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Abstract:
This paper is concerned with the problem of Boolean approximation in the following

sense: given a Boolean function class and an arbitrary Boolean function, what is the
function’s best proxy in the class? Specifically, what is its strongest logical consequence
(or envelope) in the class of affine Boolean functions. We prove various properties of affine
Boolean functions and their representation as ROBDDs. Using these properties, we develop
an ROBDD algorithm to find the affine envelope of a Boolean function.

1 Introduction

Various classes of Boolean functions play important roles in computer science. The classes of interest
include all of the co-clones [54] (such as the Horn and Krom classes) and others. In this paper we focus
on the affine class.

For any particular way of representing Boolean functions, and any particular class, a number of
algorithmic problems suggest themselves. One is identification: How does one decide whether a given
function belongs to the class? Another problem is Boolean approximation: Given a Boolean function,
how does one find its best proxy from the given class; for example, how to find its strongest Horn
consequence?

Boolean approximation finds use in diverse areas such as abstract interpretation, circuit verification,
and machine learning. The bulk of research in Boolean approximation has arguably sprung from
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areas of artificial intelligence. One recurrent quest has been the efficient inference from possibly large
propositional formulas, or knowledge-bases. An important approach, which was initially proposed by
Selman and Kautz [63], is to query (and perform deductions from) upper and lower approximations of
the given formula. By choosing approximations that allow more efficient inference, it is often possible to
quickly determine that some logical consequence of the knowledge-base entails the query, and therefore
so does the original knowledge-base, avoiding the costly inference from the original. When this fails,
it may be possible to quickly show that the query is not entailed by some implicant, and therefore not
entailed by the full knowledge-base. Only when both of these fail must the full knowledge-base be used
for inference. This approach to deduction is particularly attractive if the knowledge-base is relatively
stable (that is, many queries are handled between changes to the knowledge-base), because in that case,
the amortised cost of calculating the approximations is small.

In the field of artificial intelligence it is usually assumed that Boolean functions are represented in
clausal form, and that approximations are Horn [63, 22]. In this setting, inference from Horn formulas
may be exponentially more efficient than from unrestricted formulas. However, it has been noted that
there are many other well-understood classes that have computational properties that include some of the
attractive properties of the Horn class.

Zanuttini [66, 67] discusses the use of other classes of Boolean functions for approximation and
points out that affine approximations have certain advantages over Horn approximations, most notably
the fact that they do not blow out in size. This is certainly the case when affine functions are represented
in the form of modulo-2 congruence equations. The more general sets-of-models representation is also
considered by Zanuttini. In this paper, we consider a third, general, representation, namely reduced
ordered binary decision diagrams (ROBDDs). We prove some important properties of affine functions and
their ROBDD representation. Utilising these properties we design a new ROBDD algorithm for deriving
strongest affine consequences (also known as affine envelopes). Schachte and Søndergaard [58, 59] have
previously given ROBDD algorithms for finding monotone, Krom, and Horn envelopes, but also noticed
that while those algorithms could be expressed as instances of a common scheme, the same scheme did
not apply to affine functions. A different, less compositional, approach is needed in this case.

This paper is an extended version of [35] and it proceeds as follows. In Section 2 we recapitulate the
definition of the Boolean affine class, and we establish some of its important properties. We also briefly
introduce ROBDDs, but mainly to fix our notation, as we assume that the reader is familiar with Boolean
functions and their representation as decision diagrams. Section 3 recalls the model-based affine envelope
algorithm, and develops an ROBDD-based algorithm, whose correctness rests on results established in
Section 2.2. Section 4 describes our testing methodology, including our algorithm for generating random
ROBDDs, and presents our results. Section 5 discusses related work and applications, and concludes.

2 Boolean Approximation and ROBDDs

We use ROBDDs [8, 10] to represent Boolean functions. Our choice of ROBDDs as a data structure is
due to the fact that it offers a canonical representation for any Boolean function—a representation that is
highly suitable for inductive reasoning.

Zanuttini [66] suggests using modulo 2 congruence equations to represent affine Boolean functions,
and proves a polynomial complexity bound for computing affine envelopes in this representation. However,
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using a specialised representation has a cost in implementation complexity where affine and non-affine
Boolean functions must be used together. Certainly the algorithm for evaluating whether one ROBDD
entails another is straightforward. Similarly, systems which repeatedly construct an affine approximation,
manipulate it as a general Boolean function, and then approximate the result again, have much simpler
implementations with a single universal representation than with the combination of a specialised affine
representation and a universal one. For our purposes, computing envelopes as ROBDDs permits us to use
the same representation for approximation to many different Boolean classes. Additionally, ROBDD-
based inference is fast, and in particular, checking whether a valuation is a model, or finding a model, of
an n-place function given by an ROBDD requires a path traversal of length no more than n.

2.1 Boolean functions

Let B= {0,1} and let V be a denumerable set of variables. A valuation µ : V→B is a (total) assignment
of truth values to the variables in V. Let I= V→B denote the set of V-valuations. A partial valuation
µ : V→B∪{∗} assigns truth values to some variables in V, and ∗ to others. Let Ip = V→B∪{∗}. We
use the notation µ[x 7→ i], where x ∈ V and i ∈B, to denote the valuation µ updated to map x to i, that is,

µ[x 7→ i](v) =
{

i if v = x
µ(v) otherwise.

A Boolean function over V is a function ϕ : I→B. We let B denote the set of all Boolean functions over
V. The ordering on B is the usual: x≤ y iff x = 0∨ y = 1. B is ordered pointwise, so that the ordering
relation corresponds exactly to classical entailment, |=. It is convenient to overload the symbols for truth
and falsehood. Thus we let 1 denote the largest element of B (that is, λ µ.1) as well as of B. Similarly
0 denotes the smallest element of B (that is, λ µ.0) as well as of B. A valuation µ is a model for ϕ ,
denoted µ |= ϕ , if ϕ(µ) = 1. We let models(ϕ) denote the set of models of ϕ . Conversely, the unique
Boolean function that has exactly the set M as models is denoted fn(M). A Boolean function ϕ is said to
be independent of a variable x when for all valuations µ , µ[x 7→ 0] |= ϕ iff µ[x 7→ 1] |= ϕ ; otherwise it is
said to be dependent on x.

Existential quantification is defined as follows. Let ϕ be a Boolean function and M = models(ϕ),
then

∃v(ϕ) = fn({µ[v 7→ 0] | µ ∈M}∪{µ[v 7→ 1] | µ ∈M}).
Clearly ∃v(ϕ) is independent of v.

In the context of an ordered set of n variables of interest, x1, . . . ,xn, we may identify with µ the binary
sequence bits(µ) of length n:

µ(x1), . . . ,µ(xn)

which we will write simply as a bit-string of length n. Similarly we may think of, and write, the set of
valuations M as a set of bit-strings:

bits(M) = {bits(µ) | µ ∈M}.

