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Abstract: We study the problem of identifying an n-bit string using a single quantum query
to an oracle that computes the Hamming distance between the query and hidden strings. The
standard action of the oracle on a response register of dimension r is by powers of the cycle
(1 . . .r), all of which, of course, commute. We introduce a new model for the action of an
oracle—by general permutations in Sr—and explore how the success probability depends
on r and on the map from Hamming distances to permutations. In particular, we prove that
when r = 2, for even n the success probability is 1 with the right choice of the map, while
for odd n the success probability cannot be 1 for any choice. Furthermore, for small odd
n and r = 3, we demonstrate numerically that the image of the optimal map generates a
non-abelian group of permutations.

1 Introduction

Suppose we wish to identify an n-bit string a by querying an oracle that computes the Hamming distance
of any query x from a. Previous work has shown that if the oracle returns the Hamming distance modulo
4, there is a quantum algorithm that identifies a with probability 1, using only a single query (as shown in
[17]; see also [16]). On the other hand, if the oracle returns the Hamming distance modulo 2, there is
no algorithm, either classical or quantum mechanical, that can identify a with probability greater than
1/2n−1, using any number of queries. 1 In the latter case, we can think of the oracle adding the Hamming
distance into a two dimensional response register (so its remainder modulo 2 is all that matters), or we
can think of the oracle adding a single bit—the least significant bit of the Hamming distance—into a two

1This follows from the fact that the weight of a modulo 2 partitions the set of n-bit strings into two subsets of size 2n−1,
with each element having even Hamming distance from the elements in the same subset and odd Hamming distance from the
elements in the other subset.
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dimensional response register. The latter point of view might lead us to believe that the difficulty stems
from the oracle returning only a single bit, compared to the two bits that it returns when it computes the
Hamming distance modulo 4.

Our first, possibly surprising, result demonstrates that when n is even this belief is wrong—there
is a quantum algorithm that takes a single bit from the Hamming distance computed by the oracle and
identifies a with probability 1 using a single query. Knowing such an algorithm exists, our second result
is perhaps equally surprising: when n is odd the original belief is at least partially correct—there is no
probability 1 algorithm for finding a using any single bit of the Hamming distance. By “any single bit of
the Hamming distance” we mean any function

ga(x) = h
(
dist(a,x)

)
, (1.1)

where h : {0, . . . ,n} → {0,1}. Both of these results involve learning (or failing to learn) an element
from a set of binary functions of x, indexed by a, so they can be understood as solutions to problems in
computational learning theory where the set is a concept class and its elements are concepts [1].

Combining our new results with the previous ones leads us to make two observations: the probability
of correctly learning a depends on (1) the dimension of the response register and (2) how the oracle’s
response acts on this register. The first observation suggests generalizing the notion of concepts, which are
binary functions, to Y -valued functions, for sets Y other than {0,1}.2 The second observation motivates
the main conceptual contribution of this paper—a new model for the action of quantum (and reversible
classical) non-abelian oracles—the permutation model. In this model, we fix a response register CR,
where R is a finite set, and assign to each possible reponse y ∈ Y a permutation σy ∈ SR of the set R.
More precisely, to implement an oracle which computes the (classical) function f : X → Y , we are free to
choose any map σ : Y → SR, and given this choice, the oracle acts on CX ⊗CR by

O( f )|x,b〉= |x,σf (x)(b)〉

When the oracle acts in the standard way, by adding the function value it computes into the response
register, σ(Y )⊆Cr ≤ SR, where Cr is the cyclic group with r = |R| elements, and is thus abelian. But
this need not be the case: σ(Y ) can generate a non-abelian subgroup of SR when r > 2, and for some
problems the optimal solution has this property.

Our final set of results addresses the problem of maximizing the probability of success for odd
n within this permutation model. We emphasize that although in this paper we study only Hamming
distance oracles, any non-trivial oracle can be set up to have a non-abelian action, and this can improve
the probability of success relative to an abelian action, as it does for the oracles we consider.

