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Abstract: A simplicial complex is d-collapsible if it can be reduced to an empty complex
by repeatedly removing (collapsing) a face of dimension at most d−1 that is contained in a
unique maximal face. We prove that the algorithmic question whether a given simplicial
complex is d-collapsible is NP-complete for d ≥ 4 and polynomial time solvable for d ≤ 2.

As an intermediate step, we prove that d-collapsibility can be recognized by the greedy
algorithm for d ≤ 2, but the greedy algorithm does not work for d ≥ 3.

A simplicial complex is d-representable if it is the nerve of a collection of convex sets in
Rd . The main motivation for studying d-collapsible complexes is that every d-representable
complex is d-collapsible. We also observe that known results imply that d-representability
is NP-hard to decide for d ≥ 2.

1 Introduction

Our task is to determine the computational complexity of recognition of d-collapsible simplicial com-
plexes. These complexes were introduced by Wegner [29] and studying them is motivated by Helly-type
theorems, which we will discuss later. All the simplicial complexes1 throughout the article are assumed
to be finite.

1.1 Main results

d-collapsible complexes. Informally, a simplicial complex is d-collapsible if it can be vanished by
removing faces of dimension at most d−1 which are contained in unique maximal faces. A more detailed
∗supported by project 1M0545 of The Ministry of Education of the Czech Republic. Partially supported by project GAUK

49209.
1We assume that the reader is familiar with simplicial complexes; introductory chapters of books like [23, 9, 26] should

provide a sufficient background. Unless stated otherwise, we work with abstract simplicial complexes, i.e., set systems K such
that if A ∈ K and B⊆ A then B ∈ K.
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motivation for this definition is explained after introducing d-representable complexes. Next we introduce
some notation and state a precise definition.

A face σ of a simplicial complex K is collapsible if there is a unique maximal face of K containing σ

(by “maximal face” we always mean “inclusionwise-maximal face”). Unless stated otherwise, we denote
this maximal face by τ(σ). (We allow τ(σ) = σ .) Moreover, if dimσ ≤ d−1, then σ is d-collapsible.
By [σ ,τ(σ)] we denote the set

{η ∈ K | σ ⊆ η ⊆ τ(σ)}

of faces of K that contain σ .
We assume that σ is d-collapsible and we say that the complex K′ = K\ [σ ,τ(σ)] arises from K by

an elementary d-collapse. In symbols,
K→ K′.

If we want to stress σ we write
K′ = Kσ .

A complex K d-collapses to a complex L, in symbols K� L, if there is a sequence of elementary
d-collapses

K→ K2→ K3→ ··· → L.

This sequence is called a d-collapsing (of K to L). Finally, a complex K is d-collapsible if K� /0. An
example of 2-collapsible complex is in Figure 1.

The computational complexity of d-collapsibility. How hard is it to decide whether a given simplicial
complex is d-collapsible? We consider the computational complexity of this question (the size of an input
is the number of faces of the complex in the question), regarding d as a fixed integer; we refer to it as
d-COLLAPSIBILITY.

According to Lekkerkerker and Boland [20] (see also [29]), 1-collapsible complexes are exactly
clique complexes over chordal graphs. (A graph is chordal if it does not contain an induced cycle
of size 4 or more.) 1-COLLAPSIBILITY is therefore polynomial time solvable. (Polynomiality of
1-COLLAPSIBILITY also follows from Theorem 1.2(i).)

The main result of this paper is the following:

Theorem 1.1. (i) 2-COLLAPSIBILITY is polynomial time solvable.

(ii) d-COLLAPSIBILITY is NP-complete for d ≥ 4.

Suppose that d is fixed. A good face is a d-collapsible face of K such that Kσ is d-collapsible; a bad
face is a d-collapsible face of K such that Kσ is not d-collapsible.

Now suppose that K is a d-collapsible complex. It is not immediately clear whether we can choose
elementary d-collapses greedily in any order to d-collapse K, or whether there is a “bad sequence”
of d-collapses such that the resulting complex is no longer d-collapsible. Therefore, we consider the
following question: For which d there is a d-collapsible complex K such that it contains a bad face? The
answer is:

Theorem 1.2. (i) Let d ≤ 2. Then every d-collapsible face of a d-collapsible complex is good.
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Figure 1: An example of 2-collapsing.

(ii) d-COLLAPSIBILITY is NP-complete for d ≥ 4.

Suppose that d is fixed. A good face is a d-collapsible face of K such that
Kσ is d-collapsible; a bad face is a d-collapsible face of K such that Kσ is not
d-collapsible.

Now suppose that K is a d-collapsible complex. It is not immediately clear
whether we can choose elementary d-collapses greedily in any order to d-collapse
K, or whether there is a “bad sequence” of d-collapses such that the resulting
complex is no longer d-collapsible. Therefore, we consider the following question:
For which d there is a d-collapsible complex K such that it contains a bad face?
The answer is:

Theorem 1.2. (i) Let d ≤ 2. Then every d-collapsible face of a d-collapsible
complex is good.