As it could hardly create confusion, we shall present valuations variously as functions or bitstrings. We
denote the zero valuation, which maps xi to 0 for all 1≤ i≤ n, by~0.
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We use the Boolean connectives ¬ (negation), ∧ (conjunction), ∨ (disjunction) and + (exclusive or,
or “xor”). These connectives operate on Boolean functions, that is, on elements of B. Traditionally they
are overloaded to also operate on truth values, that is, elements of B. However, we deviate at this point,
as the distinction between xor and its “bit-wise” analogue will be critical in what follows. Hence we
denote the B (bit) version by ⊕. We extend this to valuations and bit-strings in the natural way:

(µ1⊕µ2)(x) = µ1(x)⊕µ2(x)

and we let ⊕3 denote the “xor of three” operation λ µ1µ2µ3.µ1⊕µ2⊕µ3. We follow Zanuttini [66] in
further overloading ‘⊕’, using the notation

Mµ = µ⊕M = {µ⊕µ
′ | µ ′ ∈M}.

We read Mµ as “M translated by µ”. The function tµ : B→ B similarly performs translation of a Boolean
function:

tµ(ϕ) = fn(Mµ)

where M = models(ϕ). Note that for any set M, the function λ µ.Mµ is an involution: (Mµ)µ = M, and
hence tµ is an involution too.

A final overloading results in the following definition. For ϕ ∈ B, and µ ∈ I, let ϕ ⊕ µ = fn(Mµ)
where M = models(ϕ). We also use a distributed version of ⊕:

⊕{ϕ1, . . . ,ϕn}= ϕ1⊕·· ·⊕ϕn.
Since we shall make frequent use of existential quantification, it is worth noting that ∃v does not

distribute over +, as for example,

∃x(¬x+(x∧¬y)) = 1 6= y = ∃x(¬x)+∃x(x∧¬y).

However, it is easy to verify that ∃v(ϕ)+∃v(ψ) |= ∃v(ϕ +ψ) for all functions ϕ and ψ .

2.2 The affine class

An affine function is one whose set of models is closed under pointwise application of ⊕3 [61]. Affine
functions have a number of attractive properties, as we shall see. Syntactically, a Boolean function is
affine iff it can be written as a conjunction of affine equations

c1x1 + c2x2 + . . .+ cnxn = c0

where ci ∈ {0,1} for all i ∈ {0, ..,n}.1 This is well known, but for completeness we prove it below, as
Proposition 2.4.

The affine class contains 1 and is closed under conjunction. Hence the concept of a unique best
affine upper-approximation is well defined, and the function that takes a Boolean function and returns
its best affine upper-approximation is an upper closure operator, that is, it is monotone, increasing, and
idempotent [51, 65]. For convenience, let us introduce a name for this operator:

1In some circles, such as the cryptography/coding community, the term “affine” is used only for a function that can be
written c1x1 + c2x2 + . . .+ cnxn + c0, with n≥ 0 (the latter is what Post [55] called an “alternating” function). The resulting set
of “affine” functions is not closed under conjunction. Our more common use agrees with the use in linear algebra, where an
affine space is a vector space translated by some vector.
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Definition 2.1. Let ϕ be a Boolean function. The affine envelope, aff(ϕ), of ϕ is defined:

aff(ϕ) =
∧
{ψ | ϕ |= ψ and ψ is affine}.

There are numerous other classes of interest, including isotone, antitone, Krom, Horn, contra-dual
Horn and all other co-clones [54], k-Horn [21], and k-quasi-Horn functions. For all of these, the concept
of an envelope is well-defined, as each class contains 1 and is closed under conjunction.2

Zanuttini [66] exploits the close connection between vector spaces and the sets of models of affine
functions. A set S ⊆ Bk of bitstrings is a vector space iff~0 ∈ S and S is closed under ⊕. The set of
vector spaces also contains 1 and is closed under conjunction (intersection), so the concept of a tightest
enclosing vector space, given a set of valuations (or bit vectors), is well defined.

Definition 2.2. Let ϕ be a Boolean function. The linear envelope, lin(ϕ), of ϕ is defined:

lin(ϕ) =
∧
{ψ | ϕ |= ψ and models(ψ) is closed under ⊕}.

Note that by this, aff(0) = lin(0) = 0. Also note that for a satisfiable ϕ , the models of lin(ϕ) form a
vector space.

The next proposition suggests how one can simplify the task of doing model-closure under ⊕3.

Proposition 2.3. [66] Given a non-empty set of models M and a valuation µ ∈M, M is closed under ⊕3
iff Mµ is a vector space.

Proof: Let µ be an arbitrary element of M. Clearly Mµ contains~0, so the right-hand side of the claim
amounts to Mµ being closed under ⊕.

For the ‘if’ direction, assume Mµ is closed under ⊕ and consider µ1,µ2,µ3 ∈M. Since µ⊕µ2 and
µ⊕µ3 are in Mµ , so is µ2⊕µ3. And since furthermore µ⊕µ1 is in Mµ , so is µ⊕µ1⊕µ2⊕µ3. Hence
µ1⊕µ2⊕µ3 is in M.

For the ‘only if’ direction, assume M is closed under ⊕3, and consider µ1,µ2 ∈Mµ . All of µ,µ⊕µ1
and µ⊕µ2 are in M, and so µ⊕ (µ⊕µ1)⊕ (µ⊕µ2) = µ⊕µ1⊕µ2 ∈M. Hence µ1⊕µ2 ∈Mµ .

Proposition 2.4. A Boolean function is affine iff it can be written as a conjunction of equations

c1x1 + c2x2 + . . .+ cnxn = c0

where ci ∈B for all i ∈ {0, ..,n}.

Proof: Assume the Boolean function ϕ is given as a conjunction of equations of the indicated form and
let µ1, µ2 and µ3 be models. That is, for each equation we have

c1µ1(x1)+ c2µ1(x2)+ . . .+ cnµ1(xn) = c0
c1µ2(x1)+ c2µ2(x2)+ . . .+ cnµ2(xn) = c0
c1µ3(x1)+ c2µ3(x2)+ . . .+ cnµ3(xn) = c0

2Other classes that are commonly considered in AI are not closed under conjunction and therefore do not have well-defined
concepts of (unique) envelopes. Examples are the unate functions (a unate function is one that can be turned into an isotone
function by systematic negation of zero or more variables) and the renamable Horn functions (a renamable Horn function is
similarly one that can be turned into a Horn function by systematic negation of zero or more variables). For example, x→ y and
x← y both are unate, while x↔ y is not, so the “unate envelope” of the latter is not well-defined.
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Adding left-hand sides and adding right-hand sides, making use of the fact that ‘·’ distributes over ‘+’,
we get

c1µ(x1)+ c2µ(x2)+ . . .+ cnµ(xn) = c0 + c0 + c0 = c0

where µ = µ1⊕µ2⊕µ3. As µ thus satisfies each equation, µ is a model of ϕ . This establishes the ‘if’
direction.

For the ‘only if’ part, note that by Proposition 2.3, we obtain a vector space Mµ from any non-empty
set M closed under ⊕3 by translating each element of M by µ ∈M. Now form a basis B for Mµ by taking
one non-~0 vector at a time from Mµ and adding it to the set of basis vectors collected so far iff it is linearly
independent of that set. Let j = n−|B| (note that 0 ≤ j ≤ n). B can be extended to a basis for Bn by
bringing B (read as a |B|×n matrix) into echelon form and adding j vectors V = {~v1, . . . ,~v j} (these can
be chosen from the natural basis for Bn). From B and V we can compute a set of j linear equations

a11x1 ⊕ ·· · ⊕ a1nxn = 0
a21x1 ⊕ ·· · ⊕ a2nxn = 0

...
...

a j1x1 ⊕ ·· · ⊕ a jnxn = 0

(2.1)

that have exactly Mµ as their set of models. For each i ∈ {1, . . . , j}, the coefficients ~ai = (ai1, . . . ,ain) are
uniquely determined by the set of n equations

~ai ·~vi = 1
~ai ·~vk = 0 1≤ k ≤ j,k 6= i
~ai ·~b = 0 ~b ∈ B.

