
Fast C-K-R Partitions of Sparse Graphs∗

Manor Mendel
Computer Science Division

The Open University of Israel
mendelma@gmail.com

Chaya Schwob
Computer Science Division

The Open University of Israel cschwob@nds.com

June 22, 2009

Abstract

We present fast algorithms for constructing probabilistic embeddings
and approximate distance oracles in sparse graphs. The main ingredient
is a fast algorithm for sampling the probabilistic partitions of Calinescu,
Karloff, and Rabani in sparse graphs.

1 Introduction

Metric decompositions aim to partition the points of a metric space into blocks
such that close-by points tend to be placed in the same block while distant
pairs of points in different blocks. For most metric spaces, no straightforward
interpretation of these goals exists.

One successful compromise is the notion of probabilistic partition. A ∆-
bounded probabilistic partition is a probability distribution over partitions of
the metric space, such that in every partition in the distribution, the diameters
of the blocks are at most ∆, while “close-by” pairs of points are in the same
block with “high” (or at least “non-negligible”) probability.

Probabilistic partitions first appeared, to the best of our knowledge,1 in a
paper of Linial and Saks [19], and publicized in the work of Bartal [3] on proba-
bilistic embeddings. Calinescu, Karloff and Rabani [10] introduced the following
probabilistic partition of metric spaces which we describe as an algorithm that
samples a partition from the probability distribution.

∗M. Mendel was partially supported by an ISF grant no. 221/07, a BSF grant no. 2006009,
and a gift from Cisco research center. This work is part of the M.Sc. thesis of C. Schwob
prepared in the Computer Science Division of the Open University of Israel.

1Closely related notions of partitions appeared before, e.g. in [17].

1

Algorithm 1 CKR-Partition
Input: A finite metric space (X, ρ), scale ∆ > 0
Output: Partition P of X
π B random permutation of X
R B random number in

[
∆
4 ,

∆
2

]
for i = 1 to |X| do

Ci B {y ∈ X : ρ(y, xπ(i)) ≤ R} \
⋃i−1
j=1 Cj

return P B
{
C1, . . . , C|X|

}
\ {∅}

We call the probabilistic partition P sampled by Algorithm 1, ∆-bounded
CKR partition. Näıve implementations of Algorithm 1 take Ω(n2) time for n-
point metric spaces. It seems hard to break the Ω(n2) barrier on the running
time in general finite metric spaces. However, in many situations, the metric
spaces we deal with come from the shortest-path metric on relatively sparse
graphs. In those cases we can do better, as the following theorem shows.

Theorem 1. Suppose we are given a positive number ∆ > 0 and an undirected
graph with positive edge weights G = (X,E, ω). Suppose G has n vertices and
m edges, and let ρ denote the shortest-path metric in G. One can sample a
∆-bounded CKR partition of (X, ρ) in expected O(m log n+ n log2 n) time.

The sampling will be accomplished by Algorithm 2 (Section 3).
CKR partitions have found many algorithmic (as well as mathematical) ap-

plications, and we mention only few of them here. They were introduced as part
of an approximation algorithm to the 0-extension problem [10, 12]. Fakcharoen-
phol, Rao and Talwar [13] used them to obtain an asymptotically tight prob-
abilistic embedding into trees, which we call FRT-embedding. Probabilistic
embeddings are used in many of the best known approximation and online algo-
rithms as a reduction step from general metrics into tree metrics. Mendel and
Naor [21] showed that FRT-embedding possesses a stronger embedding prop-
erty, which they called “maximum gradient embedding”. Recently, Räcke [23]
used FRT-embeddings to obtain hierarchical decompositions for congestion min-
imization in networks, and used them to give an O(log n) approximation algo-
rithm for the minimum bisection problem and an O(log n) competitive online
algorithm for the oblivious routing problem. Krauthgamer et. al [16] used CKR-
partitions to give a new proof of Bourgain’s embedding theorem. Mendel and
Naor [22] used them to obtain an asymptotically tight metric Ramsey theorem
and approximate distance oracles.

The improved running time of the sampling of CKR partitions may improve
the running time of many of their applications. In order to keep the paper short
we work out the details of only two (related) applications of CKR partitions:
FRT-embeddings, and approximate distance oracles based on CKR-partitions.

2

Probabilistic embedding into ultrametrics [2, 3].

An ultrametric ν on X is a metric which satisfies ν(x, z) ≤ max{ν(x, y), ν(y, z)},
for every x, y, z ∈ X. A probabilistic embedding of a metric space (X, ρ) into
ultrametrics with distortion D is a probability distribution Π over ultramerics
ν on X such that

1. For every x, y ∈ X, PrΠ[ν(x, y) ≥ ρ(x, y)] = 1.

2. For every x, y ∈ X, EΠ[ν(x, y)] ≤ D · ρ(x, y).

FRT-embedding is a probabilistic embedding into ultrametrics with distor-
tion O(log n) for every n-point metric space [13]. This bound is asymptotically
tight for certain classes of finite metric spaces, such as graphs of high girth[3],
grids [2], and expanders [18].