(ii) Let d ≥ 3. Then there exists a d-collapsible complex containing a bad d-
collapsible face.

Theorem 1.1(i) is a straightforward consequence of Theorem 1.2(i). Indeed, if
we want to test whether a given complex is 2-collapsible, it is sufficient to greedily
collapse d-collapsible faces. Theorem 1.2(i) implies that we finish with an empty
complex if and only if the original complex is 2-collapsible.

Our construction for Theorem 1.2(ii) is an intermediate step to proving The-
orem 1.1(ii).
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Figure 1: An example of 2-collapsing.

(ii) Let d ≥ 3. Then there exists a d-collapsible complex containing a bad d-collapsible face.

Theorem 1.1(i) is a straightforward consequence of Theorem 1.2(i). Indeed, if we want to test whether
a given complex is 2-collapsible, it is sufficient to greedily collapse d-collapsible faces. Theorem 1.2(i)
implies that we finish with an empty complex if and only if the original complex is 2-collapsible.

Our construction for Theorem 1.2(ii) is an intermediate step to proving Theorem 1.1(ii).

1.2 Motivation and background

d-representable complexes. Helly’s theorem [10] asserts that if C1,C2, . . . ,Cn are convex sets in Rd ,
n≥ d +1, and every d +1 of them have a common point, then C1∩C2∩·· ·∩Cn 6= /0. This theorem (and
several other theorems in discrete geometry) deals with intersection patterns of convex sets in Rd . It can
be restated using the notion of d-representable complexes, which “record” the intersection patterns.

The nerve of a family S = {S1,S2, . . . ,Sn} of sets is the simplicial complex with vertex set [n] =
{1,2, . . . ,n} and with the set σ ⊆ [n] forming a face if

⋂
i∈σ Si 6= /0. A simplicial complex is d-representable

if it is isomorphic to the nerve of a family of convex sets in Rd .
In this language, Helly theorem states that if a d-representable complex (with the vertex set V )

contains all faces of dimension at most d, then it is already a full simplex 2V . Beside Helly’s theorem we
also mention several other known results that can be formulated using d-representability. They include
the fractional Helly theorem of Katchalski and Liu [14], the colorful Helly theorem of Lovász ([21]; see
also [5]), the (p,q)-theorem of Alon and Kleitman [2], and the Helly type result of Amenta [3].

d-Leray complexes. Another related notion is a d-Leray simplicial complex, where K is d-Leray if
every induced subcomplex of K (i.e. a subcomplex of the form K[X ] = {σ ∩X | σ ∈ K} for some subset
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X of the vertex set of K) has zero homology (over Q) in dimensions d and larger. We will mention
d-Leray complexes only briefly, thus the article should be accessible also for the reader not familiar with
homology.

Relations among the preceding notions. Wegner [29] proved that d-representable complexes are
d-collapsible and also that d-collapsible complexes are d-Leray.

Regarding the first inclusion, suppose that we are given convex sets in Rd representing a d-representable
complex. Sliding a generic hyperplane (say from infinity to minus infinity) and cutting off the pieces on
the positive side of the hyperplane yields a d-collapsing of the complex. (Several properties have to be
checked, of course.) This is the main motivation for the definition of d-collapsibility.

The second inclusion is more-less trivial (for a reader familiar with homology) since d-collapsing
does not affect homology of dimension d and larger.

Many results on d-representable complexes can be generalized in terms of d-collapsible complexes,
the results mentioned here even for d-Leray complexes.

For example, a topological generalization of Helly’s theorem follows from Helly’s own work [11], a
generalization of the fractional Helly theorem and (p,q)-theorem was done in [1], and a generalization of
the colorful Helly theorem and Amenta’s theorem was proved by Kalai and Meshulam [12], [13].

Dimensional gaps between collapsibility and representability were studied by Matoušek and the
author [25, 28]; an interesting variation on d-collapsibility was used by Matoušek in order to show that it
is not easy to remove degeneracy in LP-type problems [24].

Related complexity results. Similarly as d-COLLAPSIBILITY, we can also consider the computational
complexity of d-REPRESENTABILITY and d-LERAY COMPLEX.

By a modification of a result of Kratochvı́l and Matoušek on string graphs ([18]; see also [16]), one has
that 2-REPRESENTABILITY is NP-hard. Moreover, this result also implies that d-REPRESENTABILITY
is NP-hard for d ≥ 2. Details are given in Section 6. It is not known to the author whether d-
REPRESENTABILITY belongs to NP.