This construction guarantees that~x = (x1, . . . ,xn) satisfies the conjunction of equations (2.1) iff~x is in the
span of B (that is, in Mµ ). Each function

fi = λ~x.~ai ·~x
is linear, so for ν ∈Mµ , fi(ν⊕µ) = fi(ν)+ fi(µ) = fi(µ). Hence M can be described by the set of j
affine equations

a11x1 ⊕ ·· · ⊕ a1nxn = f1(µ)
a21x1 ⊕ ·· · ⊕ a2nxn = f2(µ)

...
...

a j1x1 ⊕ ·· · ⊕ a jnxn = f j(µ)

as desired.

Example 2.5. In B4, the set of models M = {0100,0111,1001,1010} is closed under ⊕3 and so deter-
mines an affine function. Choosing µ = 0100 as translation, we have Mµ = {0000,0011,1101,1110}.
One basis for Mµ is {0011,1101}, which can be extended to a basis for B4 by adding V = {0100,0001}.
Hence Mµ can be described by the conjunction

a11x1 ⊕ ·· · ⊕ a14x4 = 0
a21x1 ⊕ ·· · ⊕ a24x4 = 0
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where the coefficients are determined by solving
0 0 1 1
1 1 0 1
0 1 0 0
0 0 0 1




a11
a12
a13
a14

=


0
0
1
0




0 0 1 1
1 1 0 1
0 1 0 0
0 0 0 1




a21
a22
a23
a24

=


0
0
0
1


In other words, Mµ is described by

x1⊕ x2 = 0

x1⊕ x3⊕ x4 = 0

In the case of (x1,x2,x3,x4) = µ = (0,1,0,0), the left-hand sides evaluate to 1 and 0, respectively. Hence
M is described by

x1⊕ x2 = 1

x1⊕ x3⊕ x4 = 0

Zanuttini [66] shows that the complexity of generating the equational form from an affine function’s
set of models is O(n4). Also note that it follows from the syntactic characterisation that the number of
models possessed by an affine function is either 0 or a power of 2.

Lemma 2.6. Let ϕ be a satisfiable Boolean function with set M of models, and let µ |= aff(ϕ). Then
there is an odd positive integer k and a subset M′ of M, such that |M′|= k and µ =

⊕
M′.

Proof: Define

M0 = M

Mi = Mi−1∪{µ1⊕µ2⊕µ3 | µ1,µ2,µ3 ∈Mi−1}

for i > 0. Then {Mi}i≥0 is an increasing sequence of sets of models, stabilising in a finite number of
steps, that is, for some non-negative j,

Mi = M j = models(aff(ϕ))

for all i≥ j.
An induction on i now shows that for all i and all µ ∈Mi, µ can be written as a sum

⊕
M′ of an odd

number of models of M0 = M (“odd plus odd plus odd equals odd”). In particular this holds for µ in M j,
that is, for each model of aff(ϕ).
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Proposition 2.7. Let ϕ be a satisfiable Boolean function and let µ be a model. Then tµ(aff(ϕ)) =
lin(tµ(ϕ)).

Proof: As ϕ is satisfiable, so is lin(tµ(ϕ)), so let ν be a model of lin(tµ(ϕ)). Then ν = ν1⊕·· ·⊕νm,
with each ν1, . . . ,νm satisfying tµ(ϕ). So each of ν1⊕ µ, . . . ,νm⊕ µ satisfies ϕ . Since~0 |= tµ(ϕ), we
can assume that m is odd: if m is even, ~0 can be added to {ν1, . . . ,νm} (or removed from the set, as
appropriate) without changing the sum. And for odd m, clearly ν1⊕·· ·⊕νm⊕µ = ν1⊕µ⊕·· ·⊕νm⊕µ

is a model of aff(ϕ). Hence ν satisfies tµ(aff(ϕ)).
Conversely, if ν satisfies tµ(aff(ϕ)) then ν ⊕ µ satisfies aff(ϕ), and hence, by Lemma 2.6 ν ⊕ µ

can be written as ν1⊕ ·· · ⊕ νm, for some odd m, with each of ν1, . . . ,νm satisfying ϕ . That is, ν =
ν1⊕µ⊕·· ·νm⊕µ , with each of ν1⊕µ, . . . ,νm⊕µ satisfying tµ(ϕ). It follows that ν satisfies lin(tµ(ϕ)).

To express a number of interesting properties of affine Boolean functions, it is convenient to introduce a
concept of a “characteristic” valuation for a variable.

Definition 2.8. In the context of a set of variables V , let v ∈V . The characteristic valuation for v, χv, is
defined by

χv(x) =
{

1 if x = v
0 otherwise.

Note that µ⊕χv is the valuation which agrees with µ for all variables except v. Moreover, if µ |= ϕ ,
then both of µ and µ⊕χv are models of ∃v(ϕ).

Existential quantification is also an upper closure operator, that is, ∃v is monotone, increasing, and
idempotent. Moreover, existential quantification commutes with translation:

Proposition 2.9. Let ϕ be a Boolean formula, µ a valuation, and v a variable. Then tµ(∃v(ϕ)) =
∃v(tµ(ϕ)).

Proof: If ϕ is unsatisfiable, the statement clearly holds, so assume that ϕ , and hence tµ(∃v(ϕ)) is
satisfiable. Let ν |= tµ(∃v(ϕ)). Then µ⊕ν |= ∃v(ϕ), and so µ⊕ν satisfies ϕ , or µ⊕ν⊕ χv does (or
both do). For reasons of symmetry we can assume that µ⊕ν |= ϕ . Hence ν |= tµ(ϕ) and, since ∃v is
increasing, ν |= ∃v(tµ(ϕ)).

Conversely, if ν |= ∃v(tµ(ϕ)) then µ ⊕ ν or µ ⊕ ν ⊕ χv satisfies ϕ (or both do). It follows that
ν |= tµ(∃v(ϕ)).

Existential quantification also commutes with lin and with aff:

Proposition 2.10. Let ϕ be a Boolean function and v a variable. Then

(a) lin(∃v(ϕ)) = ∃v(lin(ϕ))

(b) aff(∃v(ϕ)) = ∃v(aff(ϕ))
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Proof: Clearly lin(∃v(ϕ)) = 0 iff ϕ = 0 iff ∃v(lin(ϕ)) = 0. So assume lin(∃v(ϕ)) is satisfiable and let
µ |= lin(∃v(ϕ)). Then µ = µ1⊕ ·· ·⊕ µk for some non-empty subset {µ1, . . . ,µk} of models(∃v(ϕ)),
and this set in turn is a subset of models(∃v(lin(ϕ))), as ∃v is monotone and lin is increasing. Hence
µ |= ∃v(lin(ϕ)).

