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ABSTRACT

We study the problem of identifying an n-bit string using a single quantum query to an
oracle that computes the Hamming distance between the query and hidden strings. The
standard action of the oracle on a response register of dimension r is by powers of the cycle
(1 . . . r), all of which, of course, commute. We introduce a new model for the action of an
oracle—by general permutations in Sr—and explore how the success probability depends
on r and on the map from Hamming distances to permutations. In particular, we prove
that when r = 2, for even n the success probability is 1 with the right choice of the map,
while for odd n the success probability cannot be 1 for any choice. Furthermore, for small
odd n and r = 3, we demonstrate numerically that the image of the optimal map generates
a non-abelian group of permutations.
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1. Introduction

Suppose we wish to identify an n-bit string a by querying an oracle that computes
the Hamming distance of any query x from a. Previous work has shown that if the oracle
returns the Hamming distance modulo 4, there is a quantum algorithm that identifies a
with probability 1, using only a single query (as shown in [1]; see also [2]). On the other
hand, if the oracle returns the Hamming distance modulo 2, there is no algorithm, either
classical or quantum mechanical, that can identify a with probability greater than 1/2n−1,
using any number of queries.1 In the latter case, we can think of the oracle adding the
Hamming distance into a two dimensional response register (so its remainder modulo 2 is
all that matters), or we can think of the oracle adding a single bit—the least significant
bit of the Hamming distance—into a two dimensional response register. The latter point
of view might lead us to believe that the difficulty stems from the oracle returning only
a single bit, compared to the two bits that it returns when it computes the Hamming
distance modulo 4.

Our first, possibly surprising, result demonstrates that when n is even this belief is
wrong—there is a quantum algorithm that takes a single bit from the Hamming distance
computed by the oracle and identifies a with probability 1 using a single query. Knowing
such an algorithm exists, our second result is perhaps equally surprising: when n is odd the
original belief is at least partially correct—there is no probability 1 algorithm for finding a
using any single bit of the Hamming distance. By “any single bit of the Hamming distance”
we mean any function

ga(x) = h
(

dist(a, x)
)

, (1.1)

where h : {0, . . . , n} → {0, 1}. Both of these results involve learning (or failing to learn)
an element from a set of binary functions of x, indexed by a, so they can be understood
as solutions to problems in computational learning theory where the set is a concept class
and its elements are concepts [3].

Combining our new results with the previous ones leads us to make two observations:
the probability of correctly learning a depends on (1) the dimension of the response register
and (2) how the oracle’s response acts on this register. The first observation suggests
generalizing the notion of concepts, which are binary functions, to Y -valued functions,
for sets Y other than {0, 1}.2 The second observation motivates the main conceptual
contribution of this paper—a new model for the action of quantum (and reversible classical)
non-abelian oracles—the permutation model. In this model, we fix a response register C

R,
where R is a finite set, and assign to each possible reponse y ∈ Y a permutation σy ∈ SR of
the set R. More precisely, to implement an oracle which computes the (classical) function
f : X → Y , we are free to choose any map σ : Y → SR, and given this choice, the oracle

1 This follows from the fact that the weight of a modulo 2 partitions the set of n-bit strings into two

subsets of size 2n−1, with each element having even Hamming distance from the elements in the
same subset and odd Hamming distance from the elements in the other subset.

2 Limited versions of this generalization have been considered previously. See, for example, [4,5].
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acts on C
X ⊗ C

R by
O(f)|x, b〉 = |x, σf(x)(b)〉

When the oracle acts in the standard way, by adding the function value it computes into the
response register, σ(Y ) ⊆ Cr ≤ SR, where Cr is the cyclic group with r = |R| elements,
and is thus abelian. But this need not be the case: σ(Y ) can generate a non-abelian
subgroup of SR when r > 2, and for some problems the optimal solution has this property.

Our final set of results addresses the problem of maximizing the probability of success
for odd n within this permutation model. We emphasize that although in this paper we
study only Hamming distance oracles, any non-trivial oracle can be set up to have a non-
abelian action, and this can improve the probability of success relative to an abelian action,
as it does for the oracles we consider.

