nest, the total depth
is k + O(m).

At the same time, we perform upward cascades moving bj+1 to 〈k + 1〉, bj+2 to 〈k + 2〉, and
so on, up to moving bm to 〈k − j + m〉. After k + O(m) time-slices, we have moved the m bits of
interest onto the wires from 〈k − j + 1〉 to 〈k − j + m〉.

Finally, we perform the m-qubit gate, and we reverse the first part of the computation to put
all the bits back. The overall depth is n + O(m), in addition to the cost of the m-qubit quantum
gate.

Moreover, suppose we wish to perform several long-range gates spanning n wires, and using a
total of m bits, simultaneously. We first move those m bits together in depth n + O(m). Next, we
permute the bits in depth O(m) (see Section 6), so the bits for each gate are adjacent. We now
perform the quantum gates and then undo the rest of the calculation. The total depth is again
n + O(m), in addition to the cost of the most complicated quantum gate.

4 Rotation

Recall that rotating n wires means setting 〈n〉 to a1 and setting 〈i〉 to ai+1 for each other i.

Theorem 4.1. For n > 2, we can rotate n wires in depth n + 5. The circuit has size 4n− 6.

We first give a rotation circuit of depth 2n + 1. We then explain how to use this circuit in our
main construction. An example of the final result with n = 10 is depicted in Figure 5.

Lemma 4.2. We can rotate n wires in depth 2n + 1. The circuit has size 4n− 5.

Proof. We consider the rotation circuit of Figure 6, which we call R(`,m).
The first three loops of R(`,m) are similar to those in Figure 4. After the first loop, we have

〈j〉 =
⊕j

i=` ai for ` ≤ j ≤ m. The second loop leaves 〈m〉 =
⊕m

i=` ai, and sets each other 〈j〉 to
aj+1. The third loop sets 〈j〉 to

⊕j+1
i=`+1 aj for j < m, but sets 〈m〉 = a`. The final loop restores

〈j〉 to aj+1 for j < m.
The circuit R(`,m) contains 4(m − `) − 1 gates. The first three loops can be nested, for a

combined depth of (m− `) + 4. The total depth is 2(m− `) + 3. If we take ` = 1 and m = n, we
obtain a rotation of all n wires.

6



Note that if we flip each gate in R(`,m) upside-down, the resulting circuit still performs a
rotation. More generally, the circuit formed by flipping each gate of a given circuit upside-down
performs the inverse transpose of the GLn(2) transformation performed by the original circuit.

Proof of Theorem 4.1. Let k = dn/2e. We let R(`,m) be the circuit of Lemma 4.2.
We let R′(`,m) be the circuit R(`,m) run upside-down and backward. Note that running a

rotation circuit upside-down makes it rotate in the opposite direction, and running any circuit
backward makes it perform the inverse operation. So, R′(`,m) has the same effect as R(`,m).

We define a circuit C as follows:

1. Apply R(1, k).

2. Apply R′(k, n).

First, note that the first half of C sets 〈j〉 = aj+1 for j < k, and 〈k〉 = a1. Consequently, the
second half of C completes the rotation. So, C rotates n wires as desired. Clearly the size of C is
4n− 6.

The only bit used both by R(1, k) and R′(k, n) is 〈k〉. Note that R(1, k) is done accessing bit
〈k〉 after k + 3 time-slices, and R′(k, d) does not access 〈k〉 until time-slice n− k. Hence, the total
depth of the circuit is (k + 3) + ((n− k) + 4) = n + 7.

We can further reduce the depth to n + 5. The last access of 〈k〉 by R(1, k) and the first access
by R′(k, n) both write to 〈k〉. These two operations commute with each other. By swapping the
order, we can start R′(k, n) two time-slices sooner.

5 Reversal

We now give a construction reversing the contents of n wires in depth 2n + 2. We then show that
any such circuit has depth at least 2n + 1.

5.1 Upper bound on reversal

Theorem 5.1. We can reverse n wires in depth 2n + 2. The circuit has size n2 − 1.