Conversely, let µ |= ∃v(lin(ϕ)). Then either µ or µ⊕χv is a model of lin(ϕ) (or both are). Hence µ

(or µ⊕ χv as the case may be) can be written as a sum µ1⊕·· ·⊕µk of k models of ϕ . It follows that
both µ1⊕·· ·⊕µk and µ1⊕·· ·⊕µk⊕χv are models of ∃v(ϕ). Hence µ |= lin(∃v(ϕ)). This establishes
item (a).

For item (b), note that aff(∃v(ϕ)) = 0 iff ϕ = 0 iff ∃v(aff(ϕ)) = 0. So assume that ϕ is satisfiable
and let µ |= ϕ . From item (a) we have

lin(∃v(tµ(ϕ))) = ∃v(lin(tµ(ϕ)))

so that by Proposition 2.9,
lin(tµ(∃v(ϕ))) = ∃v(lin(tµ(ϕ))).

Hence
tµ(lin(tµ(∃v(ϕ)))) = tµ(∃v(lin(tµ(ϕ))))

so that by Proposition 2.9,

tµ(lin(tµ(∃v(ϕ)))) = ∃v(tµ(lin(tµ(ϕ)))).

That is, by Proposition 2.7, aff(∃v(ϕ)) = ∃v(aff(ϕ)).

Proposition 2.10 shows that neither linear nor affine approximation introduce variables.

Corollary 2.11. If the Boolean function ϕ is independent of variable v, so are lin(ϕ) and aff(ϕ).

As mentioned, both aff and ∃v are upper closure operators, but there was no a priori reason to assume
that they commute [51]. Indeed, there are natural classes of Boolean functions for which envelopes are
well-defined, but where approximation into the class does not commute with existential quantification.
As an example take the class of 1-valid functions [61]. A function is 1-valid iff it evaluates to 1 when all
variables are 1. This class contains 1 and is closed under conjunction, so we can define η(ϕ) to be the
1-valid envelope of ϕ . The reader can now verify that in B2, for example,

η(∃x(¬x∧¬y)) = η(¬y) = x∨¬y 6= 1 = ∃x(x↔ y) = ∃x(η(¬x∧¬y)).

Hence 1-valid approximation and variable elimination do not commute.
While Proposition 2.10 is interesting, the justification of Section 3’s affine envelope algorithm

requires some stronger results, which we now establish. In particular, independence follows from a
weaker property which we call somewhere-redundancy.

Definition 2.12. Let ϕ be a Boolean function, v be a Boolean variable, and µ be a model of ϕ . We say v
is redundant for ϕ and µ iff µ⊕χv |= ϕ . We say v is somewhere-redundant for ϕ iff there is some model
ν of ϕ such that v is redundant for ϕ and ν .
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We now show that if the Boolean function ϕ has two models that differ for exactly one variable v,
then both its linear and affine envelopes are independent of v.

Proposition 2.13. Let ϕ be a Boolean function whose set of models M forms a vector space, and assume
that for some valuation µ and some variable v, µ and µ⊕χv both satisfy ϕ . Then ϕ is independent of v.

Proof: The set M of models contains at least two elements, and since it is closed under ⊕, χv is a model.
Hence for every model ν of ϕ , ν⊕χv is another model. It follows that ϕ is independent of v.

Proposition 2.14. Let ϕ be a Boolean function. If v is somewhere-redundant for ϕ then lin(ϕ) =
∃v(lin(ϕ)) = lin(∃v(ϕ)).

Proof: Note that ϕ is satisfiable, by assumption. Let µ be a model of ϕ , with µ⊕χv also a model. For
every model ν of ϕ , we have that ν⊕µ⊕ (µ⊕χv) satisfies lin(ϕ), that is, ν⊕χv |= lin(ϕ). Now since
both ν and ν ⊕ χv satisfy lin(ϕ), it follows that ∃v(lin(ϕ)) cannot have a model that is not already a
model of lin(ϕ) (and the converse holds trivially). Hence lin(ϕ) = ∃v(lin(ϕ)). The second equation
follows immediately from Proposition 2.10(a).

Corollary 2.15. Let ϕ be a Boolean function. If v is somewhere-redundant for ϕ then aff(ϕ) =
∃v(aff(ϕ)) = aff(∃v(ϕ)).

Proof: Note that ϕ is satisfiable, by assumption. Let µ |= ϕ . Note that since v is somewhere-redundant
for ϕ , v is somewhere-redundant for tµ(ϕ) as well. So by Proposition 2.14,

lin(tµ(ϕ)) = ∃v(lin(tµ(ϕ))).

But then, by Proposition 2.10(a),

tµ(lin(tµ(ϕ))) = ∃v(tµ(lin(tµ(ϕ))))

and so, by Proposition 2.7, aff(ϕ) = ∃v(aff(ϕ)). The second equation follows immediately from Proposi-
tion 2.10(b).

These results justify an aggressive approach to the elimination of variables in an affine envelope algorithm.
We shall utilise this in the next section.

2.3 ROBDDs

We briefly recall the essentials of ROBDDs [11]. Let the set V of propositional variables be equipped
with a total ordering ≺. Binary decision diagrams (BDDs) are defined inductively as follows:

• 0 is a BDD.

• 1 is a BDD.

• If x ∈ V and R1 and R2 are BDDs then ite(x,R1,R2) is a BDD.
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Algorithm 1 The “or” operator for ROBDDs
or(1, ) = 1
or(0,R) = R
or( ,1) = 1
or(R,0) = R
or(ite(x,T,E), ite(x′,T ′,E ′))

| x≺ x′ = mknd(x,or(T, ite(x′,T ′,E ′)),or(E, ite(x′,T ′,E ′)))
| x′ ≺ x = mknd(x′,or(ite(x,T,E),T ′),or(ite(x,T,E),E ′))
| otherwise = mknd(x,or(T,T ′),or(E,E ′))

Let R = ite(x,R1,R2). We say a BDD R′ appears in R iff R′ = R or R′ appears in R1 or R2. We define
vars(R) = {v | ite(v, , ) appears in R}.

The meaning of a BDD is given as follows.

[[0]] = 0
[[1]] = 1

[[ite(x,R1,R2)]] = (x∧ [[R1]])∨ (¬x∧ [[R2]]).

A BDD is an Ordered binary decision diagram (OBDD) iff it is 0 or 1 or if it is ite(x,R1,R2), R1 and R2
are OBDDs, and ∀x′ ∈ vars(R1)∪vars(R2) : x≺ x′.

An OBDD R is a Reduced Ordered Binary Decision Diagram (ROBDD [10, 11]) iff for all BDDs
R1 and R2 appearing in R, R1 = R2 when [[R1]] = [[R2]]. Practical implementations [8] use a function
mknd(x,R1,R2) to create all ROBDD nodes as follows:

1. If R1 = R2, return R1 instead of a new node, as [[ite(x,R1,R2)]] = [[R1]].

2. If an identical ROBDD was previously built, return that one instead of a new one; this is accom-
plished by keeping a hash table, called the unique table, of all previously created nodes.

3. Otherwise, return ite(x,R1,R2).

This ensures that ROBDDs are strongly canonical: a shallow equality test is sufficient to determine
whether two ROBDDs represent the same Boolean function.