Approximate distance oracles.

An approximate distance oracle is a data structure with “compact” (o(n2)) stor-
age that answers (approximate) distance queries in a given n-point metric space
in constant time. A simple counting argument over all bi-partite graphs shows
that exact, and even 2.99 approximation is impossible when the storage is o(n2).
The history of this problem is nicely summarized in [25]. In particular, Thorup
and Zwick [25] gave an asymptotically tight trade-off between the approxima-
tion and the storage2: For every k ∈ N, they constructed (2k − 1)-approximate
distance oracle requiring O(kn1+1/k) storage, and answering queries in O(k)
time. Recently Mendel and Naor [22] presented different approximate distance
oracles, based on CKR partitions. While those oracles do not give optimal
approximation/storage trade-off,3 they answer distance queries in an absolute
constant time, regardless of the approximation parameter.

Theorem 2. Let G = (X,E, ω) be an n-vertex weighted graph with m edges,
and let ρ be the shortest-path metric on X. Then

1. It is possible to sample from FRT-embedding of (X, ρ) in O(m log3 n) ex-
pected time.

2. It is possible to construct in O(mn1/k log3 n) expected time an O(k)-approximate
distance oracle for (X, ρ) based on CKR partitions whose storage is O(n1+1/k).

For approximate distance oracles, it is also possible to improve the näıve
construction time even when the metric is given as distance matrix, by first
constructing a spanner of the metric with o(n2) edges, and then use the fast
CKR partitions for sparse graphs on that spanner.

2The lower bound on the approximation assumes a conjecture of Erdös about the number
of edges possible in graph with a given number of vertices and a given girth, see [25].

3As reported in [22], oracles of size O(n1+1/k) support approximation factor of 128k in
the queries. While the constant 128 can be reduced by optimizing the parameters in the
construction, it is unlikely to get below 8.

3

Theorem 3. For n-point metric spaces given as distance matrix, it is possible
to construct O(k)-approximate distance oracle based on CKR partitions whose
storage is O(n1+1/k), in O(n2) expected time.

We remark that a different probabilistic partition, developed by Bartal [4, 5]
and Abraham et. al. [1], have properties similar to (and even stronger than) CKR
partitions. However, we do not see an easy way to quickly obtain a sample from
this distribution when the graph is sparse.

Further Results

The second named author presents in [24] an efficient PRAM algorithm for sam-
pling CKR partitions and constructing approximate distance oracles in weighted
graphs. The running time of the algorithm is polylog(n) and the total work is
O(mpolylog(n)).

Outline of the paper.

After setting up in Section 2 the notation and reviewing the properties of CKR
partitions, we prove Theorem 1 in Section 3.

In many applications (and in particular, probabilistic embeddings and ap-
proximate distance oracles), probabilistic partitions are applied hierarchically,
using an exponentially decreasing series of scales. This näıvly implies an added
O(log Φ) factor in the running time, where Φ is the spread4 of the metric.
There is a standard technique that converts this log Φ factor into a log n fac-
tor. However, we are not aware of a concrete implementation that satisfies the
efficiency requirements needed in this paper. We therefore sketch the details
of this technical step in Section 4. The specific applications examined in this
paper, Theorem 2 and Theorem 3, are discussed in Section 5.

2 Preliminaries

For simplicity of the presentation, the model of computation we assume is a
unit-cost, real-word RAM machine. In this model words can hold real numbers
and arithmetic, comparison, and truncation operations take unit time. Our
algorithms, however, do not take advantage of the unrealistic power of this
model, and can also be presented in a more realistic computational models such
as the unit cost floating-point word RAM model (cf. [15, Sec. 2.2]).

The diameter of a finite subset Y ⊆ (X, ρ) is defined as diam(Y) = max{ρ(x, y) :
x, y ∈ Y }. For simplicity of the presentation, we assume that the given finite
metric (X, ρ) has minimum non-zero distance 1, and diameter diam(X) = Φ.

The (closed) ball around x at radius r is defined as Bρ(x, r) = {y ∈ X :
ρ(x, y) ≤ r}. When ρ is clear from the context we may omit it from the notation.

4The spread is the ratio between the diameter and the smallest non-zero distance in the
metric

4

Given a partition P of X, and x ∈ X, we denote by P (x) the block of P which
contains x.

∆-bounded CKR partitions have an obvious upper bound of ∆ on the diam-
eter of the blocks in the partition. The following is the padding property they
enjoy.