Finally, we note a similarity between the Hamming distance oracles considered in this paper and
the game of Mastermind, a connection which was actually one of the authors’ original motivations.
In Mastermind, players make queries which receive two responses, one of which is equivalent to the
Hamming distance between the query string and a hidden string [21].

2Limited versions of this generalization have been considered previously. See, for example, [2],[27].
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2 Background

Most quantum algorithms include one or more calls to a subroutine or oracle that evaluates some function
at the argument passed to it. In some cases, like Shor’s algorithm [26] and the various quantum algorithms
for hidden subgroup problems [22], the range of this function is a large set Y (so that, for example, the
function can take distinct values on distinct cosets of the hidden subgroup). In others, like Grover’s
algorithm [12], the range of the function is only {0,1}.

In the latter cases, the problem of identifying the function can be recognized as a problem in
computational learning theory [18]: The set of possible functions C⊆ {0,1}X , where X is the domain
of the function, is the concept class; each function c : X → {0,1} is a concept; and c−1(1) ⊆ X is the
extension of the concept c. Concept learning is the process by which a student (the learner) identifies (or
approximates) a target concept c from a concept class C. In active learning the student can query a teacher
for information about the target concept. Asking a teacher if x ∈ X is in the extension of c is equivalent to
passing x to a subroutine or oracle that evaluates c at its argument.

Many natural concept learning problems for which quantum algorithms have been found—including
Grover’s [12] UNSTRUCTURED SEARCH problem; Bernstein and Vazirani’s [6], and Barg and Zhou’s
[3], SIMPLEX CODE DECODING problem; and Hunziker, et al.’s [18] BATTLESHIP and MAJORITY

problems—are highly symmetric. In each of these |C| = |X | and there is an abelian group G acting
transitively on C and on X , satisfying (g · c)(g · x) = c(x) for all c ∈ C, x ∈ X , and g ∈ G.

In this paper we consider problems which have this symmetry for G = X = Zn
2. Each involves a

specific function of the Hamming distance between an unknown n-bit string a ∈ Zn
2 and a query string

x∈Zn
2, dist(a,x) = |{i | ai 6= xi}|; this is invariant under the action of G since dist(g+a,g+x) = dist(a,x).

Now, until it is composed with a binary function as in (1.1), dist(a, ·) : X → {0, . . . ,n} = Y does not
define a traditional concept (except in the trivial case n = 1), so it is useful to define a Y -valued concept
class to be a set of functions C⊆ Y X . We extend our use of “learning problems” to include these cases.
To do so, we introduce the notion of an (n,r)-Hamming distance oracle, which accepts queries x ∈ Zn

2
and then acts on an r-dimensional response register according to some function of the Hamming distance
dist(a,x), for some fixed a ∈ Zn

2.3 We will formalize this notion precisely in Section 5.
Our goal is to optimize single-query learning from such Hamming distance oracles, i. e., to maximize

the probability of correctly identifying a after a single call to the subroutine that computes the function.
Since we assume a uniform prior distribution on a, we consider only quantum algorithms that begin with
an equal superposition query,4 i. e., that pass to the oracle a state of the form |η0〉⊗ψ = H⊗n|0 . . .0〉⊗ψ ,
where H is the Hadamard transformation

(1
1

1
−1

)
/
√

2 and ψ ∈ Cr. If O(a) : (C2)⊗n⊗Cr→ (C2)⊗n⊗Cr

denotes the action of the oracle with parameter a, the problem reduces to identifying which of the 2n

states O(a)|η0〉⊗ψ is returned by the oracle. An optimal solution to this problem can be obtained by a
complete von Neumann measurement [14],[13],[20],[15]; equivalently, we want to maximize

2n−1

∑
a=0

r−1

∑
b=0

∣∣∣〈a,b|UO(a)|η0〉⊗ψ

∣∣∣2, (2.1)