〈1〉 r e r r a2

〈2〉 e r r e e r r e a3

〈3〉 e r r e e r r e a4

〈4〉 e r r e e r e a5

〈5〉 e r e e r e a6

〈6〉 e r e e r r e a7

〈7〉 e r r e e r r e a8

〈8〉 e r r e e r r e a9

〈9〉 e r r e e r r e a10

〈10〉 r r e r a1

Figure 5: Rotation of 10 wires (k = 5) in depth 15.

7



for i = ` to m− 1:
〈i + 1〉 ⊕= 〈i〉

for i = ` to m− 1:
〈i〉 ⊕= 〈i + 1〉

for i = ` to m− 1:
〈i + 1〉 ⊕= 〈i〉

for i = m− 2 down to `:
〈i + 1〉 ⊕= 〈i〉

Figure 6: Rotation circuit R(`,m).

An example of this construction for n = 9 appears in Figure 7.

Proof. The reversal circuit is described in Figure 8. The subcircuit R0 adds the contents of each
wire with an even index into its neighbors; the subcircuit R1 adds the odd-indexed wires into their
neighbors. We alternate between these two operations.

For a given value of i, we will keep track of which wires depend on ai over time. First suppose
that i is even. To simplify matters, we will see what the effect of successive applications of R0 and
R1 would be if there were wires corresponding to arbitrarily small and large integers. After the first
application of R0, since i is even, we perform 〈i− 1〉 ⊕= 〈i〉 and 〈i + 1〉 ⊕= 〈i〉, so ai gets added
to 〈i− 1〉 and 〈i + 1〉. Thus ai affects 〈i− 1〉, 〈i〉, and 〈i + 1〉. After we next apply R1, 〈i− 1〉 and
〈i + 1〉 are added to their neighboring wires, so ai affects 〈i− 2〉 through 〈i + 2〉. (The effects of
the two additions to 〈i〉 cancel.) In general, after applying R0 and R1 a total of t times, ai will
affect 〈i− t〉 through 〈i + t〉.

Now let us take into account the fact that we only have wires 〈1〉 through 〈n〉. During the
ith application of an R-subcircuit, we cannot add 〈1〉 to 〈0〉, since the latter does not exist, so
〈1〉 is still the lowest-numbered wire affected by ai. During the (i + 1)th application of an R-
subcircuit, 〈2〉 is added to 〈1〉, so 〈1〉 no longer depends on ai, and 〈2〉 is now the first wire
affected by ai. Therefore, after t applications of R-subcircuits, for t ≥ i, the lowest-numbered wire
affected by ai is 〈t− i + 1〉. Similarly, for t > n − i, the highest-numbered wire affected by ai

is 〈n− (t− 1− (n− i))〉 = 〈2n− t− i + 1〉. (We can see this by interchanging i and n + 1 − i,

〈1〉 e r e r e r e r e r a9

〈2〉 r r e e r r e e r r e e r r e e r r e e a8

〈3〉 e e r r e e r r e e r r e e r r e e r r a7

〈4〉 r r e e r r e e r r e e r r e e r r e e a6

〈5〉 e e r r e e r r e e r r e e r r e e r r a5

〈6〉 r r e e r r e e r r e e r r e e r r e e a4

〈7〉 e e r r e e r r e e r r e e r r e e r r a3

〈8〉 r r e e r r e e r r e e r r e e r r e e a2

〈9〉 e r e r e r e r e r a1

Figure 7: Reversal of 9 wires in depth 20.

8



R0:
for i = 1 to bn/2c:

〈2i− 1〉 ⊕= 〈2i〉
for i = 1 to b(n− 1)/2c:

〈2i + 1〉 ⊕= 〈2i〉
R1:

for i = 1 to bn/2c:
〈2i〉 ⊕= 〈2i− 1〉

for i = 1 to b(n− 1)/2c:
〈2i〉 ⊕= 〈2i + 1〉

Reversal:
for T = 0 to n:

if T is even: Apply R0

else: Apply R1

Figure 8: Reversal circuit. For n > 2, the subcircuits R0 and R1 each have depth 2.

relabeling the wires in the opposite order, and interchanging R0 and R1 if n is even.) That is, for t
bigger than both i and n− i (and not too large), ai will affect exactly the wires 〈t− i + 1〉 through
〈2n− t− i + 1〉 after t applications of R-subcircuits.