Finally, d-LERAY COMPLEX is polynomial time solvable, since an equivalent characterization of
d-Leray complexes is that it is sufficient to test whether the homology (of dimension greater or equal to d)
of links2 of faces of the complex in the question vanishes. These tests can be performed in a polynomial
time; see [26] (note that the k-th homology of a complex of dimension less than k is always zero; note
also that the homology is over Q, which simplifies the situation—computing homology for this case is
indeed only a linear algebra).

Among the above mentioned notions, d-REPRESENTABILITY is of the biggest interest since it
straightly affects intersection patterns of convex sets. However, NP-hardness of this problem raises the
question, whether it can be replaced with d-COLLAPSIBILITY or d-LERAY COMPLEX. As we have
already mentioned, d-LERAY COMPLEX is polynomial time solvable thus one could be satisfied with
replacing d-REPRESENTABILITY with d-LERAY COMPLEX. However, d-COLLAPSIBILITY is
closer to d-REPRESENTABILITY.

One of the important differences regards Wegner’s conjecture. An open set in Rd homeomorphic to
an open ball is a d-cell. A good cover in Rd is a collection of d-cells such that an intersection of any
subcollection is again a d-cell or empty. Wegner conjectured that nerve of a finite good cover in Rd is

2A link of a face σ in a complex K is the complex {η ∈ K | η ∪σ ∈ K,η ∩σ = /0}.
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d-collapsible. A recent result of the author disproves this conjecture [27]. However, the nerve of a finite
good cover in Rd is always d-Leray due to the nerve theorem; see, e.g, [6, 7]. We get that the notion of
d-Leray complexes cannot distinguish the nerves of collections of convex sets and good covers; however,
d-representability is stronger in this respect. That is also why we want to clarify the complexity status of
d-COLLAPSIBILITY.

A particular example of computational interest. A collection of convex sets in Rd has a (p,q)-property
with p≥ q≥ d+1 if among every p sets of the collection there is a subcollection of q sets with a nonempty
intersection. The above mentioned (p,q)-theorem of Alon and Kleitman states that for all integers p,q,d
with p ≥ q ≥ d +1 there is an integer c such that for every finite collection of convex sets in Rd with
(p,q)-property there are c points in Rd such that every convex set of the collection contains at least one
of the selected points. Let c′ = c′(p,q,d) be the minimum possible value of c for which the conclusion of
the (p,q)-theorem holds. A significant effort was devoted to estimating c′. The first unsolved case regards
estimating c′(4,3,2). The best bounds3 are due to Kleitman, Gyárfás and Tóth [15]: 3≤ c′(4,3,2)≤ 13.
It seems that the actual value of c′(4,3,2) is rather closer to the lower bound in this case, and thus it
would be interesting to improve the lower bound even by one.4

Here 2-collapsibility could come into the play. When looking for a small example one could try to
generate all 2-collapsible complexes and check the other properties.

Collapsibility in Whitehead’s sense. Beside d-collapsibility, collapsibility in Whitehead’s sense is
much better known (called simply collapsibility). In the case of collapsibility, we allow only to collapse a
face σ that is a proper subface of the unique maximal face containing σ . On the other hand, there is no
restriction on dimension of σ .

Let us mention that one of the important differences between d-collapsibility and collapsibility is that
every finite simplicial complex is d-collapsible for d large enough; on the other hand not an every finite
simplicial complex is collapsible.

Malgouyres and Francés [22] proved that it is NP-complete to decide, whether a given 3-dimensional
complex collapses to a given 1-dimensional complex. However, their construction does not apply to
d-collapsibility. A key ingredient of their construction is that collapsibility distinguishes a Bing’s house
with thin walls and a Bing’s house with a thick wall. However, they are not distinguishable from the point
of view of d-collapsibility. They are both 3-collapsible, but none of them is 2-collapsible.

Technical issues. Throughout this paper we will use several technical lemmas about d-collapsibility.
Since I think that the main ideas of the paper can be followed even without these lemmas I decided to put
them separately to Section 5. The reader is encouraged to skip them for the first reading and look at them
later for full details.

The paper contains many symbols. For the reader’s convenience we add a list of often used symbols.
It is situated at the end of the paper—just above the bibliography.

2 2-collapsibility

Here we prove Theorem 1.2(i).
3Known to the author.
4Kleitman, Gyárfás and Tóth offer $30 for such an improvement.
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The case d = 1 follows from the fact that d-collapsible complexes coincide with d-Leray ones
([20, 29]). Indeed, let K be a 1-collapsible complex and let σ be its 1-collapsible face. We have that K is
1-Leray, which implies that Kσ is 1-Leray (1-collapsing does not affect homology of dimensions 1 and
more). This implies that Kσ is 1-collapsible, i.e., σ is good. In fact, the case d = 1 can be also solved by
a similar (simpler) discussion as the following case d = 2.