3It is also natural to consider problems with X = Zn
k [17], in which the Hamming distance is defined by the same formula,

but in this paper we restrict our attention to k = 2.
4In fact, we conjecture that for problems with transitive group actions and uniform priors, the optimal solutions always

include one that begins with an equal superposition query.
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over all unitary maps U ∈U(2nr) and states ψ ∈ Cr. We remark that the literature cited establishes the
fact a complete von Neumann measurement (instead of a more general POVM) is sufficient for optimality
in the case that the state vectors O(a)|η0〉⊗ψ are linearly independent. For the case of linearly dependent
state vectors, an additional argument is needed (see Section 6).

3 Using a different bit of the Hamming distance

We begin by considering the problem of learning an n-bit string from an oracle that returns the second
least significant bit of the Hamming distance of a query, rather than the least significant bit as in [17]. To
be precise, let n be a natural number, and for any a ∈ Zn

2, define a function fa : Zn
2→{0,1} by

fa(x) =

{
0 if dist(a,x)≡ 0,1 (mod 4);
1 if dist(a,x)≡ 2,3 (mod 4).

Thus fa(x) is the second least significant bit of the Hamming distance between a and x. Set b1(d) to be
the second least significant bit of a nonnegative integer d, so fa(x) = b1

(
dist(a,x)

)
. Define Cn to be the

concept class { fa | a ∈ Zn
2}.

Lemma 3.1. If n 6≡ 1 (mod 4) then |Cn| = 2n. If n ≡ 1 (mod 4) then fa = fā, where ā is the bitwise
complement of a ∈ Zn

2, so there are only 2n−1 concepts in the class.

Proof. Suppose fa′ = fa and dist(a,a′)= d. Since b1(d)= b1
(
dist(a′,a)

)
= fa′(a)= fa(a)= b1

(
dist(a,a)

)
=

b1(0) = 0, we must have d ≡ 0 or 1 (mod 4). If a′ 6= a there is a bit at which a′ differs from a. Let
x be the bit string obtained from a by complementing this bit. Then b1

(
dist(a,x)

)
= b1(1) = 0 so

b1
(
dist(a′,x)

)
= b1(d−1) = 0, so we can conclude that d ≡ 1 (mod 4). Now suppose there were a bit

at which a′ agreed with a. Let y be the bit string obtained from a by complementing this bit. Then
b1
(
dist(a,y)

)
= b1(1) = 1 and b1

(
dist(a′,y)

)
= b1(d + 1), which would imply that d ≡ 0 (mod 4), a

contradiction. So if a′ 6= a but fa′ = fa, there can be no bit at which a′ agrees with a, which means a′ = ā
and n≡ 1 (mod 4).

As we explained in the previous sections, we are interested in analyzing the probability of correctly
identifying the hidden bit string a using only a single query to the oracle. Classically, it is not hard
to see that when the fa are distinct, any strategy yields a worst-case success probability of at most
2/2n = 1/2n−1, the number of possible oracle responses divided by the number of concepts. In contrast,
we next show that for even n, this learning problem can be solved quantum mechanically with probability
1 using a single query.

Theorem 3.2. Let n be even. Then the learning problem defined by Cn can be solved with probability 1
using a single quantum query.

We will prove Theorem 3.2 by giving an explicit algorithm below. To show that the algorithm is
correct we will need two lemmas. For x ∈ Zn

2, define x̂ ∈ Zn
2 by:

x̂ =

{
x if wt(x) is even;
x̄ if wt(x) is odd.
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Here the weight of x, wt(x) = dist(0,x). Note that if n is even, then the function x 7→ x̂ is a permutation
of Zn

2.

Lemma 3.3. Let n be a natural number and let a,x ∈ Zn
2. Then

a · x+wt(a)wt(x)≡ a · x̂ ( mod 2).

Proof. If wt(x) is even, then x̂ = x, and the congruence is easily seen to hold. If wt(x) is odd, then x̂ = x̄,
and the congruence follows from the identity a · x+a · x̄ = wt(a).