Figure 1 shows an example of an ROBDD. In general we depict the ROBDD ite(x,R1,R2) as a directed
acyclic graph rooted in x, with a solid arc from x to the dag for R1 and a dashed line from x to the dag for
R2. However, to avoid unnecessary clutter, we omit the 0 node (sink) and all arcs leading to that sink. The
ROBDD in Figure 1 denotes the function which has five models: {00011,00110,01001,01101,10101}.

As a typical example of an ROBDD algorithm, Algorithm 1 generates the disjunction of two given
ROBDDs. This operation will be used by the affine approximation algorithm presented in Section 3.
(Most of our algorithms are presented in a functional programming style, using Haskell-style pattern
matching and guarded equations.)

Algorithm 2 is used to extract a model from an ROBDD. For an unsatisfiable ROBDD (that is, 0) we
return ⊥. Although presented here in recursive fashion, it is better implemented in an iterative manner
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Figure 1: An example of our diagrammatic representation of an ROBDD. Our diagrams leave out
the 0 sink and all arcs to it.

Algorithm 1 The “or” operator for ROBDDs

or(1, ) = 1
or(0, R) = R
or( , 1) = 1
or(R, 0) = R
or(ite(x, T, E), ite(x′, T ′, E′))

| x ≺ x′ = mknd(x, or(T, ite(x′, T ′, E′)), or(E, ite(x′, T ′, E′)))
| x′ ≺ x = mknd(x′, or(ite(x, T, E), T ′), or(ite(x, T, E), E′))
| otherwise = mknd(x, or(T, T ′), or(E, E′))

branch at each node, a second pointer trailing immediately behind. If a 1 sink is found, we return
the path traversed thus far and note that any further variables which we are yet to encounter may
be assigned any value. If a 0 sink is found, we use the trailing pointer to step up a level, follow the
“then” branch for one step and continue searching for a model by following “else” branches. This
method relies on the fact that ROBDDs are “reduced”, so that if no 1 sink can be reached from a
node, then the node itself is the 0 sink.

We shall use the following obvious corollary of Proposition 8:

Corollary 11. Let ROBDD R represent a function whose set of models forms a vector space.
Then every path from R’s root node to the 1 sink contains the same sequence of variables, namely
vars(R) listed in variable order.

It is important to take advantage of fan-in to create efficient ROBDD algorithms. Often some
ROBDD nodes will appear multiple times in a given ROBDD, and algorithms that traverse that
ROBDD will meet these nodes multiple times. Many algorithms can avoid repeated work by keeping
a cache of previously seen inputs and their corresponding outputs, called a computed table [1]. We
silently use computed tables for the recursive ROBDD algorithms presented here.

11

Figure 1: An example of our diagrammatic representation of an ROBDD. Our diagrams leave out the 0
sink and all arcs to it.

Algorithm 2 get model algorithm for ROBDDs
get model(0) =⊥
get model(1) = λv.∗
get model(ite(x,T,E)) =

let µ = get model(T ) in
if µ =⊥ then get model(E)[x 7→ 0] else µ[x 7→ 1]

whereby we traverse through the ROBDD, one pointer moving down the “else” branch at each node, a
second pointer trailing immediately behind. If a 1 sink is found, we return the path traversed thus far and
note that any further variables which we are yet to encounter may be assigned any value. If a 0 sink is
found, we use the trailing pointer to step up a level, follow the “then” branch for one step and continue
searching for a model by following “else” branches. This method relies on the fact that ROBDDs are
“reduced”, so that if no 1 sink can be reached from a node, then the node itself is the 0 sink.

We shall use the following obvious corollary of Proposition 2.13:

Corollary 2.16. Let ROBDD R represent a function whose set of models forms a vector space. Then
every path from R’s root node to the 1 sink contains the same sequence of variables, namely vars(R)
listed in variable order.

It is important to take advantage of fan-in to create efficient ROBDD algorithms. Often some ROBDD
nodes will appear multiple times in a given ROBDD, and algorithms that traverse that ROBDD will meet

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 11, pages 1–26 12

http://dx.doi.org/10.4086/cjtcs


AN ALGORITHM FOR AFFINE APPROXIMATION OF BINARY DECISION DIAGRAMS

Algorithm 3 The sets-of-models based affine envelope algorithm
Input: The set M of models for function ϕ .
Output: aff(M) — the set of models of ϕ’s affine envelope.

if M =∅ then
return M

end if
N←∅
choose µ ∈M
New←Mµ

repeat
N← N∪New
New←{µ1⊕µ2 | µ1,µ2 ∈ N}\N

until New =∅
return Nµ

these nodes multiple times. Many algorithms can avoid repeated work by keeping a cache of previously
seen inputs and their corresponding outputs, called a computed table [8]. We silently use computed tables
for the recursive ROBDD algorithms presented here.

3 Finding Affine Envelopes for ROBDDs

Zanuttini [66] gives an algorithm, here presented as Algorithm 3, for finding the affine envelope, assuming
a Boolean function ϕ is represented as a set of models. This algorithm is justified by Proposition 2.3.

Example 3.1. To see Algorithm 3 in action, refer to Figure 2. Assume that ϕ has four models, M =
{01011,01100,10111,11001}. We randomly pick µ = 01100 and obtain Mµ as shown. The first round
of completion under ‘⊕’ adds three bit-strings: {11100,10010,01110}, and another round adds 01001 to
produce N. Finally, “adding back” µ = 01100 yields the affine envelope Nµ = aff(M).

We are interested in developing an algorithm for ROBDDs. We can improve on Algorithm 3 and at
the same time make it more suitable for ROBDD manipulation. The idea is to build the result N step by
step, by picking the models ν of Mµ one at a time and computing N := N∪Nν at each step. We can start
from N = {~0}, as~0 has to be in Mµ . This leads to Algorithm 4.

This formulation is well suited to ROBDDs, as the operation Nν , that is, taking the xor of a model
ν with each model of the ROBDD N can be implemented by traversing N and, for each v-node with
ν(v) = 1, swapping that node’s children. And we can do better, utilising two observations.

First, during its construction, there is no need to traverse the ROBDD N for each individual model ν .
A full traversal of N will find all its models systematically, eliminating a need to remove them one by one.

Second, the ROBDD being constructed can be simplified aggressively during its construction, by
utilising Propositions 2.14 and 2.10(a). Namely, as we traverse ROBDD R systematically, paths from the
root to the 1 sink may be found that do not contain every variable in vars(R). Each such path corresponds
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M =


01011
01100
10111
11001

 µ = 01100 Mµ =


00111
00000
11011
10101



N =



00111
00000
11011
10101
11100
10010
01110
01001


Nµ = aff(M) =



01011
01100
10111
11001
10000
11110
00010
00101


Figure 2: Steps in Algorithm 3

Algorithm 4 A variant of Algorithm 3
Input: The set M of models for function ϕ .
Output: aff(M) — the set of models of ϕ’s affine envelope.

if M =∅ then
return M

end if
N←{~0}
choose µ ∈M
M′←Mµ \{~0}
for all ν ∈M′ do

N← N∪Nν

end for
return Nµ

to a model set of cardinality 2k, k being the number of “skipped” variables, and each skipped variable
is what was termed “somewhere-redundant” in Section 2.2. Proposition 2.14 tells us that, eventually,
the linear (and hence also the affine) envelope will be independent of all such “skipped” variables, and
Proposition 2.10 guarantees that variable elimination can be interspersed arbitrarily with the process of
“xor-ing” models, that is, we can eliminate variables aggressively.