It remains to consider the case d = 2. Suppose that K is a 2-collapsible complex which, for contradic-
tion, contains a bad 2-collapsible face σB ∈ K. On the other hand, it also contains a good face σG since it
is 2-collapsible. Moreover, we can, without loss of generality, suppose that K is the smallest complex
(according to the number of faces) with these properties.

Claim 2.1. Let σ be a good face of K and let σ ′ be a 2-collapsible face of Kσ . Then σ ′ is a good face of
Kσ .

Proof. The complex Kσ is 2-collapsible since σ is a good face of K. If σ ′ were a bad face of Kσ , then
Kσ would be a smaller counterexample to Theorem 1.2(i) contradicting the choice of K.

Recall that τ(σ) denotes the unique maximal superface of a collapsible face σ . Two collapsible faces
σ and σ ′ are independent if τ(σ) 6= τ(σ ′); otherwise, they are dependent. The symbol St(σ ,K) denotes
the (open) star of a face σ in K, which consists of all superfaces of σ in K (including σ ). We remark that
St(σ ,K) = [σ ,τ(σ)] in case that σ is collapsible.

Claim 2.2. Let σ ,σ ′ ∈ K be independent 2-collapsible faces. Then σ is a 2-collapsible face of Kσ ′ , σ ′

is a 2-collapsible face of Kσ , and (Kσ )σ ′ = (Kσ ′)σ .

Proof. Since τ(σ) 6= τ(σ ′), we have σ 6⊆ τ(σ ′). Thus, St(σ ,K) = St(σ ,Kσ ′), implying that τ(σ) is also
a unique maximal face containing σ when considered in Kσ ′ . It means that σ is a collapsible face of Kσ ′ .
Symmetrically, σ ′ is a collapsible face of Kσ . Finally,

(Kσ )σ ′ = (Kσ ′)σ = K\
{

η ∈ K
∣∣ σ ⊆ η or σ

′ ⊆ η
}
.

Claim 2.3. Any two 2-collapsible faces of K are dependent.

Proof. For contradiction, let σ , σ ′ be two independent 2-collapsible faces in K. First, suppose that one
of them is good, say σ , and the second one, i.e., σ ′, is bad. The face σ ′ is a collapsible face of Kσ

by Claim 2.2. Thus, (Kσ )σ ′ is 2-collapsible by Claim 2.1. But (Kσ )σ ′ = (Kσ ′)σ by Claim 2.2, which
contradicts the assumption that σ ′ is a bad face.

Now suppose that σ and σ ′ are good faces. Then at least one of them is independent of σB, which
yields the contradiction as in the previous case. Similarly, if both of σ and σ ′ are bad faces, then at least
one of them is independent of σG.

Due to Claim 2.3 there exists a universal τ ∈ K such that τ = τ(σ) for every 2-collapsible σ ∈ K. Let
us remark that K 6= 2τ since σB is a bad face.

The following claim represents a key difference among 2-collapsibility and d-collapsibility for d ≥ 3.
It wouldn’t be valid in case of d-collapsibility.
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Figure 2: The simplices τ , τk and η.

Due to Claim 2.3 there exists a universal τ ∈ K such that τ = τ(σ) for every
2-collapsible σ ∈ K. Let us remark that K "= 2τ since σB is a bad face.

The following claim represents a key difference among 2-collapsibility and
d-collapsibility for d ≥ 3. It wouldn’t be valid in case of d-collapsibility.

Claim 2.4. Let σ be a good face and let σ′ be a bad face. Then σ ∩ σ′ = ∅.

Proof. It is easy to prove the claim in the case that either σ or σ′ is a 0-face. Let
us therefore consider the case that both σ and σ′ are 1-faces. For contradiction
suppose that σ ∩ σ′ "= ∅, i.e., σ = {u, v}, σ′ = {v, w} for some mutually different
u, v, w ∈ τ . Then τ \ {u} is a unique maximal face in Kσ that contains σ′, so
(Kσ)σ′ exists. Similarly, (Kσ′)σ exists and the same argument as in the proof of
Claim 2.2 yields (Kσ)σ′ = (Kσ′)σ. Similarly as in the proof of Claim 2.3, (Kσ)σ′

is 2-collapsible (due to Claim 2.1), but it contradicts the fact that σ′ is a bad
face.

The complex K is 2-collapsible. Let K = K1 → K2 → · · · → Km = ∅ be
a 2-collapsing of K, where Ki+1 = Ki \ [σi, τi]. Clearly, τ1 = τ . Let k be the
minimal integer such that τk "⊆ τ . Such k exists since K "= 2τ . Moreover, we can
assume that all the faces σ1, . . . ,σk are edges. This assumption is possible since
collapsing a vertex can be substituted by collapsing the edges connected to the
vertex and then removing the isolated vertex at the very end of the process. See
Lemma 5.2 for details.

Claim 2.5. The face σk is a subset of τ , and it is not a 2-collapsible face of K.