Lemma 3.4. Let n be a natural number and let a,x ∈ Zn
2. Then

(−1)b1(dist(a,x)) = (−1)b1(wt(a))(−1)b1(wt(x))(−1)a·x̂.

Proof. First note that for any integer d,

b1(d)≡
d(d−1)

2
( mod 2).

Since dist(a,x) = wt(a)+wt(x)−2(a · x), this implies

b1
(
dist(a,x)

)
≡
(
wt(a)+wt(x)−2(a · x)

)(
wt(a)+wt(x)−2(a · x)−1

)
2

( mod 2).

Expanding the numerator on the right hand side of this congruence, and dropping multiples of 4, gives

b1(dist(a,x))≡
wt(a)2−wt(a)+wt(x)2−wt(x)

2
+wt(a)wt(x)+a · x ( mod 2).

Using Lemma 3.3, we can replace wt(a)wt(x)+a · x with a · x̂ and the result follows.

Proof of Theorem 3.2. We take the oracle to act on (C2)⊗n⊗C2 in the standard way,

O(a) : |x〉|b〉 7→ |x〉|b+ fa(x)〉,

although it is b1
(
dist(a,x)

)
that is being added modulo 2 into the response register, not dist(a,x). The

following quantum algorithm identifies a with probability 1, applying O(a) only once.

Algorithm A.

1. Initialize the state to |0 . . .0〉|0〉 ∈ (C2)⊗n⊗C2.

2. Apply the unitary transformation H⊗n⊗HX , where X =
(0

1
1
0

)
. This produces the state

|η0〉|−〉= 1
2n/2 ∑

x∈Zn
2

|x〉|−〉,

where |−〉= (|0〉− |1〉)/
√

2.
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3. Let D be the diagonal matrix acting on (C2)⊗n by D|x〉= (−1)b1(wt(x))|x〉. Apply D⊗ I, producing
the state

1
2n/2 ∑

x∈Zn
2

(−1)b1(wt(x))|x〉|−〉.

4. Apply the oracle O(a). This produces the state

1
2n/2 ∑

x∈Zn
2

(−1)b1(wt(x))(−1)b1(dist(a,x))|x〉|−〉.

By Lemma 3.4, this equals

1
2n/2 ∑

x∈Zn
2

(−1)b1(wt(a))(−1)a·x̂|x〉|−〉.

5. Let P be the permutation matrix acting on (C2)⊗n by P|x〉= |x̂〉. Applying P⊗ I yields

1
2n/2 ∑

x∈Zn
2

(−1)b1(wt(a))(−1)a·x̂|x̂〉|−〉,

which is equal to
(−1)b1(wt(a))

2n/2 ∑
x∈Zn

2

(−1)a·x|x〉|−〉,

since x 7→ x̂ is a bijection.

6. Apply H⊗n⊗ I. This produces the state (−1)b1(wt(a))|a〉|−〉.

7. Now measure the query register (the (C2)⊗n tensor factor) and observe a with probability 1.

4 Concept classes that cannot be learned with a single query

Theorem 3.2 cannot be extended to odd n > 1; there is no single equal superposition query probability 1
quantum learning algorithm for the concept class Cn in this case. In fact, when n > 1 is odd, there is no
concept class defined by any function of the Hamming distance that is perfectly learnable with a single
equal superposition quantum query. To see this, we begin with the following lemma:

Lemma 4.1. Let C be a concept class of size M over a set X of size N. Suppose that there is a probability 1
learning algorithm using a single equal superposition quantum query. Identifying concepts with bitstrings
indexed by X, there exists an integer d ≥ N/2 such that any two distinct concepts of C have Hamming
distance d. If M = N > 2 is even, then the quantum learning matrix, which has entries Lxc = (−1)c(x) for
x ∈ X, c ∈ C, is a Hadamard matrix.
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Proof. Suppose that there is a single query learning algorithm with equal superposition query

1√
N ∑

x∈X
|x〉⊗ψ,

for some unit vector ψ ∈ C2. If λ = ψ†Xψ then −1 ≤ λ ≤ 1.5 Let A be the matrix whose columns,
indexed by concepts, contain the state of the system after querying the oracle. Then B = A†A is a matrix
whose rows and columns are both indexed by concepts, with elements

Bcc′ =
1
N ∑

x∈X

{
1 if c(x) = c′(x);
λ if c(x) 6= c′(x).