Finally, we note a similarity between the Hamming distance oracles considered in this
paper and the game of Mastermind, a connection which was actually one of the authors’
original motivations. In Mastermind, players make queries which receive two responses,
one of which is equivalent to the Hamming distance between the query string and a hidden
string [6].

2. Background

Most quantum algorithms include one or more calls to a subroutine or oracle that
evaluates some function at the argument passed to it. In some cases, like Shor’s algorithm
[7] and the various quantum algorithms for hidden subgroup problems [8], the range of
this function is a large set Y (so that, for example, the function can take distinct values on
distinct cosets of the hidden subgroup). In others, like Grover’s algorithm [9], the range
of the function is only {0, 1}.

In the latter cases, the problem of identifying the function can be recognized as a
problem in computational learning theory [10]: The set of possible functions C ⊆ {0, 1}X ,
where X is the domain of the function, is the concept class; each function c : X → {0, 1}
is a concept; and c−1(1) ⊆ X is the extension of the concept c. Concept learning is the
process by which a student (the learner) identifies (or approximates) a target concept c
from a concept class C. In active learning the student can query a teacher for information
about the target concept. Asking a teacher if x ∈ X is in the extension of c is equivalent
to passing x to a subroutine or oracle that evaluates c at its argument.

Many natural concept learning problems for which quantum algorithms have been
found—including Grover’s [9] UNSTRUCTURED SEARCH problem; Bernstein and Vazirani’s
[11], and Barg and Zhou’s [12], SIMPLEX CODE DECODING problem; and Hunziker, et

al.’s [10] BATTLESHIP and MAJORITY problems—are highly symmetric. In each of these
|C| = |X| and there is an abelian group G acting transitively on C and on X, satisfying
(g · c)(g · x) = c(x) for all c ∈ C, x ∈ X, and g ∈ G.

In this paper we consider problems which have this symmetry for G = X = Z
n
2 . Each
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involves a specific function of the Hamming distance between an unknown n-bit string
a ∈ Z

n
2 and a query string x ∈ Z

n
2 , dist(a, x) = |{i | ai 6= xi}|; this is invariant under the

action of G since dist(g + a, g + x) = dist(a, x). Now, until it is composed with a binary
function as in (1.1), dist(a, ·) : X → {0, . . . , n} = Y does not define a traditional concept
(except in the trivial case n = 1), so it is useful to define a Y -valued concept class to be a
set of functions C ⊆ Y X . We extend our use of “learning problems” to include these cases.
To do so, we introduce the notion of an (n, r)-Hamming distance oracle, which accepts
queries x ∈ Z

n
2 and then acts on an r-dimensional response register according to some

function of the Hamming distance dist(a, x), for some fixed a ∈ Z
n
2 .3 We will formalize

this notion precisely in Section 5.

Our goal is to optimize single-query learning from such Hamming distance oracles, i.e.,
to maximize the probability of correctly identifying a after a single call to the subroutine
that computes the function. Since we assume a uniform prior distribution on a, we consider
only quantum algorithms that begin with an equal superposition query,4 i.e., that pass
to the oracle a state of the form |η0〉 ⊗ ψ = H⊗n|0 . . . 0〉 ⊗ ψ, where H is the Hadamard
transformation

(

1
1

1
−1

)

/
√

2 and ψ ∈ C
r. If O(a) : (C2)⊗n ⊗C

r → (C2)⊗n ⊗C
r denotes the

action of the oracle with parameter a, the problem reduces to identifying which of the 2n

states O(a)|η0〉 ⊗ ψ is returned by the oracle. An optimal solution to this problem can be
obtained by a complete von Neumann measurement [13,14,15,16]; equivalently, we want to
maximize

2n−1
∑

a=0

r−1
∑

b=0

∣

∣

∣
〈a, b|UO(a)|η0〉 ⊗ ψ

∣

∣

∣

2

, (2.1)

over all unitary maps U ∈ U(2nr) and states ψ ∈ C
r. We remark that the literature cited

establishes the fact a complete von Neumann measurement (instead of a more general
POVM) is sufficient for optimality in the case that the state vectors O(a)|η0〉⊗ψ are linearly
independent. For the case of linearly dependent state vectors, an additional argument is
needed (see Section 6).