This leads to Algorithm 5. The algorithm combines several operations in an effort to amortise their
cost. In what follows we step through the details of the algorithm.

The to aff function finds an initial model µ of R, before translating R by calling translate. This initial
call has the effect of “xor-ing” µ with all of the models of R. Once translated, the xor closure is taken,
before translating again using the initial model µ to obtain the affine closure.
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Algorithm 5 Affine envelopes for ROBDDs
Input: An ROBDD R.
Output: The affine envelope of R.

to aff(0) = 0
to aff(R) = let µ = get model(R) in translate(xor close(translate(R,µ)),µ)

translate(0, ) = 0
translate(1, ) = 1
translate(ite(x,T,E),µ)

| (µ(x) = 0) = cons(x, translate(T,µ), translate(E,µ),µ)
| (µ(x) = 1) = cons(x, translate(E,µ), translate(T,µ),µ)

xor close(R) = trav(R,λv.∗,∧{v̄ | v ∈ vars(R)})

trav(0, ,S) = S
trav(1,µ,S)

| (µ |= S) = S
| otherwise = extend(S,S,µ)

trav(ite(x,T,E),µ,S) = trav(T,µ[x 7→ 1], trav(E,µ[x 7→ 0],S))

cons(x,T,E,µ)
| (µ(x) = ∗) = or(T,E)
| otherwise = mknd(x,T,E)

extend(1, , ) = 1
extend( ,1, ) = 1
extend(0,S,µ) = translate(S,µ)
extend(ite(x,T,E),0,µ) = cons(x,extend(T,0,µ),extend(E,0,µ),µ)
extend(ite(x,T,E), ite(x,T ′,E ′),µ)

| (µ(x) = 1) = mknd(x,extend(T,E ′,µ),extend(E,T ′,µ))
| otherwise = cons(x,extend(T,T ′,µ),extend(E,E ′,µ),µ)

translate is the function that is responsible for computing the xor of a model with an ROBDD.
As mentioned above, its operation relies on the observation that for a given node v in the ROBDD, if
µ(v) = 1, then the operation is equivalent to exchanging the “then” and “else” branches of v.

xor close is used to compute the xor-closure of an ROBDD R. The third argument passed to trav is an
accumulator in which the result is constructed. As in Algorithm 4, we know that~0 will be a model of the
result, so we initialise the accumulator as (the ROBDD for)

∧{v̄ | v ∈ vars(R)}.
trav implements a recursive traversal of the ROBDD, and when a model is found in µ , we “extend”

the affine envelope to include the newly found model. Namely, extend(R,S,µ) produces (the ROBDD
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Figure 3: (a): The ROBDD R from Figure 1. (b): The translated version Rµ. (c): The vector
space S that has been extended to cover 00101.

uses it to determine whether to restrict away the corresponding node being constructed. It is the
correctness of this function that rests on Propositions 9 and 6, as discussed (showing that affine
approximation can be interspersed with variable elimination).

Finally, once a model is found during a traversal, extend is used to build up the affine closure
of the ROBDD. The last equation requires some explanation. In the context of the initial call
extend(S, S, µ), Corollary 11 ensures that the pattern of the last equation for extend is sufficient: If
neither argument is a sink, the two will have the same root variable. If µ(x) = 0, we simply build
the x-node and recurse. If µ(x) = 1, we build the x-node but swap the branches of the second
ROBDD before we recurse (recall that we are building an ROBDD for R ∨ Sµ, and S is the second
argument to extend). Finally, if µ(x) = ∗, the x node should not be created, as we wish to take the
existential quantification over x; the call to cons will achieve this.

Example 3. Consider the ROBDD R shown in Figure 3(a). The corresponding set of models
is {00011, 00110, 01001, 01101, 10101}. Picking µ = 00011 and translating gives Rµ, shown in
Figure 3(b). This ROBDD represents a set of vectors {00000, 00101, 01010, 01110, 10110} which is
to be extended to a vector space.

The algorithm now builds up S, the xor-closure of Rµ, by taking one vector v at a time from
Rµ and extending S to a vector space that includes v. S begins as the zero vector.

The first step of the algorithm just adds 00101 to the existing zero vector (Figure 3(c)). The
next step comes across the vector 01∗10 (which actually represents two valuations) and existentially
quantifies away the variable x (Figure 4(a)). Note that the variable z also disappears: this is due
to the extension required to include 01∗10 that adds enough valuations such that z is “covered” by
the vector space.

Extending to cover 10110 simply requires every model to be copied, with v mapped to 1 (Fig-
ure 4(b)). Finally, translating back by µ produces A, the affine closure of R, shown in Figure 4(c).

15

Figure 3: (a): The ROBDD R from Figure 1. (b): The translated version Rµ . (c): The vector space S that
has been extended to cover 00101.

for) R∨ Sµ . Note that once a model is found during the traversal, trav checks if µ is already present
within the xor-closure, and if it is not, invokes extend accordingly. This simple check avoids making
unnecessary calls to extend.

The cons function represents a special case of mknd. It takes an additional argument in µ and uses it
to determine whether to restrict away the corresponding node being constructed. It is the correctness of
this function that rests on Propositions 2.14 and 2.10, as discussed (showing that affine approximation
can be interspersed with variable elimination).

Finally, once a model is found during a traversal, extend is used to build up the affine closure of the
ROBDD. The last equation requires some explanation. In the context of the initial call extend(S,S,µ),
Corollary 2.16 ensures that the pattern of the last equation for extend is sufficient: If neither argument is
a sink, the two will have the same root variable. If µ(x) = 0, we simply build the x-node and recurse. If
µ(x) = 1, we build the x-node but swap the branches of the second ROBDD before we recurse (recall
that we are building an ROBDD for R∨Sµ , and S is the second argument to extend). Finally, if µ(x) = ∗,
the x node should not be created, as we wish to take the existential quantification over x; the call to cons
will achieve this.

Example 3.2. Consider the ROBDD R shown in Figure 3(a). The corresponding set of models is
{00011,00110,01001,01101,10101}. Picking µ = 00011 and translating gives Rµ , shown in Figure 3(b).
This ROBDD represents a set of vectors {00000,00101,01010,01110,10110} which is to be extended
to a vector space.
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Figure 4: (a): The vector space S after being extended to cover 01∗10. (b): S after extending to
cover 10110. (c): S translated to give the affine closure of R.
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Figure 5: An ROBDD (on the left) without skipped variables on any 1-path, and its affine envelope
(on the right).

Proposition 9 justified the elimination of what may be called “skipped” variables in the input
ROBDD: variables that were missing on some path from the root to the 1 -sink. The reader
may wonder whether the calculation of the affine envelope could be reduced to just a sequence of
existential quantifications (in which case our algorithms would be unnecessarily complex). In other
words, under the assumptions made in Corollary 10, does aff(ϕ) |= ∃v(ϕ) hold as well? Figure 5
gives an example to show that the answer is no. For the function (x ∧ y ∧ z) ∨ (¬x ∧ (y + z)) there
are no skipped variables, but the function is not affine, as it has three models. The ROBDD for
the affine envelope, x + y + z, is shown on the right, and is dependent on all three variables.