Proof. Suppose for contradiction that σk "⊆ τ . Then St(σk, K) = St(σk, Ki) since
only subsets of τ are removed from K during the first i 2-collapses. It implies
that σk is a 2-collapsible face of K contradicting the definition of τ .

It is not a 2-collapsible face of K since it is contained in τ and τk "⊆ τ .

Claim 2.6. The faces σ1,σ2, . . . ,σk−1 are good faces of K.

8

Figure 2: The simplices τ , τk and η .

Claim 2.4. Let σ be a good face and let σ ′ be a bad face. Then σ ∩σ ′ = /0.

Proof. It is easy to prove the claim in the case that either σ or σ ′ is a 0-face. Let us therefore consider
the case that both σ and σ ′ are 1-faces. For contradiction suppose that σ ∩σ ′ 6= /0, i.e., σ = {u,v},
σ ′ = {v,w} for some mutually different u,v,w ∈ τ . Then τ \ {u} is a unique maximal face in Kσ that
contains σ ′, so (Kσ )σ ′ exists. Similarly, (Kσ ′)σ exists and the same argument as in the proof of Claim 2.2
yields (Kσ )σ ′ = (Kσ ′)σ . Similarly as in the proof of Claim 2.3, (Kσ )σ ′ is 2-collapsible (due to Claim 2.1),
but it contradicts the fact that σ ′ is a bad face.

The complex K is 2-collapsible. Let K= K1→ K2→ ··· → Km = /0 be a 2-collapsing of K, where
Ki+1 = Ki \ [σi,τi]. Clearly, τ1 = τ . Let k be the minimal integer such that τk 6⊆ τ . Such k exists since
K 6= 2τ . Moreover, we can assume that all the faces σ1, . . . ,σk are edges. This assumption is possible
since collapsing a vertex can be substituted by collapsing the edges connected to the vertex and then
removing the isolated vertex at the very end of the process. See Lemma 5.2 for details.

Claim 2.5. The face σk is a subset of τ , and it is not a 2-collapsible face of K.

Proof. Suppose for contradiction that σk 6⊆ τ . Then St(σk,K) = St(σk,Ki) since only subsets of τ are
removed from K during the first i 2-collapses. It implies that σk is a 2-collapsible face of K contradicting
the definition of τ .

It is not a 2-collapsible face of K since it is contained in τ and τk 6⊆ τ .

Claim 2.6. The faces σ1,σ2, . . . ,σk−1 are good faces of K.

Proof. First we observe that each σi is 2-collapsible face of K for 0 ≤ i ≤ k− 1. If σi was not 2-
collapsible then there is a face ϑ ∈ K containing σi such that ϑ 6⊆ τ . Then ϑ ∈ Ki due to minimality of k.
Consequently τi cannot be the unique maximal face of Ki containing σi since ϑ contains σi as well.

In order to show that the faces are good we proceed by induction. The face σ1 is a good face of K
since there is a d-collapsing of K starting with σ1.

Now we assume that σ1, . . . ,σi−1 are good faces of K for i ≤ k−1. If there is an index j < i such
that σ j ∩σi 6= /0 then σi is good by Claim 2.4. If this is not the case then we set σ1 = {x,y}. The faces
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σi∪{x} and σi∪{y} belong to Ki; however, σ1∪σi does not belong to Ki since σ1 was collapsed. Thus
σi does not belong to a unique maximal face.

Let η = σk∪σB. See Figure 2. Claim 2.5 implies that η ⊆ τ . By Claim 2.4 (and the fact that σk is
not a good face—a consequence of Claim 2.5) the face η does not contain a good face. Thus, η ∈ Kk by
Claim 2.6. In particular η ⊆ τk since τk is a unique maximal face of Kk containing σk, hence σB ⊆ τk.
On the other hand, τ is a unique maximal face of K⊇ Kk containing σB since σB is a 2-collapsible face,
which implies τk ⊆ τ . It is a contradiction that τk 6⊆ τ .

3 d-collapsible complex with a bad d-collapse

In this section we prove Theorem 1.2(ii).
We start with describing the intuition behind the construction. Given a full complex K = 2S (the

cardinality of S is 2d), any (d−1)-face is d-collapsible. However, once we collapse one of them, say
σB, the rest (d−1)-faces will be divided into two sets, those which are collapsible in KσB (namely, Σ),
and those which are not (namely, Σ̄). For example, when d = 2, given a tetrahedron, after collapsing one
edge, among the rest five edges, four are collapsible and one is not. The idea of the construction is to
attach a suitable complex C to K in such a way that

• the faces of Σ are properly contained in faces of C (and thus they cannot be collapsed until C is
collapsed);

• there is a sequence of d-collapses of some of the faces of Σ̄ such that C can be subsequently
d-collapsed.