3. Using a different bit of the Hamming distance

We begin by considering the problem of learning an n-bit string from an oracle that
returns the second least significant bit of the Hamming distance of a query, rather than
the least significant bit as in [1]. To be precise, let n be a natural number, and for any
a ∈ Z

n
2 , define a function fa : Z

n
2 → {0, 1} by

fa(x) =

{

0 if dist(a, x) ≡ 0, 1 (mod 4);
1 if dist(a, x) ≡ 2, 3 (mod 4).

3 It is also natural to consider problems with X = Z
n

k
[1], in which the Hamming distance is defined

by the same formula, but in this paper we restrict our attention to k = 2.
4 In fact, we conjecture that for problems with transitive group actions and uniform priors, the optimal

solutions always include one that begins with an equal superposition query.
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Thus fa(x) is the second least significant bit of the Hamming distance between a and
x. Set b1(d) to be the second least significant bit of a nonnegative integer d, so fa(x) =
b1

(

dist(a, x)
)

. Define Cn to be the concept class {fa | a ∈ Z
n
2}.

LEMMA 3.1. If n 6≡ 1 (mod 4) then |Cn| = 2n. If n ≡ 1 (mod 4) then fa = fā, where ā is
the bitwise complement of a ∈ Z

n
2 , so there are only 2n−1 concepts in the class.

Proof. Suppose fa′ = fa and dist(a, a′) = d. Since b1(d) = b1
(

dist(a′, a)
)

= fa′(a) =

fa(a) = b1
(

dist(a, a)
)

= b1(0) = 0, we must have d ≡ 0 or 1 (mod 4). If a′ 6= a there is a
bit at which a′ differs from a. Let x be the bit string obtained from a by complementing this
bit. Then b1

(

dist(a, x)
)

= b1(1) = 0 so b1
(

dist(a′, x)
)

= b1(d− 1) = 0, so we can conclude
that d ≡ 1 (mod 4). Now suppose there were a bit at which a′ agreed with a. Let y be
the bit string obtained from a by complementing this bit. Then b1

(

dist(a, y)
)

= b1(1) = 1

and b1
(

dist(a′, y)
)

= b1(d+1), which would imply that d ≡ 0 (mod 4), a contradiction. So
if a′ 6= a but fa′ = fa, there can be no bit at which a′ agrees with a, which means a′ = ā
and n ≡ 1 (mod 4).

As we explained in the previous sections, we are interested in analyzing the probability
of correctly identifying the hidden bit string a using only a single query to the oracle.
Classically, it is not hard to see that when the fa are distinct, any strategy yields a worst-
case success probability of at most 2/2n = 1/2n−1, the number of possible oracle responses
divided by the number of concepts. In contrast, we next show that for even n, this learning
problem can be solved quantum mechanically with probability 1 using a single query.

THEOREM 3.2. Let n be even. Then the learning problem defined by Cn can be solved
with probability 1 using a single quantum query.

We will prove Theorem 3.2 by giving an explicit algorithm below. To show that the
algorithm is correct we will need two lemmas. For x ∈ Z

n
2 , define x̂ ∈ Z

n
2 by:

x̂ =

{

x if wt(x) is even;
x̄ if wt(x) is odd.

Here the weight of x, wt(x) = dist(0, x). Note that if n is even, then the function x 7→ x̂ is
a permutation of Z

n
2 .

LEMMA 3.3. Let n be a natural number and let a, x ∈ Z
n
2 . Then

a · x+ wt(a)wt(x) ≡ a · x̂ (mod 2).