Our circuit applies R-subcircuits a total of n + 1 times. After n of these, ai affects exactly
wires 〈n + 1− i〉 through 〈n + 1− i〉; that is, ai affects only 〈n + 1− i〉. Since this nth application
writes to wires of the opposite parity of 〈n + 1− i〉, the (n + 1)th application will write to wires of
the same parity as 〈n + 1− i〉, and 〈n + 1− i〉 will still be the only wire affected by ai.

Finally, we consider the case with i odd. After the first application of an R-subcircuit, 〈i〉 is
still the only wire affected by ai. Then, as above, after n more applications, 〈n + 1− i〉 is the sole
wire affected by ai.

We have shown that, after our circuit runs, the wire 〈n + 1− i〉 will depend on ai, but no other
wire 〈n + 1− j〉 for j 6= i will. Turning this around, we see that the final value of 〈n + 1− i〉 does
not depend on aj for j 6= i, so that this final value must, in fact, be equal to ai. We have performed
reversal, as desired.

For n = 2, the subcircuits R0 and R1 each have depth 1, so the overall depth of our reversal
circuit is 3. For n > 2, the depth is 2n + 2.

5.2 Lower bound on reversal

For 2 ≤ n ≤ 6, computer searches confirm that the above construction is optimal. We conjecture
that the depth of any circuit performing reversal for n ≥ 3 is at least 2n + 2. We now show that
any such circuit has depth at least 2n + 1.

Lemma 5.2. For any k ≤ n/2, any circuit reversing n wires contains at least 2k +1 gates between
wires 〈k〉 and 〈k + 1〉 and also between wires 〈n− k〉 and 〈n− k + 1〉. If k is not n/2, then there
must be at least 2k + 1 such gates before the last time-slice.

Proof. Let R be a circuit reversing 〈1〉 , . . . , 〈n〉. We show that R must have at least 2k + 1 gates
between wires 〈k〉 and 〈k + 1〉; the proof for 〈n− k〉 and 〈n− k + 1〉 is analogous.

9



We write the contents of the wires at any given time as a block matrix

M =
(

W X
Y Z

)
, (1)

where W is k × k, X is k × (n − k), Y is (n − k) × k, and Z is (n − k) × (n − k). The matrix M
changes as we apply R. Initially, W and Z are identity matrices of sizes k and n − k, and X and
Y are 0. When we conclude, W , X, Y , and Z have ranks 0, k, k, and n− 2k, respectively.

The ranks of W , X, Y , and Z are affected only by gates between wires 〈k〉 and 〈k + 1〉. Each
upward gate 〈k〉 ⊕= 〈k + 1〉 changes the ranks of W and Y by at most 1, and each downward gate
〈k + 1〉 ⊕= 〈k〉 changes the ranks of X and Z by at most 1. Each of the four ranks has to change
by k. We conclude that there are at least k upward and k downward gates in R.

Furthermore, suppose that the first gate between 〈k〉 and 〈k + 1〉 is upward. At this point X
is still 0, so the gate cannot affect the rank of W ; the circuit R requires k more upward gates.
Similarly, if the first gate is downward, it cannot affect the rank of Z, and R requires k additional
downward gates. Hence, there must be at least 2k + 1 gates between 〈k〉 and 〈k + 1〉.

Finally, if k is not exactly n/2, then any gate in the last time-slice cannot affect any of the
ranks of W,X, Y, Z, so all of the gates accounted for above must occur in earlier time-slices.

Theorem 5.3. Reversing n ≥ 3 wires requires depth at least 2n + 1 and size at least
⌊

1
2n2

⌋
+ n.