4 Experimental Evaluation

To evaluate Algorithms 3 and 5 we have run both algorithms on two suites of Boolean functions.
It should be stressed that Algorithm 3 was not intended as a practical proposal, but introduced for
didactic purposes—we use it here simply to have some baseline for comparison. The algorithms have
been run on both randomly generated functions and structured functions, sourced from SAT-based
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Figure 4: (a): The vector space S after being extended to cover 01∗10. (b): S after extending to cover
10110. (c): S translated to give the affine closure of R.

The algorithm now builds up S, the xor-closure of Rµ , by taking one vector v at a time from Rµ and
extending S to a vector space that includes v. S begins as the zero vector.

The first step of the algorithm just adds 00101 to the existing zero vector (Figure 3(c)). The next step
comes across the vector 01∗10 (which actually represents two valuations) and existentially quantifies
away the variable x (Figure 4(a)). Note that the variable z also disappears: this is due to the extension
required to include 01∗10 that adds enough valuations such that z is “covered” by the vector space.

Extending to cover 10110 simply requires every model to be copied, with v mapped to 1 (Figure 4(b)).
Finally, translating back by µ produces A, the affine closure of R, shown in Figure 4(c).

Proposition 2.14 justified the elimination of what may be called “skipped” variables in the input
ROBDD: variables that were missing on some path from the root to the 1-sink. The reader may wonder
whether the calculation of the affine envelope could be reduced to just a sequence of existential quan-
tifications (in which case our algorithms would be unnecessarily complex). In other words, under the
assumptions made in Corollary 2.15, does aff(ϕ) |= ∃v(ϕ) hold as well? Figure 5 gives an example to
show that the answer is no. For the function (x∧y∧ z)∨ (¬x∧ (y+ z)) there are no skipped variables, but
the function is not affine, as it has three models. The ROBDD for the affine envelope, x+ y+ z, is shown
on the right, and is dependent on all three variables.

4 Experimental Evaluation

To evaluate Algorithms 3 and 5 we have run both algorithms on two suites of Boolean functions. It
should be stressed that Algorithm 3 was not intended as a practical proposal, but introduced for didactic
purposes—we use it here simply to have some baseline for comparison. The algorithms have been run
on both randomly generated functions and structured functions, sourced from SAT-based approaches to
combinatorial problem solving.
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Figure 4: (a): The vector space S after being extended to cover 01∗10. (b): S after extending to
cover 10110. (c): S translated to give the affine closure of R.
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Figure 5: An ROBDD (on the left) without skipped variables on any 1-path, and its affine envelope
(on the right).

Proposition 9 justified the elimination of what may be called “skipped” variables in the input
ROBDD: variables that were missing on some path from the root to the 1 -sink. The reader
may wonder whether the calculation of the affine envelope could be reduced to just a sequence of
existential quantifications (in which case our algorithms would be unnecessarily complex). In other
words, under the assumptions made in Corollary 10, does aff(ϕ) |= ∃v(ϕ) hold as well? Figure 5
gives an example to show that the answer is no. For the function (x ∧ y ∧ z) ∨ (¬x ∧ (y + z)) there
are no skipped variables, but the function is not affine, as it has three models. The ROBDD for
the affine envelope, x + y + z, is shown on the right, and is dependent on all three variables.

4 Experimental Evaluation

To evaluate Algorithms 3 and 5 we have run both algorithms on two suites of Boolean functions.
It should be stressed that Algorithm 3 was not intended as a practical proposal, but introduced for
didactic purposes—we use it here simply to have some baseline for comparison. The algorithms have
been run on both randomly generated functions and structured functions, sourced from SAT-based
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Figure 5: An ROBDD (on the left) without skipped variables on any 1-path, and its affine envelope (on
the right).

Algorithm 6 Generation of random Boolean functions as ROBDDs
Input: The number n of variables in the random function,

pr a calibrator set so that the probability
of a valuation being a model is 2−pr.

Output: A random Boolean function represented as an ROBDD.

gen rand bdd(n, pr) = rand bdd(0,n−1, pr)

rand bdd(m,n, pr)
| (m = n) = mknd(m, rand sink(), rand sink())
| otherwise = mknd(m,T,E)
where

T = if (m > n− pr)∧ cointoss() then rand bdd(m+1,n, pr) else 0
E = if (m > n− pr)∧ cointoss() then rand bdd(m+1,n, pr) else 0

rand sink()= if cointoss() then 1 else 0

cointoss() returns 1 or 0 with equal probability.

The structured functions have been translated from DIMACS CNF syntax. They are: ais6, an
all-interval-series instance from SATLIB, queensN, solving the N-queens problem for N = 4,5,6, and
sudokuN, solving a 4×4 sudoku instance with N squares already filled, for 1≤ N ≤ 5.

We generated random Boolean functions of varying arity, with an additional parameter to control the
density of the generated function, that is, to set the likelihood of each valuation being a model.

The random Boolean functions have been generated using Algorithm 6. The function call
gen rand bdd(n, pr) builds, in the form of an ROBDD R, a random Boolean function with the prop-
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Function Variables Algorithm 3 Algorithm 5
random 12 0.02 0.02
random 15 5.99 0.27
random 18 — 0.41
random 21 — 1.71
random 24 — 14.97
queens4 17 0.35 0.03
queens5 26 6826.20 2.48
queens6 37 31.32 0.11
ais6 61 > 3.6 ·106 42702.00
sudoku1 64 > 3.6 ·106 12319.20
sudoku2 64 154633.33 53.60
sudoku3 64 6291.00 6.90
sudoku4 64 106.20 0.79
sudoku5 64 4.09 0.11

Table 1: Average time in milliseconds to compute an affine envelope

erty that the likelihood of an arbitrary valuation satisfying R is 2−pr. This is done by invoking
rand bdd(0,n− 1, pr). This recursive algorithm builds a ROBDD of (n− pr) variables and, at depth
(n− pr), a random choice is made as to whether to continue generating the random function or to
simply join the branch with a 0 sink. If the choice is to continue, then the algorithm recursively applies
rand bdd(m+1,n, pr) to the branch. Note that cointoss is non-deterministic, so the T and E used in the
algorithm are not in general equal.

To time the generation of envelopes for random functions, we generated 10,000 12-place random
Boolean functions, in each case with the probability of 1/1024 for a valuation to be a model. We did
the same for 15-, 18-, 21-, and 24-place random Boolean functions. To time the generation of the affine
envelope of each of the 10 structured Boolean functions, we repeated the generation n times and took the
average time. The parameter n was chosen between 10 and 100,000, so as to ensure that the n repetitions
took at least 3 seconds.

Table 1 shows the average times (in milliseconds) taken by each of the algorithms. Timing data
were collected on a machine running Solaris 9, with two Intel Xeon CPUs running at 2.8GHz and
4GB of memory. Only one CPU was used and tests were run under minimal load on the system. Our
implementation of Algorithm 3 uses sorted arrays of bitstrings (so that search for models is logarithmic).
As the number of models grows exponentially with the number of variables, it is not surprising that
memory consumption for some tests exceeded available space. As mentioned, the comparison is not that
interesting anyway.