Proof. If wt(x) is even, then x̂ = x, and the congruence is easily seen to hold. If wt(x) is
odd, then x̂ = x̄, and the congruence follows from the identity a · x+ a · x̄ = wt(a).

LEMMA 3.4. Let n be a natural number and let a, x ∈ Z
n
2 . Then

(−1)b1(dist(a,x)) = (−1)b1(wt(a))(−1)b1(wt(x))(−1)a·x̂.
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Proof. First note that for any integer d,

b1(d) ≡
d(d− 1)

2
(mod 2).

Since dist(a, x) = wt(a) + wt(x) − 2(a · x), this implies

b1
(

dist(a, x)
)

≡
(

wt(a) + wt(x) − 2(a · x)
)(

wt(a) + wt(x) − 2(a · x) − 1
)

2
(mod 2).

Expanding the numerator on the right hand side of this congruence, and dropping multiples
of 4, gives

b1(dist(a, x)) ≡ wt(a)2 − wt(a) + wt(x)2 − wt(x)

2
+ wt(a)wt(x) + a · x (mod 2).

Using Lemma 3.3, we can replace wt(a)wt(x) + a · x with a · x̂ and the result follows.

Proof of Theorem 3.2. We take the oracle to act on (C2)⊗n ⊗ C
2 in the standard way,

O(a) : |x〉|b〉 7→ |x〉|b+ fa(x)〉,

although it is b1
(

dist(a, x)
)

that is being added modulo 2 into the response register, not
dist(a, x). The following quantum algorithm identifies a with probability 1, applying O(a)
only once.

Algorithm A.

1. Initialize the state to |0 . . . 0〉|0〉 ∈ (C2)⊗n ⊗ C
2.

2. Apply the unitary transformation H⊗n ⊗HX, where X =
(

0
1

1
0

)

. This produces the
state

|η0〉|−〉 =
1

2n/2

∑

x∈Zn

2

|x〉|−〉,

where |−〉 = (|0〉 − |1〉)/
√

2.

3. Let D be the diagonal matrix acting on (C2)⊗n by D|x〉 = (−1)b1(wt(x))|x〉. Apply
D ⊗ I, producing the state

1

2n/2

∑

x∈Zn

2

(−1)b1(wt(x))|x〉|−〉.

4. Apply the oracle O(a). This produces the state

1

2n/2

∑

x∈Zn

2

(−1)b1(wt(x))(−1)b1(dist(a,x))|x〉|−〉.
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By Lemma 3.4, this equals

1

2n/2

∑

x∈Zn

2

(−1)b1(wt(a))(−1)a·x̂|x〉|−〉.

5. Let P be the permutation matrix acting on (C2)⊗n by P |x〉 = |x̂〉. Applying P ⊗ I
yields

1

2n/2

∑

x∈Zn

2

(−1)b1(wt(a))(−1)a·x̂|x̂〉|−〉,

which is equal to
(−1)b1(wt(a))

2n/2

∑

x∈Zn

2

(−1)a·x|x〉|−〉,

since x 7→ x̂ is a bijection.

6. Apply H⊗n ⊗ I. This produces the state (−1)b1(wt(a))|a〉|−〉.
7. Now measure the query register (the (C2)⊗n tensor factor) and observe a with prob-

ability 1.

4. Concept classes that cannot be learned with a single query

Theorem 3.2 cannot be extended to odd n > 1; there is no single equal superposition
query probability 1 quantum learning algorithm for the concept class Cn in this case. In
fact, when n > 1 is odd, there is no concept class defined by any function of the Hamming
distance that is perfectly learnable with a single equal superposition quantum query. To
see this, we begin with the following lemma:

LEMMA 4.1. Let C be a concept class of size M over a set X of size N . Suppose that there
is a probability 1 learning algorithm using a single equal superposition quantum query.
Identifying concepts with bitstrings indexed by X, there exists an integer d ≥ N/2 such
that any two distinct concepts of C have Hamming distance d. If M = N > 2 is even,
then the quantum learning matrix, which has entries Lxc = (−1)c(x) for x ∈ X, c ∈ C, is
a Hadamard matrix.