In summary the resulting complex is d-collapsible because of the second requirement. However, if we
start with σB, we get stuck because of the first requirement.

3.1 Bad complex

Now, for d ≥ 3, we construct a bad complex B, which is d-collapsible but it contains a bad face. A certain
important but technical step of the construction is still left out. This is to give the more detailed intuition
to the reader. Details of that step are given in the subsequent subsections.

The complex Cglued.
Suppose that σ , γ1, . . . ,γt are already known (d−1)-dimensional faces of a given complex L. These

faces are assumed to be distinct, but not necessarily disjoint. We start with the complex K= 2σ ∪2γ1 ∪
·· ·∪2γt . We attach a certain complex C to L′. The resulting complex is denoted by Cglued(σ ;γ1, . . . ,γt).
Here we leave out the details; however, the properties of Cglued are described in the forthcoming lemma
(we postpone the proof of this lemma).

Lemma 3.1. Let L, L′, and Cglued = Cglued(σ ;γ1, . . . ,γt) be the complexes from the previous paragraph.
Then we have:

(i) If σ is a maximal face of L, then L∪Cglued � L\{σ}.
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p

q1

r1

r2

ι

α1

α2

σB

λ1

λ2

Cglued (ι;α1,α2)

2S B

Figure 3: A schematic drawing of the complexes 2S and B.

A = R ∪ Cglued(ι; α1, . . . ,αt).

We show d-collapsibility of B by the following sequence of d-collapses:

B ! A ! R \ {ι} ! ∅.

The fact that B ! A is quite obvious—it is sufficient to d-collapse the liber-
ation faces. More precisely, we use Lemma 5.3 with K = B, K′ = 2S, and L′ = R.
The fact that A ! R \ {ι} follows from Lemma 3.1(i). We already observed that
R \ {ι} ! ∅ when defining R.

3.2 The complex C

Our proof relies on constructing d-dimensional d-collapsible complex C such that
its first d-collapse is unique. We call this complex a connecting gadget. Precise
properties of the connecting gadget are stated in Proposition 3.2.

Before stating the proposition we define the notion of distant faces. Suppose
that K is a simplicial complex and let u, v be two of its vertices. By dist(u, v)
we mean their distance in graph-theoretical sense in the 1-skeleton of K. We say
that two faces ω, η ∈ K are distant if dist(u, v) ≥ 3 for every u ∈ ω, v ∈ η.

Proposition 3.2. Let d ≥ 2 and t ≥ 0 be integers. There is a d-dimensional
complex C = C(ρ; ζ1, . . . , ζt) with the following properties:

(i) It contains (d−1)-dimensional faces ρ, ζ1, . . . , ζt such that each two of them
are distant faces.

11

Figure 3: A schematic drawing of the complexes 2S and B.

(ii) The only d-collapsible face of Cglued is the face σ .

(iii) Suppose that d is a constant. Then the number of faces of Cglued is O(t).

Let S = {p,q1, . . . ,qd−1,r1, . . . ,rd} be a 2d-element set. Consider the full simplex 2S. We name its
(d−1)-faces:

ι = {p,q1, . . . ,qd−1} is an initial face,
λi = {q1, . . . ,qd−1,ri} are liberation faces for i ∈ [d],

σB = {r1, . . . ,rd}, we will show that σB is a bad face.
The remaining (d−1)-faces are attaching faces; let us denote these faces by α1, . . . , αt .

We define B by
B= 2S∪Cglued(ι ;α1, . . . ,αt).

See Figure 3 for a schematic drawing.

Proof of Theorem 1.2(ii). We want to prove that B is d-collapsible, but it contains a bad d-collapsible
face.

First, we observe that σB is a bad face. By Lemma 3.1(ii) and the inspection, the only d-collapsible
faces of B are λi and σB for i ∈ [d]. After collapsing σB there is no d-collapsible face, implying that σB is
a bad face.

In order to show d-collapsibility of B we need a few other definitions. The complex R is defined by

R=
{

σ ∈ 2S | if {q1, . . . ,qd−1} ⊆ σ then σ ⊆ ι
}
.

We observe that R\{ι} is d-collapsible and also that 2S � R by collapsing all liberation faces (in any
order). In fact, the first observation is a special case of Lemma 4.1(ii) used for the NP-reduction.

An auxiliary complex A is defined in a similar way to B:
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A= R∪Cglued(ι ;α1, . . . ,αt).

We show d-collapsibility of B by the following sequence of d-collapses:

B� A� R\{ι}� /0.

The fact that B�A is quite obvious—it is sufficient to d-collapse the liberation faces. More precisely,
we use Lemma 5.3 with K=B, K′ = 2S, and L′ =R. The fact that A�R\{ι} follows from Lemma 3.1(i).
We already observed that R\{ι}� /0 when defining R.