Proof. First, suppose n = 2r. Given any circuit R for reversal, we obtain another reversal circuit
by vertically flipping the last time-slice of R (that is, conjugating it by reversal) and moving it to
the beginning of the circuit. We may therefore assume, without loss of generality, that the last
time-slice contains a gate between 〈r + 1〉 and 〈r + 2〉.

By Lemma 5.2, there are at least 2r + 1 gates between wires 〈r〉 and 〈r + 1〉 and at least
2(r − 1) + 1 = 2r − 1 gates between wires 〈r + 1〉 and 〈r + 2〉 before the last time-slice. Hence,
there are at least 4r + 1 = 2n + 1 gates involving 〈r + 1〉, giving the lower bound on depth. If we
sum over all locations, we find that the total number of gates is at least

2r + 1 + 2
r−1∑
i=1

(2i + 1) + 1 =
n2 + 2n

2
.

Second, suppose n = 2r + 1. Again, we may assume that the last time-slice contains a gate
between 〈r + 1〉 and 〈r + 2〉. Now we have at least 2r+1 gates between wires 〈r〉 and 〈r + 1〉 and at
least 2r + 2 gates between 〈r + 1〉 and 〈r + 2〉. This gives a total of 4r + 3 = 2n + 1 gates involving
〈r + 1〉, meaning we must have at least 2n + 1 time-slices. The total number of gates is at least

2
r∑

i=1

(2i + 1) + 1 =
n2 + 2n− 1

2
.

6 Permutation

We now discuss the more general problem of permuting the n input bits. It is easier to visualize
the problem by imagining that the wire 〈i〉 contains the data ai with the attached label σ(i). We
then wish to sort the data by their labels. When we finish, the wire 〈i〉 will have the label i, and
hence the bit aσ−1(i), as desired.

10



Theorem 6.1. For any σ ∈ Sn, there is a circuit implementing σ with depth at most 3n and size
at most 3

(
n
2

)
.

Proof. It is convenient to pretend that our basic operation is a swap of two adjacent bits; we can
implement such a swap using three of our standard gates. Initially, our labels are in the order
σ(1), . . . , σ(n); after each swap, the order changes. When the circuit completes, we want the labels
to be sorted.

To effect the swaps, we use an n-bit sorting network . The basic gate is a conditional swap on
〈i〉 and 〈j〉: if i < j but the label on 〈i〉 is larger than the label on 〈j〉, then we swap the contents
and labels of the two wires. A network of conditional swaps is a sorting network if, for any (valid)
initial assignment of labels, at the end wire 〈i〉 has label i. We are interested in sorting networks
using only conditional swaps on adjacent wires. See [3, Section 5.3.4] for more discussion.

Suppose we have a n-bit sorting network of depth d and size s, in which each conditional swap
is between two adjacent wires. We will perform each swap only if the label of the second bit is
less than that of the first bit. Since we know σ in advance, we know which swaps to leave in the
network and which to leave out. The result will be a swap network with depth at most d and size
at most s. The corresponding circuit has depth at most 3d and size at most 3s.

〈1〉 r r r r a7

〈2〉 r r r r r r r a6

〈3〉 r r r r r r r a5

〈4〉 r r r r r r r a4

〈5〉 r r r r r r r a3

〈6〉 r r r r r r r a2

〈7〉 r r r a1

Figure 9: 7-wire sorting network in depth 7.

It merely remains to construct an efficient sorting network using only conditional swaps of
adjacent wires. We use the odd–even transposition sort.3 It has n steps, alternating between
performing all conditional swaps of the form (2j − 1, 2j) and performing all conditional swaps of
the form (2j, 2j + 1). An example with n = 7 is depicted in Figure 9. We have s = n(n− 1)/2 and
d = n (unless n = 2, in which case d = 1).

We observe that the above sorting network achieves the optimal d and s. First, note that each
swap reduces the number of inversions by at most one. Since σ can have up to

(
n
2

)
inversions, we

must have s ≥
(
n
2

)
.