Proof. Suppose that there is a single query learning algorithm with equal superposition
query

1√
N

∑

x∈X

|x〉 ⊗ ψ,

for some unit vector ψ ∈ C
2. If λ = ψ†Xψ then −1 ≤ λ ≤ 1.5 Let A be the matrix whose

columns, indexed by concepts, contain the state of the system after querying the oracle.

5 This X is the bit-flip matrix defined in step 2 of Algorithm A, not the set over which the concept
class is defined.
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Then B = A†A is a matrix whose rows and columns are both indexed by concepts, with
elements

Bcc′ =
1

N

∑

x∈X

{

1 if c(x) = c′(x);
λ if c(x) 6= c′(x).

Thus NBcc′ =
(

N−dist(c, c′)
)

+λ dist(c, c′). Since the algorithm succeeds with probability
1, we must have Bcc′ = 0 for distinct concepts c 6= c′. In this case

d = dist(c, c′) =
N

1 − λ
≥ N

2
,

where the inequality follows from λ ≥ −1.

Now suppose that M = N > 2 is even. Note that the the concepts of C form a code
of distance d. Hence if d > N/2, then the Plotkin bound [17] implies that

M ≤ 2

⌊

d

2d−N

⌋

.

Since N is even, 2d − N ≥ 2, and it follows that M < N unless d = N , in which case
M ≤ 2. Thus we must have d = N/2 so the columns of L are orthogonal. That is, if
M = N > 2 is even, the quantum learning matrix is a Hadamard matrix.

We now use Lemma 4.1 to prove the general result:

THEOREM 4.2. Let n > 1 be odd. Suppose that En = {ga | a ∈ Z
n
2}, where the functions

ga : Z
n
2 → Z2 have the property that ga(x) depends only on the Hamming distance

dist(a, x). If |En| = 2n, then the learning problem defined by En cannot be solved with
probability 1 using a single equal superposition quantum query.

Note that if |En| 6= 2n, then a is not determined by ga. Thus, in general, when n is
odd, the bitstring a cannot be learned with probability 1 in a single quantum query from
any binary-valued function of the Hamming distance.

Proof. Since ga(x) depends only on the Hamming distance dist(a, x), there exists a function
h : {0, . . . , n} → {0, 1} such that ga(x) = h

(

dist(a, x)
)

.

Suppose that the learning problem defined by En can be solved with probability 1
using a single quantum query. Then by Lemma 4.1, the quantum learning matrix L, with
elements Lxa = (−1)ga(x), is a Hadamard matrix. Consider the inner product of the two
rows of L corresponding to the queries y = 0n and z = 120n−2. Since L is a Hadamard
matrix,

∑

a∈Zn

2

(−1)ga(y)(−1)ga(z) = 0.

In half of the terms of this sum, those for which the bits a0 and a1 differ, dist(a, y) =
dist(a, z). Then ga(y) = ga(z), and hence each of these terms contributes +1 to the sum.
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In the other half of the terms, those for which a0 = a1, each term must contribute −1 to
the sum, so ga(y) ≡ ga(z) + 1 (mod 2). But a0 = a1 implies dist(a, y) = dist(a, z) ± 2. It
follows that for any d ∈ {0, . . . , n − 1}, h(d) 6= h(d + 2). Hence for some s ∈ {0, 1, 2, 3},
h(d) = b1(d+ s) for all d ∈ {0, . . . , n}. Thus under the assumption that the concept class
can be learned with probability 1 from a single quantum query, we have shown that h is a
translate of b1.

It remains to show that if n is odd, taking h to be a translate of b1 leads to a matrix
L that is not a Hadamard matrix. One easily sees that for such a function h, there is a
sign ǫ = ±1 such that

(−1)h(n−d) = ǫ(−1)h(d)

for all d. It follows that any two rows of L corresponding to complementary values of x
are equal up to sign. Hence L is not a Hadamard matrix.