Thus NBcc′ =
(
N−dist(c,c′)

)
+λ dist(c,c′). Since the algorithm succeeds with probability 1, we must

have Bcc′ = 0 for distinct concepts c 6= c′. In this case

d = dist(c,c′) =
N

1−λ
≥ N

2
,

where the inequality follows from λ ≥−1.
Now suppose that M = N > 2 is even. Note that the the concepts of C form a code of distance d.

Hence if d > N/2, then the Plotkin bound [23] implies that

M ≤ 2
⌊

d
2d−N

⌋
.

Since N is even, 2d−N ≥ 2, and it follows that M < N unless d = N, in which case M ≤ 2. Thus we
must have d = N/2 so the columns of L are orthogonal. That is, if M = N > 2 is even, the quantum
learning matrix is a Hadamard matrix.

We now use Lemma 4.1 to prove the general result:

Theorem 4.2. Let n > 1 be odd. Suppose that En = {ga | a ∈ Zn
2}, where the functions ga : Zn

2→ Z2 have
the property that ga(x) depends only on the Hamming distance dist(a,x). If |En|= 2n, then the learning
problem defined by En cannot be solved with probability 1 using a single equal superposition quantum
query.

Note that if |En| 6= 2n, then a is not determined by ga. Thus, in general, when n is odd, the bitstring a
cannot be learned with probability 1 in a single quantum query from any binary-valued function of the
Hamming distance.

Proof. Since ga(x) depends only on the Hamming distance dist(a,x), there exists a function h : {0, . . . ,n}→
{0,1} such that ga(x) = h

(
dist(a,x)

)
.

Suppose that the learning problem defined by En can be solved with probability 1 using a single
quantum query. Then by Lemma 4.1, the quantum learning matrix L, with elements Lxa = (−1)ga(x), is a

5This X is the bit-flip matrix defined in step 2 of Algorithm A, not the set over which the concept class is defined.
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Hadamard matrix. Consider the inner product of the two rows of L corresponding to the queries y = 0n

and z = 120n−2. Since L is a Hadamard matrix,

∑
a∈Zn

2

(−1)ga(y)(−1)ga(z) = 0.

In half of the terms of this sum, those for which the bits a0 and a1 differ, dist(a,y) = dist(a,z). Then
ga(y) = ga(z), and hence each of these terms contributes +1 to the sum. In the other half of the terms,
those for which a0 = a1, each term must contribute −1 to the sum, so ga(y)≡ ga(z)+1( mod 2). But
a0 = a1 implies dist(a,y) = dist(a,z)± 2. It follows that for any d ∈ {0, . . . ,n− 1}, h(d) 6= h(d + 2).
Hence for some s ∈ {0,1,2,3}, h(d) = b1(d + s) for all d ∈ {0, . . . ,n}. Thus under the assumption that
the concept class can be learned with probability 1 from a single quantum query, we have shown that h is
a translate of b1.

It remains to show that if n is odd, taking h to be a translate of b1 leads to a matrix L that is not a
Hadamard matrix. One easily sees that for such a function h, there is a sign ε =±1 such that

(−1)h(n−d) = ε(−1)h(d)

for all d. It follows that any two rows of L corresponding to complementary values of x are equal up to
sign. Hence L is not a Hadamard matrix.