Given a function ϕ , the number of nodes in aff(ϕ)’s ROBDD may be smaller or larger than that of
ϕ’s ROBDD. (In our experiments, we have observed that, on average, the envelope is smaller than the
original function.) Note that the ROBDD for aff(ϕ) has a depth which is no larger that of ϕ’s ROBDD.
This is because an envelope cannot introduce variables, and will often remove some.
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5 Conclusion

Boolean approximation poses interesting algorithmic challenges. Envelopes for Boolean formulas have a
number of different applications and for example find use in speeding up the querying of knowledge-bases.
Previous research has focused on the use of Horn approximations represented in conjunctive normal form
(CNF). In this paper, following a suggestion by Zanuttini [66], we instead focused on the class of affine
functions. Zanuttini exemplifies the utility of this and points out that using the affine envelope instead of
the original function leads to no loss of precision at all when the logical consequences tested are affine
(as would be the case when one tests parity properties of a circuit, say).

As could be expected, our initial (baseline) implementation using a naive sets-of-models (as arrays of
bitstrings) representation was of limited value, because, even for functions with very few models, the
affine envelope often has very many models (the affine envelope of a majority of Boolean functions is 1).
So storing sets of models as an array becomes prohibitive even for functions over rather few variables.

ROBDDs have proved to be an appropriate representation for many applications of Boolean functions.
Functions with very many models, as well as very few, have compact ROBDD representations. Thus we
have developed a new affine envelope algorithm using ROBDDs. Our approach is based on the same
principle as Zanuttini’s, but takes advantage of some useful characteristics of ROBDDs, together with
certain properties of affine Boolean functions. Propositions 2.14 and 2.10 establish the most important of
these properties, including the fact that affine approximation commutes with existential quantification.
This is what allows an algorithm for the generation of affine envelopes to eliminate variables aggressively,
often significantly reducing the sizes of the representations being manipulated earlier than would happen
otherwise.

Table 1 suggests that this “aggressive” approach pays off uniformly, with the benefit generally
increasing as functions grow in arity. The benefit also appears to be present across the complete lattice
of Boolean functions. The sudoku series of functions were designed to investigate that point. As the
parameter N in sudokuN grows, the functions, which all have the same number of variables, grow
stronger (as more numbers are placed on the initially empty sudoku board, more constraints are added,
and the number of models decreases). The aggressive approach has an advantage across that sequence of
functions.

We have not been able to obtain a precise complexity analysis of the algorithm, and we leave
this as an open problem. We note, however, that in the worst case, an ROBDD for an n-place affine
function can reach the maximal size for an n-place ROBDD, namely 3 · 2n/2− 1 nodes. For example,
(x1 + y1)(x2 + y2) · · ·(x n

2
+ y n

2
) (n even) gives rise to an ROBDD with 3 · 2n/2− 1 nodes, assuming the

variable ordering is x1 ≺ x2 ≺ ·· · ≺ x n
2
≺ y1 ≺ y2 ≺ ·· ·y n

2
. (On the other hand, with variable ordering

x1≺ y1≺ x2≺ y2≺ ·· · ≺ x n
2
≺ y n

2
, the ROBDD is linear in n, as the ROBDD has 3n

2 +2 nodes. Figure 6(a)
exemplifies this for n = 6. On the left is the ROBDD that uses the first ordering. With 23 nodes (as usual,
we omit the 0-sink), it clearly has the greatest number of nodes that any ROBDD for a 6-place function
can have. On the right is the ROBDD, with 11 nodes, that uses the second ordering.
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Figure 6: (a) shows a worst-case affine ROBDD, representing (a+d)(b+e)(c+f) under the variable
ordering a ≺ b ≺ c ≺ d ≺ e ≺ f . (b) shows the same affine function using the variable ordering
a ≺ d ≺ b ≺ e ≺ c ≺ f .

of ROBDDs, together with certain properties of affine Boolean functions. Propositions 9 and 6
establish the most important of these properties, including the fact that affine approximation com-
mutes with existential quantification. This is what allows an algorithm for the generation of affine
envelopes to eliminate variables aggressively, often significantly reducing the sizes of the represen-
tations being manipulated earlier than would happen otherwise.

Table 1 suggests that this “aggressive” approach pays off uniformly, with the benefit generally
increasing as functions grow in arity. The benefit also appears to be present across the complete
lattice of Boolean functions. The sudoku series of functions were designed to investigate that point.
As the parameter N in sudokuN grows, the functions, which all have the same number of variables,
grow stronger (as more numbers are placed on the initially empty sudoku board, more constraints
are added, and the number of models decreases). The aggressive approach has an advantage across
that sequence of functions.

We have not been able to obtain a precise complexity analysis of the algorithm, and we leave
this as an open problem. We note, however, that in the worst case, an ROBDD for an n-place
affine function can reach the maximal size for an n-place ROBDD, namely 3 · 2n/2 − 1 nodes. For
example, (x1 + y1)(x2 + y2) · · · (xn

2
+ yn

2
) (n even) gives rise to an ROBDD with 3 · 2n/2 − 1 nodes,

assuming the variable ordering is x1 ≺ x2 ≺ · · · ≺ xn
2

≺ y1 ≺ y2 ≺ · · · yn
2
. (On the other hand,

with variable ordering x1 ≺ y1 ≺ x2 ≺ y2 ≺ · · · ≺ xn
2

≺ yn
2
, the ROBDD is linear in n, as the

ROBDD has 3n
2 + 2 nodes. Figure 6(a) exemplifies this for n = 6. On the left is the ROBDD that

uses the first ordering. With 23 nodes (as usual, we omit the 0-sink), it clearly has the greatest
number of nodes that any ROBDD for a 6-place function can have. On the right is the ROBDD,
with 11 nodes, that uses the second ordering.
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ordering a≺ b≺ c≺ d ≺ e≺ f . (b) shows the same affine function using the variable ordering a≺ d ≺
b≺ e≺ c≺ f .

Acknowledgements

We wish to thank the reviewers for their helpful suggestions which led to many improvements to this
paper.

References

[1] M. ANTHONY AND N. BIGGS: Computational Learning Theory. Volume 30 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1992.

[2] T. ARMSTRONG, K. MARRIOTT, P. SCHACHTE, AND H. SØNDERGAARD: Two classes of Boolean
functions for dependency analysis. Science of Computer Programming, 31(1):3–45, 1998.

[3] R. BAGNARA, P. HILL, AND E. ZAFFANELLA: Set-sharing is redundant for pair-sharing. In P. VAN

HENTENRYCK, editor, Static Analysis: Proc. Fourth Int. Symp., volume 1302 of LNCS, pp. 53–67.
Springer, 1997.

[4] R. BAGNARA AND P. SCHACHTE: Factorizing equivalent variable pairs in ROBDD-based imple-
mentations of Pos. In A. HAEBERER, editor, Proc. Seventh Int. Conf. Algebraic Methodology and
Software Technology (AMAST’98), volume 1548 of LNCS, pp. 471–485. Springer, 1998.

[5] G. BIRKHOFF: Lattice Theory. American Mathematical Society, third edition, 1973.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 11, pages 1–26 21

http://dx.doi.org/10.4086/cjtcs


KEVIN HENSHALL, PETER SCHACHTE, HARALD SØNDERGAARD, AND LEIGH WHITING
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