When n ≡ 3 (mod 4), the concept class Cn we introduced in the previous section
satisfies the hypotheses of Theorem 4.2, so it cannot be learned with probability 1 from a
single quantum query. When n ≡ 1 (mod 4), Lemma 3.1 tells us that the concept class has
only 2n−1 concepts so Theorem 4.2 does not apply to learning the concept classe Cn in this
case. We already know in this case that a cannot be identified with probability greater
than 1/2 with any number of queries, since fa = fā. Using Algorithm A (with appropriate
minor modifications), however, a single query determines a up to complementation, so the
concept class Cn can be learned with a single quantum query.

Notice that we did not use the fact that n is odd to reach the conclusion that h is
a translate of b1. This means that for even n, the Hamming distance concept class Cn is
essentially the only one that can be learned with probability 1 using a single query. More
precisely, we have:

COROLLARY 4.3. When n is even, b1 (and translates) are the only functions of Hamming
distance that yield a concept class learnable with probability 1 using a single quantum
query.

5. The permutation model

The results of the previous section demonstrate that an n-bit string a cannot be
learned with probability 1 using a single quantum query to an (n, 2)-Hamming distance
oracle, when n is odd. A natural question, then, is:

What is the largest probability with which a can be learned using a single quantum
query to an (n, 2)-Hamming distance oracle?

Furthermore, although previous work has shown that a can be learned with probability 1
from an (n, 4)-Hamming distance oracle [1], neither that work nor our results to this point
address the potential for learning with a 3-dimensional response register. So there is a
second natural question:

9
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What is the largest probability with which a can be learned using a single quantum
query to an (n, 3)-Hamming distance oracle?

Before answering these questions, we reconsider the formulation of oracle algorithms.

To allow comparison with the classical query complexity of oracle (learning) problems,
the action of the oracle in a quantum algorithm must be the linear extension of a classical
reversible operation. In Deutsch’s [18] and Deutsch and Jozsa’s [19] original quantum
algorithms for oracle problems, the oracle acts on (C2)⊗n ⊗ C

2 by

O(c)|x, b〉 = |x, b+ c(x)〉, (5.1)

where the sum is computed modulo 2, but the second register is initialized to |0〉, so the
action has the effect of simply writing the function value computed by the oracle into that
register. Similarly, in quantum algorithms for hidden subgroup problems [20] the oracle
computes a function that is constant on cosets of the hidden subgroup, and takes distinct
values on distinct cosets, so it acts on C

N ⊗ C
r, where N is the size of the group and r is

the number of distinct cosets, by (5.1), where the sum is computed modulo r. Again the
second register is initialized to |0〉 so this also has the effect of merely writing the function
value into that register.

Cleve, et al.6 noticed that the success probability of Deutsch’s original algorithm
could be improved to 1 by initializing the response register in the state |−〉, thereby taking
advantage of the action (5.1) when b = 1 as well as when b = 0, to “kick back” a phase
of (−1)c(x) [21]. Algorithm A does the same thing. This application, as opposed to the
application on the response register initialized to |0〉, emphasizes that O(c) acts as a map
on {0, 1}—the (labels of the) computational basis vectors of the C

2 response register—and
is a classical reversible operation for each of the possible values of c(x): 0 acts as the
identity and 1 acts to exchange 0 and 1. That is, the oracle response, both classically and
quantum mechanically, can be thought of as an element of S2, the permutations of a two
element set—it is either the identity, (1), or the other element of S2, the transposition (12)
(using cycle notation [22] for permutations of the elements of R, which we label {1, . . . , r}).
From this point of view, the action of an (n, 2)-Hamming distance oracle depends on a map
{0, . . . , n} → S2: Simply adding the Hamming distance into the response register would be
the map d 7→ (12)d, while the Algorithm A oracle action comes from the map d 7→ (12)b1(d).