Lemma 2.1 ([13, 22]). Let P be a ∆-bounded CKR partition of the metric
(X, ρ). Then, for every x ∈ X, and t ≤ ∆/8,

Pr
P∼P

[B (x, t) ⊆ P (x)] ≥
(
|BX(x,∆/8)|
|BX(x,∆)|

) 16t
∆

. (1)

In this paper we define hierarchical partition of a metric space (X, ρ) as
a sequence of dlog8 Φe + 2 partitions P−1, P0, . . . , Pdlog8 Φe such that Pi is a
partition of X at scale 8i, and Pi is a refinement of Pj when i ≤ j, i.e., for every
x ∈ X, Pi(x) ⊆ Pj(x). Given a sequence (Qj)j≥−1 of partitions, where Qj is
8j-bounded partition of X, the common refinement of (Qj)j is a hierarchical
partition (Pj)j≥−1 in which Pj = {

⋂
`≥j C` : C` ∈ Q`}

By sampling stochastically independent CKR partitions at the different
scales and then taking their common refinement, we obtain the following re-
sult.

Lemma 2.2 ([22]). Fix a finite metric space (X, ρ). Then there exists (effi-
ciently sampleable) probability distribution H over hierarchical partitions such
that for every x ∈ X, and every 0 < β < 1/8,

Pr
(P−1,...,Pdlog8 Φe)∼H

[
∀ k ≥ −1, B(x, β8k) ⊆ Pk(x)

]
≥ |X|−16β

.

A finite ultrametric (X, ν) can be represented by a tree as follows.

Definition 4. An ultrametric tree (T,Γ) is a metric space whose elements are
the leaves of a rooted finite tree T . Associated with every vertex u ∈ T is a
label Γ (u) ≥ 0 such that Γ (u) = 0 iff u is a leaf of T . If a vertex u is a child
of a vertex v then Γ (u) ≤ Γ (v) . The distance between two leaves x, y ∈ T is
defined as Γ (lca (x, y)), where lca (x, y) is the least common ancestor of x and
y in T.

Every finite ultrametric can be represented by an ultrametric tree, and vice
versa: the metric on ultrametric tree is a finite ultrametric. Hierarchical parti-
tion {Pk}dlg φek=−1 of (X, ρ) naturally corresponds to an ultrametric ν on X where
ν(x, y) = 8min{j: Pj(x)=Pj(y)}.

Let G = (X,E, ω) be an undirected positively weighted graph. Let ρ :
X × X → [0,∞) be the shortest-path metric on G. We denote by n = |X|
the number of vertices, and by m = |E| the number of edges. We assume an
adjacency list representation of graphs.

5

The single source shortest paths in weighted undirected graphs problem
[USSSP] is used as a subroutine in our algorithm. Given a weighted graph
with n vertices and m edges, Dijkstra’s classical USSSP algorithm [11] with
source w maintains for each vertex v an upper bound on the distance between
w and v, δ (v). If δ (v) has not been assigned yet, it is interpreted as infi-
nite. Initially, we just set δ (w) = 0, and we have no visited vertices. At each
iteration, we select an unvisited vertex u with the smallest finite δ (u), visit
it, and relax all its edges. That is, for each incident edge (u, v) ∈ E, we set
δ (v) ← min {δ (v) , δ (u) + ω (u, v)}. We continue until no vertex is left un-
visited. Using Fibonacci heaps [14] or Bordal’s priority queues [9], Dijkstra’s
algorithm is implemented in O (m+ n lg n) time.

3 Fast CKR partitions

Given an undirected positively weighted graph G = (X,E, ω) with n vertices
and m edges whose shortest path metric is denoted by ρ, and ∆ > 0, we show
how to implement Algorithm 1 in O

(
m lg n+ n log2 n

)
expected time.

First, we sample a random permutation π, which can be generated in linear
time using several methods, e.g., Knuth Shuffle (see [8]). Next, we sample R
uniformly5 in the range

[
∆
4 ,

∆
2

]
.

We then use a variant of Dijkstra’s algorithm for computing the blocks.
The algorithm performs |X| iterations. In the i-th iteration, all vertices in
Bρ
(
xπ(i), R

)
not yet assigned to some block are put in Ci. In order to gain

the improved running time of Theorem 1, we change Dijkstra’s algorithm to
return the distance of a point v from π(i) only if this distance is smaller then
the distance of v from π(j) for all j < i.

Technically, this is done as follows. Consider the i-th iteration and let δ(v)
be the variable that holds the Dijkstra’s algorithm’s current estimate on the
distance between π(i) and v. In Dijkstra’s algorithm δ(v) is usually initialized
to ∞ and then gradually decreases until u is extracted from the priority queue,
at which point δ(v) = ρ(π(i), v). In the variant of Dijkstra’s algorithm used
in Algorithm 2, δ(·) are not reinitialized when the value of i is changed. This
means that now at the end of the (i− 1)-th iteration, δ(v) = minj<i ρ(π(j), v),
which in turn means that an edge (u,w) is relaxed in the i-th iteration only
when π(i) is the closest center to both u, and w among π(j), j ≤ i. This
dramatically reduces the number of relaxations being done, and does not hurt
the correctness of the algorithm. The full details are given in Algorithm 2.

Lemma 3.1. After the i-th iteration of the loop on lines 6–18 of Algorithm 2,

δ(v) =

{
minj≤i ρ(π(j), v) if minj≤i ρ(π(j), v) ≤ R,
∞ otherwise.