3.2 The complex C

Our proof relies on constructing d-dimensional d-collapsible complex C such that its first d-collapse is
unique. We call this complex a connecting gadget. Precise properties of the connecting gadget are stated
in Proposition 3.2.

Before stating the proposition we define the notion of distant faces. Suppose that K is a simplicial
complex and let u, v be two of its vertices. By dist(u,v) we mean their distance in graph-theoretical sense
in the 1-skeleton of K. We say that two faces ω,η ∈ K are distant if dist(u,v)≥ 3 for every u ∈ ω,v ∈ η .

Proposition 3.2. Let d ≥ 2 and t ≥ 0 be integers. There is a d-dimensional complex C= C(ρ;ζ1, . . . ,ζt)
with the following properties:

(i) It contains (d−1)-dimensional faces ρ,ζ1, . . . ,ζt such that each two of them are distant faces.

(ii) Let C′ = C′(ρ;ζ1, . . . ,ζt) be the subcomplex of C given by C′ = 2ρ ∪ 2ζ1 ∪ ·· · ∪ 2ζt . Then C �
(C′ \{ρ}). In particular, C is d-collapsible since (C′ \{ρ}) is d-collapsible.

(iii) The only d-collapsible face of C is the face ρ .

(iv) Suppose that d is a constant. Then the number of faces of C is O(t).

3.3 The complex C(ρ)

We start our construction assuming t = 0; i.e., we construct the connecting gadget C= C(ρ).
We remark that the construction of C is in some respects similar to the construction of generalized

dunce hats. We refer to [4] for more background.

The geometric realization of C(ρ). First, we describe the geometric realization, ‖C‖, of C. Let P be the
d-dimensional crosspolytope, the convex hull

conv{e1,−e1, . . . ,ed ,−ed}

of the vectors of the standard orthonormal basis and their negatives. It has 2d facets

Fs = conv{s1e1, . . . ,sded} ,
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Fu

Fu

d = 2 d = 3

Figure 4: The space X. The arrows denote, which facets are identified.

(ii) Let C′ = C′(ρ; ζ1, . . . , ζt) be the subcomplex of C given by C′ = 2ρ∪2ζ1 ∪ · · ·∪
2ζt. Then C ! (C′ \ {ρ}). In particular, C is d-collapsible since (C′ \ {ρ})
is d-collapsible.

(iii) The only d-collapsible face of C is the face ρ.

(iv) Suppose that d is a constant. Then the number of faces of C is O(t).

3.3 The complex C(ρ)

We start our construction assuming t = 0; i.e., we construct the connecting
gadget C = C(ρ).

We remark that the construction of C is in some respects similar to the con-
struction of generalized dunce hats. We refer to [AMS93] for more background.

The geometric realization of C(ρ). First, we describe the geometric realiza-
tion, ‖C‖, of C. Let P be the d-dimensional crosspolytope, the convex hull

conv {e1,−e1, . . . , ed,−ed}

of the vectors of the standard orthonormal basis and their negatives. It has 2d

facets
Fs = conv {s1e1, . . . , sded} ,

where s = (si)d
i=1 ∈ {−1, 1}d (s for sign). We want to glue all facets together

except the facet Fu where u = (1, . . . , 1) (see Figure 4).
More precisely, let s ∈ {−1, 1}d\{u}. Every x ∈ Fs can be uniquely written as

a convex combination x = xa,s = a1s1e1 + · · ·+ adsded where a = (ai)d
i=1 ∈ [0, 1]d

and
∑d

i=1 ai = 1. For every such fixed a we glue together the points in the

set
{

xa,s

∣

∣

∣
s ∈ {−1, 1}d \ {u}

}

; by X we denote the resulting space. We will

construct C in such a way that X is a geometric realization of C.

12

Figure 4: The space X . The arrows denote, which facets are identified.

where s = (si)
d
i=1 ∈ {−1,1}d (s for sign). We want to glue all facets together except the facet Fu where

u = (1, . . . ,1) (see Figure 4).
More precisely, let s ∈ {−1,1}d \{u}. Every x ∈ Fs can be uniquely written as a convex combination

x = xa,s = a1s1e1 + · · ·+adsded where a = (ai)
d
i=1 ∈ [0,1]d and ∑

d
i=1 ai = 1. For every such fixed a we

glue together the points in the set
{

xa,s

∣∣∣ s ∈ {−1,1}d \{u}
}

; by X we denote the resulting space. We
will construct C in such a way that X is a geometric realization of C.

Triangulations of the crosspolytope. We define two auxiliary triangulations of P—they are depicted
in Figure 5. The simplicial complex J is the simplicial complex with vertex set {0,e1,−e1, . . . ,ed ,−ed}.
The set of its faces is given by the maximal faces

{0,s1e1,s2e2, . . . ,sded} where s1,s2, . . . ,sd ∈ {−1,1} .