But this implies a novel conceptualization of the action of an oracle when r > 2, as
it can be for (n, r)-Hamming distance oracles, namely that the action should depend on
a map σ : {0, . . . , n} → Sr which takes each function value computed by the oracle and
associates to it a permutation of a response set R with |R| = r. In a quantum algorithm,
R is identified with the computational basis of the tensor factor used as the response
register. The map σ can be more complicated than d 7→ (12 . . . r)d, i.e., addition of the
Hamming distance modulo r. This simple action can be characterized an abelian oracle
since the range of σ is contained in a cyclic subgroup of Sr. It allows a to be identified

6 And Tapp, according to a note in [21], and most likely others as well.
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with probability 1 when r = 4 [1], but in other cases there is no reason to think that it
is the optimal action. In general we should consider non-abelian oracles, ones for which
the image of σ contains noncommuting permutations of R. More precisely, we define the
action of an oracle on (C2)⊗n ⊗ C

r by

Oσ(a)|x, b〉 = |x, σdist(a,x)(b)〉, (5.2)

and let

pn(r) = max
σ:{0,...,n}→Sr

ψ∈C
r, U∈U(2nr)

2n−1
∑

a=0

r−1
∑

b=0

∣

∣

∣
〈a, b|UOσ(a)|η0〉 ⊗ ψ

∣

∣

∣

2

. (5.3)

Using this notation, Hunziker and Meyer’s result [1] shows that pn(r) = 1 for r ≥ 4,
Theorem 3.2 shows that p2j(r) = 1 for r ≥ 2, and Lemma 3.1 and Theorem 4.2 show that
p2j−1(2) < 1, for j any natural number. Furthermore, the two questions above can be
phrased as: What are p2j−1(2) and p2j−1(3), respectively?

6. Numerical optimization results

We are considering learning algorithms that send a single equal superposition query
|η0〉 ⊗ ψ to the oracle. If the states {O(c)|η0〉 ⊗ ψ | c ∈ C} are linearly independent,
then the optimal measurement to distinguish them, i.e., to identify c, is the square root
measurement, as Sasaki, et al. noted [23] using early results in quantum state discrimination
[16, Appendix A].7 Thus we have the following:

PROPOSITION 6.1. Let C be a Y -valued concept class of size M over a set X of size N . Fix
a response set R and an assignment σ of a permutation of R to each y ∈ Y . Also fix the
initial state ψ of the response register C

R. Let B be the Nr by M matrix with columns
indexed by the concepts c ∈ C, and with column c the state O(c)|η0〉⊗ψ. Suppose that the
columns of B are linearly independent, and that the diagonals of G = B†B are constant.
Let

√
G denote the positive semi-definite square root of G. Then the optimal single-query

quantum algorithm using the equal superposition query |η0〉⊗ψ succeeds with probability
diag(

√
G).

This proposition justifies the main step in the following numerical method.

Method B.

1. Input n and r.
2. Repeat Steps 3 and 4 below for all possible assignments σ : {0, . . . , n} → Sr.

3. For ψ ∈ C
r a unit vector, Proposition 6.1 allows us to calculate the maximal

success probability M(ψ) of a single-query quantum algorithm using the query
|η0〉 ⊗ ψ.

4. Numerically maximize M(ψ) over all unit vectors ψ ∈ C
r.

Using this method we obtain the following numerical results:

7 The introduction of this approach into the context of concept learning may be found in [10].
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First, let n = 3.

For r = 2, we find p3(2) ≈ 0.800. This is achieved using the permutations
σ0 = σ2 = σ3 = (1) and σ1 = (12). It can also be achieved using the permutations
σ0 = σ1 = σ2 = (1) and σ3 = (12).

When r = 3, this improves to p3(3) ≈ 0.974. Here a best permutation assignment
is σ0 = (1), σ1 = (12), σ2 = (132), and σ3 = (123). (There are several other
assignments of permutations that yield the same success probability.)

Second, let n = 5.

When r = 2, we find p5(2) ≈ 0.721. This is achieved using the permutations
σ0 = σ3 = σ4 = σ5 = (1) and σ1 = σ2 = (12).