(2)

5A closer look on the analysis of the CKR partitions (see [22]) reveals that it is sufficient
to sample R from discrete distribution having resolution of ∆/c log n, and therefore this step
can be carried out in a “realistic” computational model such as the unit cost floating-point
word RAM model.

6

Algorithm 2 Graph-CKR-Partition
Input: Graph G = (X,E, ω), scale ∆ > 0
Output: Partition P of X

1: Generate random permutation π of X
2: Sample a random R ∈

[
∆
4 ,

∆
2

]
3: for all v ∈ X do
4: δ(v) B∞
5: P (v) B 0
6: for i B 1 to |X| do // Perform modified Dijkstra’s alg starting from π (i)

7: δ (π (i)) B 0
8: Q B ∅ // Q is a priority queue with δ being the key

9: w B π (i)
10: while δ (w) ≤ R do // w is visited now

11: if P (w) = 0 then
12: P (w) B i
13: for all u : (u,w) ∈ E do
14: if δ(u) > δ(w) + ω(u,w) then // Relax edges adjacent to w

15: δ (u) B δ (w) + ω (u,w)
16: if u /∈ Q then
17: Insert u into Q
18: Extract w ∈ Q with minimal δ (w)
19: return P

Sketch of a proof. Proof by induction on i. When i = 1, and as long δ(w) ≤ R in
the While loop of line 10, the algorithm behaves exactly as Dijkstra’s algorithm
and hence (2) is true for i = 1.

Assume inductively that (2) is correct for i − 1. If minj≤i−1 ρ(π(j), v) ≤
ρ(π(i), v), then clearly the i-th iteration will not change δ(v), and by the induc-
tiion hypothesis we are done.

Assume now that minj≤i−1 ρ(π(j), v) > ρ(π(i), v), and ρ(π(i), v) ≤ R. Let
π(i) = v0, v1, . . . , v` = v be a shortest-path between π(i) and v. We claim that
for every t ∈ {1, . . . , `}, minj≤i−1 ρ(π(j), vt) > ρ(π(i), vt), since otherwise we
had

min
j≤i−1

ρ(π(j), v) ≤ min
j≤i−1

ρ(π(j), vt) + ρ(vt, v) ≤ ρ(π(i), vt) + ρ(vt, v) = ρ(π(i), v).

Hence all the edges along the path π(i) = v0, . . . , v` = v will be relaxed in the
i-th iteration, and so in the end of the i-th iteration, δ(v) = ρ(π(i), v).

Proof of Theorem 1. We first prove the correctness of Algorithm 2, i.e., that
P (v) = min {i : ρ(π(i), v) ≤ R} for every v ∈ V . Let i0 = min {i : ρ(π(i), v) ≤ R}.
This means that minj<i0 ρ(π(j), v) > R ≥ ρ(π(i0), v). By Lemma 3.1 at the
beginning of the i0-th iteration, δ(v) =∞, and hence P (v) = 0 and by the end
of the (i0)-th iteration, δ(v) = ρ(π(i0), v), and necessarily P (v) = i0. Note that
once P (v) is set to a non-zero value, its value will not change.

7

We next bound the running time. we will show that every vertex is in-
serted into the queue O(log n) times in expectation, and every edge (u, v) of
G undergoes O (log n) relaxations in expectation. Consider the non-increasing
sequence ai = minj≤i ρ (π (j) , v). In the i-th iteration, δ(v) decreases if and
only if ai−1 > ai. Note that ai−1 > ai means that ρ (π (i) , v) is the minimum
among {ρ (π (j) , v) | j ≤ i}, and the probability (over π) for this to happen is
at most 1/i. By linearity of the expectation, the expected number of rounds of
the i-loop where δ(v) decreases (and hence v is inserted into the queue) is at
most

n∑
i=1

1
i
≤ 1 + lnn.

Furthermore, by another application of the linearity of expectation, the expected
number of edge relaxations is at most

O
(∑
v∈V

lnn · deg (v)
)

= O (m log n) .

Using Fibonacci heaps [14] or Brodal’s priority queues [9], the total running
time of Algorithm 2 is O(r+ s log n), where r is the number of relaxations, and
s is the number of “insert” and “extract minimum” operations. In our cases
E[r] = O(m log n), and E[s] = O(n log n). Therefore the total expected running
time of Algorithm 2 is O(m log n+ n log2 n).

4 Hierarchical Partitions

In this section we explain how to dispense with the O (log Φ) factor in the näıve
implementation of the hierarchical partitions, and replace it with O (log n). The
method being used is standard. Similar arguments appeared previously, e.g.,
in [3, 15, 22, 21]. However, the context here is slightly different, and the desig-
nated time bound is O

(
m log3 n

)
, which is faster than the implementations we

are aware of. While the argument is relatively straightforward, a full description
of it is tedious to write and read. Instead we only sketch the implementation
here. A complete description, including algorithmic implementation, appears
in [24].