When n ≡ 3 (mod 4), the concept class Cn we introduced in the previous section satisfies the
hypotheses of Theorem 4.2, so it cannot be learned with probability 1 from a single quantum query. When
n≡ 1 (mod 4), Lemma 3.1 tells us that the concept class has only 2n−1 concepts so Theorem 4.2 does
not apply to learning the concept classe Cn in this case. We already know in this case that a cannot be
identified with probability greater than 1/2 with any number of queries, since fa = fā. Using Algorithm
A (with appropriate minor modifications), however, a single query determines a up to complementation,
so the concept class Cn can be learned with a single quantum query.

Notice that we did not use the fact that n is odd to reach the conclusion that h is a translate of b1. This
means that for even n, the Hamming distance concept class Cn is essentially the only one that can be
learned with probability 1 using a single query. More precisely, we have:

Corollary 4.3. When n is even, b1 (and translates) are the only functions of Hamming distance that yield
a concept class learnable with probability 1 using a single quantum query.

5 The permutation model

The results of the previous section demonstrate that an n-bit string a cannot be learned with probability 1
using a single quantum query to an (n,2)-Hamming distance oracle, when n is odd. A natural question,
then, is:

What is the largest probability with which a can be learned using a single quantum query to
an (n,2)-Hamming distance oracle?
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Furthermore, although previous work has shown that a can be learned with probability 1 from an (n,4)-
Hamming distance oracle [17], neither that work nor our results to this point address the potential for
learning with a 3-dimensional response register. So there is a second natural question:

What is the largest probability with which a can be learned using a single quantum query to
an (n,3)-Hamming distance oracle?

Before answering these questions, we reconsider the formulation of oracle algorithms.
To allow comparison with the classical query complexity of oracle (learning) problems, the action

of the oracle in a quantum algorithm must be the linear extension of a classical reversible operation. In
Deutsch’s [9] and Deutsch and Jozsa’s [10] original quantum algorithms for oracle problems, the oracle
acts on (C2)⊗n⊗C2 by

O(c)|x,b〉= |x,b+ c(x)〉, (5.1)

where the sum is computed modulo 2, but the second register is initialized to |0〉, so the action has the
effect of simply writing the function value computed by the oracle into that register. Similarly, in quantum
algorithms for hidden subgroup problems [19] the oracle computes a function that is constant on cosets
of the hidden subgroup, and takes distinct values on distinct cosets, so it acts on CN⊗Cr, where N is the
size of the group and r is the number of distinct cosets, by (5.1), where the sum is computed modulo r.
Again the second register is initialized to |0〉 so this also has the effect of merely writing the function
value into that register.

Cleve, et al.
6 noticed that the success probability of Deutsch’s original algorithm could be improved to 1 by

initializing the response register in the state |−〉, thereby taking advantage of the action (5.1) when b = 1
as well as when b = 0, to “kick back” a phase of (−1)c(x) [8]. Algorithm A does the same thing. This
application, as opposed to the application on the response register initialized to |0〉, emphasizes that O(c)
acts as a map on {0,1}—the (labels of the) computational basis vectors of the C2 response register—and
is a classical reversible operation for each of the possible values of c(x): 0 acts as the identity and 1 acts
to exchange 0 and 1. That is, the oracle response, both classically and quantum mechanically, can be
thought of as an element of S2, the permutations of a two element set—it is either the identity, (1), or the
other element of S2, the transposition (12) (using cycle notation [7] for permutations of the elements of
R, which we label {1, . . . ,r}). From this point of view, the action of an (n,2)-Hamming distance oracle
depends on a map {0, . . . ,n}→ S2: Simply adding the Hamming distance into the response register would
be the map d 7→ (12)d , while the Algorithm A oracle action comes from the map d 7→ (12)b1(d).