In addition, in an optimal sorting network, we cannot perform the same swap in consecutive
time-slices. Thus, in any two consecutive time-slices, we can perform at most n− 1 swaps. Hence,
for all n > 2, we need at least bn/2c pairs of time-slices to accommodate (n− 1) bn/2c gates, plus
(at least) one more time-slice if n is odd. Hence, for all n > 2 we have d ≥ n.

Clearly, for a particular permutation, we may be able to do better than Theorem 6.1 would
suggest; see, for example, Sections 3, 4, and 5. A more difficult problem is determining the minimum
depth for the worst possible σ.

3See Knuth [3, Exercise 5.3.4.37] for a proof of correctness and a brief history.

11



For n ≤ 6, reversal is at least as hard as any other permutation: we can implement any permu-
tation in depth 2n + 2. We do not know whether this pattern holds for larger n.

7 Arbitrary Matrices

As noted in the Introduction, any circuit on n wires made up of cnot gates computes a matrix in
GLn(2). Conversely, given a matrix, it is straightforward to build a circuit with depth O(n2).

More concretely, we suppose the initial state of the wires is described by the identity matrix
I; each wire 〈i〉 contains the basis vector ei. If a circuit C applied to this initial state I results in
state M , we say that C performs the transformation M . This map from circuits to matrices is a
homomorphism.

The problems of building a circuit performing M and a circuit performing M−1, for an arbitrary
invertible matrix M , are equivalent. Notationally, we find the latter more convenient. Instead of
building a circuit to perform M , we suppose the wires start in state M , and we construct a circuit
to “undo” M and restore I. The reverse of this circuit will perform M .

In this section we give a constructive proof of the following result:

Theorem 7.1. Let M be a matrix in GLn(2). Then there is a circuit computing M with depth at
most 5n.

Our construction uses the concept of a “northwest”-triangular matrix.

Definition 7.2. An n× n matrix M is northwest-triangular if Mij = 0 for all i + j > n + 1.

We discuss the building blocks of our circuit in Section 7.1. In Sections 7.2 and 7.3, we prove
the following propositions:

Proposition 7.3. Let M be in GLn(2). Given an n-wire sorting network of depth d, we can
construct a circuit C of depth 2d such that MC is northwest-triangular.

Proposition 7.4. Let N be an invertible northwest-triangular matrix. Given an n-wire sorting
network of depth d, we can construct a circuit R of depth 3d with NR = I.

Proof of Theorem 7.1. Let M be any matrix in GLn(2). By Proposition 7.3, using the odd-even
transposition network of depth n, there is a circuit C of depth 2n such that MC is northwest-
triangular. By Proposition 7.4 (using the same network), there is a circuit R of depth 3n with
MCR = I. Then R−1C−1 computes M .

The maximum possible size (that is, number of gates) of a depth-d circuit is d bn/2c. The
density of a circuit is its size divided by this maximum. The construction of Theorem 7.1 has size
about 5

2n2 and density 1. We also have a construction with size about 2n2 and density 1/2. (See
Section 8.) Note that, if we could construct a circuit with size 2n2 and density 1, we would have
a solution with depth 4n. We discuss this, and other reasons why we conjecture that circuits of
depth 4n + O(1) may be possible, in Section 8.

12



7.1 Boxes

The building blocks for our circuits will be not individual cnot gates, but boxes:

Definition 7.5. A box is a subcircuit on two adjacent wires 〈i〉 and 〈i + 1〉.

Every box performs some operation in GL2(2). If u and v are the contents of the two input wires
to a box, then the two output wires contain distinct elements of {u, v, u⊕v}. Some researchers (for
example, [2]) compute the costs of quantum circuits by counting arbitrary 2-qubit interactions; in
such a model, the box is the fundamental unit.

Table 1: Depth of implementing boxes with input u, v.

First Second
Output Output

Depth

u v 0
u u⊕ v 1

u⊕ v v 1
u⊕ v u 2

v u⊕ v 2
v u 3

The depth of a box depends on the two output vectors, as shown in Table 1. If we want
to perform an arbitrary operation in GL2(2), then the depth of our box could be as large as 3.
However, if we only specify one of the two outputs, and allow the other output to take whichever
value is more convenient, we see that we can make do with boxes of depth 2.