In a näıve implementation, the number of scales in which we sample CKR
partitions is Θ (lg Φ). This leads to O((n log2 n + m log n) log Φ) bound on the
expected running time. Here we develop an implementation having O

(
m log3 n

)
expected running time. We define for each scale an appropriate quotient of the
input graph. We then show that CKR partitions of those substitutive graph
metrics retain the properties of CKR partitions on original metric. Using those
quotients, not all scales need to be processed, and the total size of the quotient
graphs in all processed scales is O (m lg n).

For y, y′ ⊆ X, let ρ (y, y′) = min {ρ (x, x′) |x ∈ y, x′ ∈ y′}. Given a partition

8

Y of the space (X, ρ) we define the quotient metric ν on Y as

ν (y, y′) = min
{ l∑
j=1

ρ (yj−1, yj) : y0, . . . , yl ∈ Y, y0 = y, yl = y′
}
.

Definition 5. A space (Y, ν) is called ∆-bounded quotient of an n-point metric
space (X, ρ) if Y is a ∆-bounded partition of X, ν is a quotient metric on Y ,
and for every x ∈ X, Bρ(x,∆/n) ⊆ Y (x).

Note that a ∆-bounded quotient of n-point metric space exists: define a
relation x ∼ x′ if ρ(x, x′) ≤ ∆/n, and take the transitive closure. The quotient
subsets are the equivalence classes, and by the triangle inequality, the diameter
of those equivalence classes is at most ∆.

The following lemma follows easily from Lemma 2.1, see the proof of [20,
Lemma 5].

Lemma 4.1. Fix ∆ > 0, and let (Y, ν) be a ∆
2 -bounded quotient of (X, ρ). Let

σ : X → Y be the natural projection, assigning each vertex x ∈ X to its cluster
Y (x). Let L be a (∆/2)-bounded CKR partition of Y .

Let P be the pullback of L under σ, i.e., P =
{
σ−1 (A)

∣∣ A ∈ L}. Then P is
a ∆-bounded partition of X such that for every 0 < t ≤ ∆/16 and every x ∈ X,

Pr [Bρ (x, t) ⊆ P (x)] ≥
(
|Bρ (x,∆/16)|
|Bρ (x,∆)|

) 32t
∆

. (3)

and furthermore, if t ≤ ∆/2n, then

Pr [Bρ (x, t) ⊆ P (x)] = 1. (4)

We define G|∆ as the subgraph of G with edges of weight at most ∆ and no
isolated vertices.

Definition 6. Given a weighted graph G = (X,E, ω) and ∆ > 0. Define the
graph G|∆ = (X|∆, E|∆, ω|∆) as follows.

E|∆ = {(u, v) ∈ E : u 6= v, and ω (u, v) ≤ ∆} ,
X|∆ = {u ∈ X : ∃v ∈ X, (u, v) ∈ E|∆} , and
ω|∆ = ω|E|∆ .

Lemma 4.2. Given a weighted graph G = (X,E, ω), and ∆ > 0. Let L be
a ∆-bounded CKR partition of X|∆, using the metric induced by G|∆. Then
P = L∪{{v} : v ∈ X \ (X|∆)} is a ∆-bounded CKR partition of X, using the
metric induced by G.

Proof. Let ρ be the shortest-path metric on G. Observe that when computing a
∆-bounded CKR partition of (X, ρ) no edge of weight larger than ∆ is “used” by
the Dijkstra’s algorithm for computing the balls, and therefore discarding them
does not change the behavior of the algorithm. Also, for each v ∈ X \ X|∆,
Bρ (v,∆) = {v}, i.e., in any ∆-bounded CKR partition of X, v will appear in a
singleton subset.

9

Lemma 4.2 and Lemma 4.1 form the basis for dispensing with the dependence
on the spread in the construction time. We next sketch the scheme we use.
Denote the input graph G = (X,E, ω), |X| = n, |E| = m, and let ρ be the
graph metric on G.

We first construct an ultrametric ν on V , represented by an ultrametric tree
H = (T,Γ) such that for every u, v ∈ V , ρ (u, v) ≤ ν (u, v) ≤ nρ (u, v). H can
be constructed in O(m+n log n) time using minimum spanning tree procedure,
see [15, Section 3.2]. For a given ∆ ≥ 0, and a leaf v ∈ T , denote by σ∆ (v)
the highest ancestor u of v for which Γ (u) ≤ ∆

2n . Using the level-ancestor data
structure (cf. [7]) the tree T can be preprocessed in O(n) time such that queries
for σ∆(v) (given ∆, and v) are answered in O(log n) time. See [15, Section 3.5]
for a similar supporting data structure.

Given ∆ > 0, define the weighted graphG(∆) as follows. G(∆) =
(
X(∆), E(∆), ω(∆)

)
where,

X(∆) = {σ∆ (v) : v ∈ X} ,
E(∆) = {(σ∆ (u) , σ∆ (v)) : (u, v) ∈ E, σ∆ (u) 6= σ∆ (v)} ,

ω(∆) (u, v) = min {ω (w, z) : σ∆ (w) = u, σ∆ (z) = v} .