But this implies a novel conceptualization of the action of an oracle when r > 2, as it can be for
(n,r)-Hamming distance oracles, namely that the action should depend on a map σ : {0, . . . ,n} → Sr

which takes each function value computed by the oracle and associates to it a permutation of a response
set R with |R| = r. In a quantum algorithm, R is identified with the computational basis of the tensor
factor used as the response register. The map σ can be more complicated than d 7→ (12 . . .r)d , i. e.,
addition of the Hamming distance modulo r. This simple action can be characterized an abelian oracle
since the range of σ is contained in a cyclic subgroup of Sr. It allows a to be identified with probability 1
when r = 4 [17], but in other cases there is no reason to think that it is the optimal action. In general we

6And Tapp, according to a note in [8], and most likely others as well.
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should consider non-abelian oracles, ones for which the image of σ contains noncommuting permutations
of R. More precisely, we define the action of an oracle on (C2)⊗n⊗Cr by

Oσ (a)|x,b〉= |x,σdist(a,x)(b)〉, (5.2)

and let

pn(r) = max
σ :{0,...,n}→Sr

ψ∈Cr,U∈U(2nr)

2n−1

∑
a=0

r−1

∑
b=0

∣∣∣〈a,b|UOσ (a)|η0〉⊗ψ

∣∣∣2. (5.3)

Using this notation, Hunziker and Meyer’s result [17] shows that pn(r) = 1 for r ≥ 4, Theorem 3.2 shows
that p2 j(r) = 1 for r ≥ 2, and Lemma 3.1 and Theorem 4.2 show that p2 j−1(2) < 1, for j any natural
number. Furthermore, the two questions above can be phrased as: What are p2 j−1(2) and p2 j−1(3),
respectively?

6 Numerical optimization results

We are considering learning algorithms that send a single equal superposition query |η0〉⊗ψ to the
oracle. If the states {O(c)|η0〉⊗ψ | c ∈ C} are linearly independent, then the optimal measurement to
distinguish them, i. e., to identify c, is the square root measurement, as Sasaki, et al. noted [24] using
early results in quantum state discrimination (Appendix A in [15]).7 Thus we have the following:

Proposition 6.1. Let C be a Y -valued concept class of size M over a set X of size N. Fix a response set
R and an assignment σ of a permutation of R to each y ∈ Y . Also fix the initial state ψ of the response
register CR. Let B be the Nr by M matrix with columns indexed by the concepts c ∈ C, and with column c
the state O(c)|η0〉⊗ψ . Suppose that the columns of B are linearly independent, and that the diagonals
of G = B†B are constant. Let

√
G denote the positive semi-definite square root of G. Then the optimal

single-query quantum algorithm using the equal superposition query |η0〉⊗ψ succeeds with probability
diag(

√
G).

This proposition justifies the main step in the following numerical method.

Method B.

1. Input n and r.

2. Repeat Steps 3 and 4 below for all possible assignments σ : {0, . . . ,n}→ Sr.

3. For ψ ∈ Cr a unit vector, Proposition 6.1 allows us to calculate the maximal success probability
M(ψ) of a single-query quantum algorithm using the query |η0〉⊗ψ .

4. Numerically maximize M(ψ) over all unit vectors ψ ∈ Cr.

7The introduction of this approach into the context of concept learning may be found in [18].
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Using this method we obtain the following numerical results:

First, let n = 3.

For r = 2, we find p3(2)≈ 0.800. This is achieved using the permutations σ0 =σ2 =σ3 =(1)
and σ1 = (12). It can also be achieved using the permutations σ0 = σ1 = σ2 = (1) and
σ3 = (12).

When r = 3, this improves to p3(3)≈ 0.974. Here a best permutation assignment is σ0 = (1),
σ1 = (12), σ2 = (132), and σ3 = (123). (There are several other assignments of permutations
that yield the same success probability.)

Second, let n = 5.

When r = 2, we find p5(2) ≈ 0.721. This is achieved using the permutations σ0 = σ3 =
σ4 = σ5 = (1) and σ1 = σ2 = (12).