When r = 3, this improves to p5(3) ≈ 0.955. Here the best permutation assign-
ment is σ0 = (1), σ1 = (123), σ2 = (132), σ3 = (12), σ4 = (1), and σ5 = (123).
The optimum initialization for the response register is approximately

|1〉 − 0.1065i|2〉 + 1.1064i|3〉,
normalized to have unit length.

Note that Proposition 6.1 requires the columns of the matrix B to be linearly indepen-
dent. In cases that the the columns of B are are linearly dependent, Proposition 6.1 does
not tell us what to do, and Method B may not succeed in finding the optimal solution. In
our problem it turns out that certain assignments of permutations lead to matrices B with
linearly dependent columns. One suspects that these assignments are not as good as the
assignments for which B has full rank, but this is not guaranteed by Proposition 6.1. In
particular, when the rank of B is low, it is generally true that it is impossible to distinguish
these states with high probability:8

LEMMA 6.2. Suppose ψi, i ∈ {1, . . . , n} are pure states contained in a k-dimensional
subspace W . Then any n-valued measurement for identifying i succeeds with probability
at most k/n.

Proof. Let ρi be the density matrix corresponding to ψi. Let ΠW denote projection onto
W . Then ρi ≤ ΠW for all i. Hence, if {Xi} is any measurement, we can bound the success
probability of this measurement as follows:

1

n

n
∑

i=1

Tr(Xiρi) ≤
1

n

n
∑

i=1

Tr(XiΠw) =
1

n
Tr(ΠW ) =

k

n
.

Lemma 6.2 suffices to guarantee that cases in which B has linearly dependent columns
yield success probabilities that are smaller than the ones presented in the list above. When

8 This is a broadly applicable result that may well exist in the literature, but we have been unable to
find it.
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n = 3 (for both r = 2 and r = 3), we find that a given assignment of permutations either
leads to a matrix B that is full rank (rank 8) for a generic choice of ψ, or has rank at
most 5. In this latter case, Lemma 6.2 implies that the success probability is at most 5/8,
which is smaller that the probabilities shown above in the full rank case. When n = 5,
B has either full rank (rank 32), or rank at most 22, which implies a success probability
of at most 22/32 in the linearly dependent case. Again, this is smaller than the numbers
reported above for the linearly independent case.9

7. Conclusions

We have introduced a novel generalization for the action of oracles in quantum (and
reversible classical) algorithms: the permutation model. For n-bit Hamming distance
oracles the action is specified by a choice of map σ : {0, . . . , n} → Sr when the response
register has dimension r. The standard additive action of the oracle is described by the
map σ(d) = (1 . . . r)d. Algorithm A in Theorem 3.2 demonstrates the striking improvement
possible by an oracle that acts by some other map of Hamming distances to permutations:
for r = 2 the success probability of learning from a single query to an oracle that acts
by the additive action is 1/2n−1, while for any even n it is 1 for an oracle that acts by
σ(d) = (12)b1(d), and for n = 3 and n = 5 it is approximately 0.800 and 0.721, respectively,
using the actions listed in §6.

Allowing a larger response register, namely r = 3, improves the latter two probabil-
ities to approximately 0.974 and 0.955, respectively. In general, pn(r) is a nondecreasing
function of r. One might guess that if there is enough room in the response register to
encode each possible function value y ∈ Y as a distinct permutation of {1, . . . , r}, then
adding additional dimensions to the response register would not improve the success prob-
ability. This guess would mean that pn(r) would be constant for r! ≥ n + 1. This is not
the case, however, as the n = 3 results show: p3(3) < 1 while p3(4) = 1.

As this counterexample indicates, the permutation model raises a host of new ques-
tions. We close by listing a few more: Is there some dimension for the response register
above which pn(r) is constant? Perhaps n + 1? What happens to p2j−1(r) as j → ∞ for
fixed r? Does it decrease to 1/2? Or to something larger? What constitutes a good, or
optimal, choice of permutations and initial response register state?
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