Let ρ(∆) be the shortest-path metric on G(∆). Then, directly from the
definitions,

(
X(∆), ρ(∆)

)
is a ∆

2 -bounded quotient of (X, ρ).
For an integer j ≥ −1 denote Gj = (Vj , Ej , ωj) where Gj =

(
G(8j)

)
|8j/2.

The following lemma gives an upper bound on the total size of the graphs Gj .

Lemma 4.3. ∑
j≥−1

(|Vj |+ |Ej |) = O (m lg n) .

Proof. Fix (u, v) ∈ E and j ≥ −1 such that (σ8j (u) , σ8j (v)) ∈ E(8j). By
the definition of E(8j), σ8j (u) 6= σ8j (v). By the definition of ω(8j), ω (u, v) ≥
ω(8j) (u, v) ≥ 8j

2n . Also, (σ8j (u) , σ8j (v)) ∈ Ej if and only if ω(8j) (σ8j (u) , σ8j (v)) ≤
8j

2 . So by the triangle inequality ω(u, v) ≤ ω(8j)(σ8j (u), σ8j (v)) + 8j , and hence
ω(u, v) ≤ 1.5 · 8j . That is, each edge of G is represented in Gj only when

ω (u, v) ∈
[

8j

2n , 1.5 · 8
j
]
. A total of O (log n) scales. By definition, Gj contains

only non-isolated vertices, so ∀j, |Vj | ≤ 2 |Ej |.

Let Processed = {j ≥ −1 : Vj 6= ∅}.

Lemma 4.4. The set of graphs (Gj)j∈Processed can be constructed in O(m log2 n)
expected time.6

Sketch of a proof. First we sort the edges in E = {e1, . . . em} in non increas-
ing order. Keep a “sliding window” [iL(t), iR(t)], iL(t), iR(t) ∈ {1, . . . ,m},
t ∈ {1, . . . , |Processed |}, as follows: Let j1 = dlog8 Φe. iL(1) = 1, iR(1) =

6With a bit more care the running time can be improved to O(m log n). This improvement,
however, will not improve the total construction time of the hierarchical partition.

10

max{i : ω(ei) ≥ 8j1/2n}. Assuming jt−1 is already defined, define jt =
max{j < jt−1 : ∃i, 8j ≥ ω(ei) ≥ 8j/2n}, iL(t) = min{i : ω(ei) ≤ 8jt},
and iR(t) = max{i : ω(ei) ≥ 8jt/2n}. Note that {jt}t = Processed, and the
definition gives O(m) time algorithm for computing the sequences (jt)t, (iL(t))t,
and (iR(t))t. Constructing Gjt can now be done in O((iR(t)− iL(t) + 1) log n)
time, by observing that the set of vertices is

Vjt = {σ8jt (ui), σ8jt (vi) : i ∈ {iL(t), . . . , iR(t)}, (ui, vi) = ei},

and similarly the set of edges is

Ejt = {(σ8jt (ui), σ8jt (vi)) : i ∈ {iL(t), . . . , iR(t)}, (ui, vi) = ei}.

Another log n factor in the construction time comes from the O(log n) time
needed for each query of the form “σ∆(u)”. Since iR(t)− iL(t) + 1 = |Ejt |, by
Lemma 4.3,

∑
t(iR(t)− iL(t) + 1) = O(m log n).

Next, we sample (8jt/2)-bounded CKR partition Ljt for each Gjt . By
Lemma 4.1, (Ljt)t (implicitly) represents CKR partitions of G in all scales.
Using Theorem 1 and Lemma 4.3 computing (Ljt)t is done in O(m log3 n) ex-
pected time.

Hierarchical partitions have an O(n) storage representation. It is similar to
an efficient ultrametric tree representation, such as the nettree in [15]. Using a
rooted tree P whose leaves correspond to the points of X, each internal vertex
u has at least two children, and is labeled with a (logarithm of) scale, s(u).
The 8j-bounded partition Pj is now defined as follows: For x ∈ X, Pj(x) is the
highest ancestor u of x in P such that s(u) ≤ j. Since the tree P does not have
vertices of degree 2, except maybe the root, its size is O(n).

We are left to describe how to compute the the common refinement of the
pullbacks of (Ljt)t as a hierarchical partition represented in the tree structure
P of the previous paragraph. This is done by top-down fashion as follows:

In the initialization step, P is created as a rooted star whose root, r is labeled
by 8j1 , and its leaves correspond to {σ8j1 (u) : u ∈ X}.

Next, inductively assume that P is a hierarchical partition of {σ8jt−1 (u) :
u ∈ X} corresponding to {Ljs : s ≤ t − 1}. We refine P to include Ljt as
follows:

• Replace the leaves of P: Each σ8jt−1 (u) is replaced by

{σ8jt (v) : v ∈ X, σ8jt (v) is a descendant of σ8jt−1 (u)}.