7.2 Clearing Networks

We now prove Proposition 7.3. We use a sorting network to build a system of depth-2 boxes to
convert any matrix into northwest-triangular form.

Proof of Proposition 7.3. We first perform a lower-triangular basis change; this does not involve
changing the contents of any wires, but merely describes them differently. We then construct a
circuit.

Let V = Fn
2 be the space containing our wires. We define a lexicographic order on V . For

u, v ∈ V , we write u ≺ v if there exists k such that u · ek = 0, v · ek = 1, and, for all j > k,
u · ej = v · ej .

For each i, let vi be the lexicographically least element of ai ⊕ span{aj : i < j ≤ n}. Note that
this is a lower-triangular basis change: for each i, ai ∈ vi ⊕ span{vj : i < j ≤ n}.

For each i, let π(i) be the smallest j such that vi · en+1−j = 1. By construction, π is a
permutation: for any k < `, we must have vk ≺ vk ⊕ v`, and therefore π(k) 6= π(`).

Let wj = vπ−1(j). The wj satisfy

wj ∈ en+1−j ⊕ span{ek : 1 ≤ k < n + 1− j}.

Attach to each wire 〈i〉 the label π(i). We maintain the following invariant:

13



• If a wire has value
∑

αjwj , and k is the label on some lower-numbered wire, then αk = 0.

The invariant is true initially because
∑

αjwj =
∑

απ(i)vi and the basis change is lower-
triangular. If we sort the labels and maintain the invariant, then when we are done, the value of
wire 〈i〉 is in

wi ⊕ span{wj : i < j ≤ n} = en+1−i ⊕ span{ej : 1 ≤ j < n + 1− i},

so the wires specify a northwest-triangular matrix.
We now build a circuit C that sorts the labels while maintaining the invariant. We start with

a sorting network S of depth d and replace each conditional swap in S by a box. Suppose we have
two inputs to a box: 〈i〉 has value u and label j, and 〈i + 1〉 has value v and label k. If j < k, we
do nothing. If j > k, we swap the two labels, and we also perform a box as described below. When
the network concludes, we will have sorted the labels, as desired.

Let W be the span of all w` for ` 6= k. The space W has codimension 1, so at least one of
{u, v, u ⊕ v} lies in W . We can perform a box on 〈i〉 and 〈i + 1〉 that writes a vector in W to
wire 〈i + 1〉. This maintains the invariant for wires 〈i〉 and 〈i + 1〉, as desired, and other wires are
unaffected.

Each box in C comes from a conditional swap in S. We are specifying only one output of each
box, so each box has depth at most 2. Hence, the depth of C is at most 2d.

7.3 Reversal Networks

We now prove Proposition 7.4: we reduce any northwest-triangular matrix to the identity. As
before, we use a sorting network to build a system of boxes. However, in this case our boxes are
permitted to have depth 3.

Proof of Proposition 7.4. We first label each input wire 〈i〉 with n + 1 − i. We take a sorting
network S of depth d and convert S to a reversal network; we include exactly those conditional
swaps that are used when input wire 〈i〉 has label n+1− i. (The new network will have size

(
n
2

)
; if

S has the minimal size
(
n
2

)
, then it already is a reversal network.) We make each remaining swap

unconditional: we definitely swap the two labels.
Consider a swap between 〈i〉, with value u and label k, and 〈i + 1〉, with value v and label j.

Note that k > j. If u · ej = 0, we replace the swap with a depth-3 box exchanging u and v. If
u · ej = 1, then we replace the swap with the depth-2 box that first adds u into v and then adds
u⊕ v into u; this has the effect of replacing u by u⊕ v and then exchanging (the new) u and v.

We claim that this circuit maintains the following invariants:

1. If u is on the wire with label k, then u · ek = 1 and u · e` = 0 for ` > k.

2. If u is on 〈i〉 with label k, and 〈h〉 has label j, with h < i and j < k, then u · ej = 0.

Initially, 〈i〉 has label n + 1− i. The first invariant holds because N is an invertible northwest-
triangular matrix. The second invariant holds vacuously, as there are no such pairs of wires.