When r = 3, this improves to p5(3) ≈ 0.955. Here the best permutation assignment is
σ0 = (1), σ1 = (123), σ2 = (132), σ3 = (12), σ4 = (1), and σ5 = (123). The optimum
initialization for the response register is approximately

|1〉−0.1065i|2〉+1.1064i|3〉,

normalized to have unit length.

Note that Proposition 6.1 requires the columns of the matrix B to be linearly independent. In cases that
the the columns of B are are linearly dependent, Proposition 6.1 does not tell us what to do, and Method
B may not succeed in finding the optimal solution. In our problem it turns out that certain assignments of
permutations lead to matrices B with linearly dependent columns. One suspects that these assignments
are not as good as the assignments for which B has full rank, but this is not guaranteed by Proposition 6.1.
In particular, when the rank of B is low, it is generally true that it is impossible to distinguish these states
with high probability:8

Lemma 6.2. Suppose ψi, i ∈ {1, . . . ,n} are pure states contained in a k-dimensional subspace W. Then
any n-valued measurement for identifying i succeeds with probability at most k/n.

Proof. Let ρi be the density matrix corresponding to ψi. Let ΠW denote projection onto W . Then ρi≤ΠW

for all i. Hence, if {Xi} is any measurement, we can bound the success probability of this measurement
as follows:

1
n

n

∑
i=1

Tr(Xiρi)≤
1
n

n

∑
i=1

Tr(XiΠw) =
1
n

Tr(ΠW ) =
k
n
.

8This is a broadly applicable result that may well exist in the literature, but we have been unable to find it.
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Lemma 6.2 suffices to guarantee that cases in which B has linearly dependent columns yield success
probabilities that are smaller than the ones presented in the list above. When n = 3 (for both r = 2 and
r = 3), we find that a given assignment of permutations either leads to a matrix B that is full rank (rank 8)
for a generic choice of ψ , or has rank at most 5. In this latter case, Lemma 6.2 implies that the success
probability is at most 5/8, which is smaller that the probabilities shown above in the full rank case. When
n = 5, B has either full rank (rank 32), or rank at most 22, which implies a success probability of at most
22/32 in the linearly dependent case. Again, this is smaller than the numbers reported above for the
linearly independent case.9

7 Conclusions

We have introduced a novel generalization for the action of oracles in quantum (and reversible classical)
algorithms: the permutation model. For n-bit Hamming distance oracles the action is specified by a
choice of map σ : {0, . . . ,n} → Sr when the response register has dimension r. The standard additive
action of the oracle is described by the map σ(d) = (1 . . .r)d . Algorithm A in Theorem 3.2 demonstrates
the striking improvement possible by an oracle that acts by some other map of Hamming distances to
permutations: for r = 2 the success probability of learning from a single query to an oracle that acts by
the additive action is 1/2n−1, while for any even n it is 1 for an oracle that acts by σ(d) = (12)b1(d), and
for n = 3 and n = 5 it is approximately 0.800 and 0.721, respectively, using the actions listed in §6.

Allowing a larger response register, namely r = 3, improves the latter two probabilities to approx-
imately 0.974 and 0.955, respectively. In general, pn(r) is a nondecreasing function of r. One might
guess that if there is enough room in the response register to encode each possible function value y ∈Y as
a distinct permutation of {1, . . . ,r}, then adding additional dimensions to the response register would
not improve the success probability. This guess would mean that pn(r) would be constant for r!≥ n+1.
This is not the case, however, as the n = 3 results show: p3(3)< 1 while p3(4) = 1.

As this counterexample indicates, the permutation model raises a host of new questions. We close
by listing a few more: Is there some dimension for the response register above which pn(r) is constant?
Perhaps n+1? What happens to p2 j−1(r) as j→∞ for fixed r? Does it decrease to 1/2? Or to something
larger? What constitutes a good, or optimal, choice of permutations and initial response register state?

9An alternative approach to dealing with the case of linearly dependent state vectors would be to use a result of [4] which
states that in general the success probability of the optimal measurement is bounded above by the square root of the success
probability of the square root measurement.
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