This step is done in O(|Vjt |) time by simply starting from an “old leaf”
σ8jt−1 (u) as a vertex in T and descending in T to level 8jt/2n.

• Next, incorporate Ljt into the hierarchical partition in a straightforward
way: Scan the leaves of P, which are in Vjt grouped by their parents.
Fixing such a parent u whose children v1, . . . , v` are all leaves, we partition
v1, . . . , v` to subsets {{v1, . . . , v`} ∩ C : C ∈ Ljt}. For every such subset
of size 2 or more we define a new parent w (which will be a child of u)
with the label 8jt .

11

Hence, the t-th iteration in the algorithm above is executed in O(|Vjt |) time,
so the total time for constructing the common refinement is O(m log n).

5 Applications

Proof of the first part of Theorem 2. As observed in Section 2, hierarchical par-
titions correspond to ultrametrics. As shown in [13], when the partition in every
scale is a CKR partition, the resulting distribution over ultrametrics is a prob-
abilistic embedding with O(log n) distortion.7 The algorithm described in Sec-
tion 4 samples a hierarchical partition (and hence an ultrametric) in O(m log3 n)
expected time.

Proof of the second part of Theorem 2. A point x ∈ X is called β-padded in
hierarchical partition H = (P−1, . . . , Plog Φ), if for every j, B(x, β8j) ⊂ Pj(x).

The main part of constructing O(β−1)-approximate distance oracle based
on CKR partitions works as follows [22]: Set X0 = X, and iteratively on i =
0, 1, . . . do: Compute a hierarchical CKR partition Hi of Xi, and obtain an
ultrametric Hi from Hi. Let Yi be a set of β-padded points in Hi that is found
in Lemma 2.2. Set Xi+1 B Xi \ Yi, i B i+ 1 and repeat until Xi = ∅. The set
of ultrametrics (Hi)i, together with some supporting data-structures constitute
the approximate distance oracle.

By Lemma 2.2, E|Yi| ≥ |Xi|1−32β , the number of iterations until Xi = ∅ is
in expectation at most O(β−1nO(β)), and hence the total storage is as claimed.

There are two issues in the construction of (Hi)i that we have not covered
yet: First, the task is to sample a hierarchical partition of Xi which is only a
subset of the vertices in the graph G = (X,E, ω). This is rather easy to handle
by adapting the algorithms in Section 3 and Section 4 to work with subsets of
the vertices.

The second issue is the computation of β-padded points. The β-padded
points of a (single) ∆-bounded partition P of a weighted graph G = (V,E, ω)
can be computed as follows: Add a new vertex s0. For every edge (u, v) ∈ E
such that P (u) 6= P (v), add an edge (s0, u) whose weight is ω(u, v). Execute
Dijkstra’s shortest path algorithm from s0, and delete all vertices at distance at
most β∆ from s0. This can be implemented in O(m+ n log n) time. Note that
in the hierarchical partition if a point is not in Vj then it is padded at scale 8j .
Hence in order to compute a β padded point set in hierarchical partition, for
every t, we cross out the points which are not 2β-padded in Ljt . The remained
points are β-padded in the pullbacks of (Ljt)t (as follows from Lemma 4.1) and
hence also in the hierarchical partition. When implemented carefully, this can

7Technically, in [13] the hierarchical partition was built differently: instead of taking a CKR
partition of the whole space in every scale, and then the common refinement, at each scale
they took many CKR partitions, one for each block of the partition of the previous scale. This
technicality is inconsequential for probabilistic embeddings. However, for the construction of
approximate distance oracles, the approach of [13] does not seem to work since it does not
have stochastically independent partitions in the different scales. See also [22].

12

be done on every graph Gj in O(|Ej |+ |Vj | log n), and by Lemma 4.3, in a total
O(m log2 n) time.

A t-spanner of a weighted graph G = (V,E, ω), is a subset of the edges
E′ ⊂ E such that the shortest-path metric on (V,E′, ω|E′) is at most t times
the shortest-path metric on G. We need the following result.

Theorem 7 ([6]). Let G = (V,E,w) be a weighted graph with n vertices and
m edges, and let k ≥ 1 be an integer. A (2k − 1)-spanner of with O

(
kn1+1/k

)
edges can be computed in O (km) expected time.

Proof of Theorem 3. By Theorem 7, given an n-point metric space (X, ρ), a 5-
spanner H of (X, ρ) with O(n4/3) edges can be constructed in O(n2) time. We
next apply the second part of Theorem 2 whose running time is o(n2).

References

[1] Ittai Abraham, Yair Bartal, and Ofer Neiman. Advances in metric embed-
ding theory. In Jon M. Kleinberg, editor, STOC, pages 271–286. ACM,
2006.

[2] Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A graph-
theoretic game and its application to the k-server problem. SIAM J. Com-
put., 24(1):78–100, 1995.