What is the effect of a single box between wires 〈i〉 and 〈i + 1〉 with values u and v and labels
k and j? The box necessarily maintains the first invariant. Swapping u and v has no effect. The
step replacing u by u⊕ v also is not a problem: k > j implies v · e` = 0 for all ` ≥ k.

This circuit also maintains the second invariant. It clearly still holds for all wires besides 〈i〉
and 〈i + 1〉. The value v and label j move unchanged from wire 〈i + 1〉 to wire 〈i〉, so it holds for

14



〈i〉 as well. If label ` is on wire 〈h〉, with h < i and ` < k, then u · e` = 0. Also, v · e` = 0, either by
the first invariant if ` > j, or by the second if ` < j, so (u⊕ v) · e` = 0. Finally, we have designed
the box so that the output value on 〈i + 1〉, either u or u⊕ v, is orthogonal to ej .

When R concludes, the labels are in order; wire 〈i〉 has label i. The two invariants then imply
that 〈i〉 contains ei; that is, we have reached the identity matrix.

7.4 Lower Bounds

By Theorem 5.3, reversal requires depth 2n + 1. Hence, we have already shown that the minimum
depth for the worst-case matrix in GLn(2) is at least 2n+1. We now argue that almost all invertible
matrices require about this depth. By “almost all invertible matrices” we mean a proportion of
elements of GLn(2) tending to 1 as n goes to ∞. First we quote a well-known result on ranks of
random matrices.

Theorem 7.6. As n goes to ∞, the proportion of n×n matrices over F2 having rank at most n−c
is O(2−c2).

Sketch of proof. This follows from the fact that the number of n × n matrices of rank k is equal
to the square of the number of n× k matrices of rank k divided by the number of invertible k × k
matrices. To count these numbers of matrices, we use a standard formula of Landsberg [5]; see
Stanley [6, Section 1.3] for a more recent exposition.

Lemma 7.7. Let ε > 0 be given. For almost all matrices M in GLn(2), every circuit implementing
M has, for each integer k with 1 ≤ k ≤ n/2, at least 2k − εn gates between wires 〈k〉 and 〈k + 1〉
and also between wires 〈n− k〉 and 〈n− k + 1〉.

Proof. The proof uses the same technique as that of Lemma 5.2. As before, we consider wires 〈k〉
and 〈k + 1〉. Choose M ∈ GLn(2) uniformly at random, and consider a circuit implementing M .
We write the contents of the wires at any time as a block matrix, as in (1). Initially, X and Y
are 0, and at the conclusion of the circuit, X and Y are two blocks of our matrix M . For large
enough values of n and for a random choice of M , we expect X and Y each to have rank at least
k− (ε/2)n; since each gate between 〈k〉 and 〈k + 1〉 changes the total rank of X and Y by at most
1, we have at least 2k − εn such gates.

Counting gates between different pairs of bits yields the following theorem:

Theorem 7.8. Let ε > 0 be given. For almost all matrices M in GLn(2) every circuit implementing
M requires depth at least (2− ε)n and size at least (1− ε)n2.

A more careful analysis shows that the proportion of matrices in GLn(2) that can be imple-
mented in depth at most 2n−m is O(2−(m−2)2/8).

8 Open Questions

Let the “depth” of a matrix be the minimum depth of any circuit implementing the matrix. We
have shown that the maximum depth of a matrix in GLn(2) lies between 2n + 1 and 5n. A natural
question is whether we can close this gap.

15



For several reasons, the authors feel that the maximum depth may be only 4n+O(1). First, we
consider circuit size: By Theorem 5.3, reversal requires at least n2/2 gates, and the construction
of Section 7 computes any matrix in at most 5n2/2 gates. Bob Beals [1] has shown that one can
compute any matrix in only 2n2 gates. If we could pack these gates into a rectangular array, we
could implement the matrix in depth 4n.

More precisely, let ∇ be the set of all matrices implementable as ∇-shaped arrays of
(
n
2

)
depth-2

boxes. A circuit in ∇ has size at most n2 and depth at most 4n. Beals showed [1] that ∇2 = GLn(2):
given M , he builds two circuits, one on either side of M , so that the product is the identity. Let
Ξ be the set of all rectangular arrays of

(
n
2

)
depth-2 boxes; a circuit in Ξ has size at most n2 and

depth at most 2n. If we could similarly construct circuits in Ξ on either side of a matrix M to
reduce it to the identity, then Ξ2 would equal GLn(2), and we could implement any matrix in depth
4n.

By Proposition 7.3, we can use Ξ to reduce any matrix to northwest-triangular form. It is
interesting to note that the subgroup of upper (or lower) triangular matrices in GLn(2) has index∏n

i=1(2
i − 1), but its order is only

∏n
i=1 2i−1 = 2(n2−n)/2. Thus, one could argue that we are

“working harder” to reduce a general matrix to northwest triangular form (in depth 2n) than to
reduce the triangular matrix to the identity (in depth 3n). One could imagine that the latter
reduction should be possible in the same depth as the former, providing further evidence that Ξ2

might contain all of GLn(2).
We performed exhaustive computer experiments for n up to 6. The maximum depths are shown

in Table 2. While we are reluctant to draw inferences from such limited data, these values suggest
that the maximum depth may be as small as 2n + O(1). In other words, the lower bound of
Theorems 5.3 and 7.8 may be tight up to an additive constant.

Table 2: Maximum depth of a matrix in GLn(2) for n ≤ 6 obtained by exhaustive search.

n 2 3 4 5 6
depth 3 8 10 13 14

We also give some additional open questions:

• For addition, swap, and rotation, we have an upper bound for depth of n + O(1) and a lower
bound of n− 1. What is the correct additive constant?

• For n ≥ 3, the optimal depth for reversal is either 2n + 1 or 2n + 2. Which is correct?

• What is the correct depth for a general permutation? For small n, reversal is at least as hard
as any other permutation; does this hold for all n?

• For general matrices, we have a lower bound on size of n2/2 and an upper bound of 2n2 [1].
What is the correct answer?

• As noted earlier, some researchers [2, 4] use the box as the basic unit of computation; in this
model, we have a lower bound on depth of n + 1 (for reversal) and an upper bound of 2n.
What is the correct answer?

• Are there other classes of operations that can be implemented efficiently in this model?

16



The last question above is perhaps the most intriguing. Our focus was on selecting natural
operations on n wires and then determining their depth. An alternative approach would be to
consider all circuits of a given depth and see what other useful operations can be performed. Such
an analysis might suggest new efficient circuits for arbitrary matrices and might even yield new
approaches to quantum circuit design.

Acknowledgments

Tom Draper helped with our early work on addition, swap, and rotation. Bob Beals made many
helpful suggestions and pointed out the generalization from Theorem 5.3 to Theorem 7.8.

References

[1] Robert M. Beals. Private communication, 2004.

[2] Austin G. Fowler, Simon J. Devitt, and Lloyd C. L. Hollenberg. Implementation of Shor’s
algorithm on a linear nearest neighbour qubit array. Quantum Information and Computation,
4(4):237–251, 2004.

[3] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison–Wesley, second edition, 1998.

[4] Samuel A. Kutin. Shor’s algorithm on a nearest-neighbor machine. quant-ph/0609001, 2006.

[5] G. Landsberg. Über eine Anzahlbestimmung und eine damit zusammenhägende Reihe. J. Reine
Angew. Math, 111:87–88, 1893.

[6] Richard P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press, 1997.

[7] Rodney Van Meter. Architecture of a quantum multicomputer optimized for Shor’s factoring
algorithm. PhD thesis, Keio University, 2006. Also quant-ph/0607065.

[8] Rodney Van Meter and Kohei Itoh. Fast quantum modular exponentiation. Physics Review
Letters A, 71:052320, 2005.

17