[3] Yair Bartal. Probabilistic approximations of metric space and its algorith-
mic application. In Proc. 37th Ann. IEEE Symp. Foundations of Computer
Science (FOCS’96), pages 183–193. Elsevier Science Publishers B. V., Am-
sterdam, The Netherlands, The Netherlands, 1996.

[4] Yair Bartal. Graph decomposition lemmas and their role in metric em-
bedding methods. In Susanne Albers and Tomasz Radzik, editors, ESA,
volume 3221 of Lecture Notes in Computer Science, pages 89–97. Springer,
2004.

[5] Yair Bartal. Embedding finite metric spaces in low dimension. Technical
report, Hebrew University of Jerusalem, 2005.

[6] Surender Baswana and Sandeep Sen. A simple and linear time random-
ized algorithm for computing sparse spanners in weighted graphs. Random
Struct. Algorithms, 30(4):532–563, 2007.

[7] Michael A. Bender and Mart́ın Farach-Colton. The level ancestor problem
simplified. Theor. Comput. Sci., 321(1):5–12, 2004.

[8] David Berman and M. S. Klamkin. A reverse card shuffle. SIAM Review,
18(3):491–492, 1976.

13

[9] Gerth Stølting Brodal. Worst-case efficient priority queues. In SODA ’96:
Proceedings of the seventh annual ACM-SIAM symposium on Discrete al-
gorithms, pages 52–58, Philadelphia, PA, USA, 1996. Society for Industrial
and Applied Mathematics.

[10] Gruia Calinescu, Howard Karloff, and Yuval Rabani. Approximation al-
gorithms for the 0-extension problem. In Proc. 12th Ann. ACM-SIAM
Symp. Discrete Algorithms (SODA’01), pages 8–16. SIAM, Philadelphia,
PA, USA, 2001.

[11] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer.
Math., 1:269–271, 1959.

[12] Jittat Fakcharoenphol, Chris Harrelson, Satish Rao, and Kunal Talwar. An
improved approximation algorithm for the 0-extension problem. In Proc.
14th Ann. ACM-SIAM Symp. Discrete Algorithms (SODA’03), pages 257–
265. ACM, New York, NY, USA, 2003.

[13] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on
approximating arbitrary metrics by tree metrics. J. Comput. System Sci.,
69(3):485–497, 2004.

[14] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. J. ACM, 34(3):596–615,
1987.

[15] Sariel Har-Peled and Manor Mendel. Fast construction of nets in low di-
mensional metrics, and their applications. SIAM J. Comput., 35:1148–1184,
2006.

[16] Robert Krauthgamer, James R. Lee, Manor Mendel, and Assaf Naor. Mea-
sured descent: A new embedding method for finite metrics. In Proc. 45th
Ann. IEEE Symp. Foundations of Computer Science (FOCS’04), pages
434–443. IEEE Computer Society, Washington, DC, USA, 2004.

[17] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut the-
orems and their use in designing approximation algorithms. J. ACM,
46(6):787–832, 1999.

[18] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs
and some of its algorithmic applications. Combinatorica, 15(2):215–245,
1995.

[19] Nathan Linial and Michael Saks. Low diameter graph decompositions.
Combinatorica, 13(4):441–454, 1993.

[20] Manor Mendel and Assaf Naor. Maximum gradient embeddings and mono-
tone clustering, 2006. preliminary version of [21]. Accepted to Combina-
torica. arXiv:cs/0606109.

14

http://arxiv.org/abs/cs/0606109
http://arxiv.org/abs/cs/0606109
http://arxiv.org/abs/cs/0606109

[21] Manor Mendel and Assaf Naor. Maximum gradient embeddings and mono-
tone clustering. In Proc. Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, 10th Int. Workshop
(APPROX’07) and 11th Int. Workshop (RANDOM’07), pages 242–256.
Springer, Berlin, Germany, 2007.

[22] Manor Mendel and Assaf Naor. Ramsey partitions and proximity data
structures. J. European Math. Soc., 9(2):253–275, 2007.

[23] Harald Räcke. Optimal hierarchical decompositions for congestion mini-
mization in networks. In Proc. 40th Ann. ACM Symp. Theory of computing
(STOC’08), pages 255–264. ACM, New York, NY, USA, 2008.

[24] Chaya Schwob. Ramsey partitions based approximate distance oracles.
Master’s thesis, The Open University of Israel, Ra’anana, Israel, 2008.
available at http://sites.google.com/site/mendelma/Home/students/
RamseyPartitionsBasedADO_Final.pdf?attredirects=0.

[25] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM,
52(1):1–24, 2005.

15

http://sites.google.com/site/mendelma/Home/students/RamseyPartitionsBasedADO_Final.pdf?attredirects=0
http://sites.google.com/site/mendelma/Home/students/RamseyPartitionsBasedADO_Final.pdf?attredirects=0

	Introduction
	Preliminaries
	Fast CKR partitions
	Hierarchical Partitions
	Applications