The complex J is a triangulation of P.
Let ϑ be the face {0,e1, . . . ,ed}. The complex H is constructed by iterated stellar subdivisions starting

with J and subdividing faces of J\2ϑ (first subdividing d-dimensional faces, then (d−1)-dimensional,
etc.). Formally, H is a complex with the vertex set (J\2ϑ )∪ϑ and with faces of the form

{{σ1, . . . ,σk}∪ τ} where σ1 ) · · ·) σk ) τ;σ1, . . . ,σk ∈ J\2ϑ ;τ ⊆ ϑ ;k ∈ N0.

The construction of C. Informally, we obtain C from H by the same gluing as was used for constructing
X from P.

Formally, let ≈ be an equivalence relation on (J\2ϑ )∪ϑ given by
ei ≈ {−ei} for i ∈ [d],

σ1 ≈ σ2 for σ1,σ2 ∈ J\2ϑ ,
σ1 = {s1ek1 , . . . ,smekm}, σ2 = {s′1ek1 , . . . ,s

′
mekm}

where si,s′i ∈ {−1,1} and 1≤ k1 < · · ·< km ≤ d.
For an equivalence relation ≡ on a set X we define ≡+ to be an equivalence relation on Y ⊂ 2X

inherited from ≡; i.e., we have, for Y1,Y2 ∈ Y, Y1 ≡+ Y2 if and only if there is a bijection f : Y1→ Y2 such
that f (y)≡ y for every y ∈ Y1.
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e1−e1

e2

−e2

0 0 e1

e2

{−e1}

{−e2}

{−e1, e2}

ϑ

J\2ϑ

Figure 5: The triangulations J (left) and H (right) of P with d = 2.

Triangulations of the crosspolytope. We define two auxiliary triangulations
of P—they are depicted in Figure 5. The simplicial complex J is the simplicial
complex with vertex set {0, e1,−e1, . . . , ed,−ed}. The set of its faces is given by
the maximal faces

{0, s1e1, s2e2, . . . , sded} where s1, s2, . . . , sd ∈ {−1, 1} .

The complex J is a triangulation of P .
Let ϑ be the face {0, e1, . . . , ed}. The complex H is constructed by iterated

stellar subdivisions starting with J and subdividing faces of J\2ϑ (first subdividing
d-dimensional faces, then (d − 1)-dimensional, etc.). Formally, H is a complex
with the vertex set (J \ 2ϑ) ∪ ϑ and with faces of the form

{{σ1, . . . ,σk} ∪ τ} where σ1 ! · · · ! σk ! τ ; σ1, . . . ,σk ∈ J \ 2
ϑ; τ ⊆ ϑ; k ∈ N0.

The construction of C. Informally, we obtain C from H by the same gluing as
was used for constructing X from P .

Formally, let ≈ be an equivalence relation on (J \ 2ϑ) ∪ ϑ given by
ei ≈ {−ei} for i ∈ [d],
σ1 ≈ σ2 for σ1,σ2 ∈ J \ 2ϑ,

σ1 = {s1ek1
, . . . , smekm

}, σ2 = {s′1ek1
, . . . , s′mekm

}
where si, s′i ∈ {−1, 1} and 1 ≤ k1 < · · · < km ≤ d.

For an equivalence relation ≡ on a set X we define ≡+ to be an equivalence
relation on Y ⊂ 2X inherited from ≡; i.e., we have, for Y1, Y2 ∈ Y , Y1 ≡+ Y2 if
and only if there is a bijection f : Y1 → Y2 such that f(y) ≡ y for every y ∈ Y1.

We define C = H/≈+ . One can prove that C is indeed a simplicial complex
and also that ‖C‖ is homeomorphic to X (since the identification C = H/≈+ was
chosen to follow the construction of X).

The faces of C are the equivalence classes of ≈+. We use the notation 〈σ〉 for
such an equivalence class given by σ ∈ H. By ρ we denote the face 〈{e1, . . . , ed}〉
of C.

13

Figure 5: The triangulations J (left) and H (right) of P with d = 2.

We define C = H/≈+ . One can prove that C is indeed a simplicial complex and also that ‖C‖ is
homeomorphic to X (since the identification C= H/≈+ was chosen to follow the construction of X).

The faces of C are the equivalence classes of ≈+. We use the notation 〈σ〉 for such an equivalence
class given by σ ∈ H. By ρ we denote the face 〈{e1, . . . ,ed}〉 of C.

3.4 The complex C(ρ;ζ1, . . . ,ζt)

Now we assume that t ≥ 1 and we construct the complex C(ρ;ζ1, . . . ,ζt), which is a refinement of C(ρ).
The idea of the construction is quite simple. We pick an interior simplex of C(ρ); and we subdivide it
in such a way that we obtain distant (d−1)-dimensional faces ζ1, . . . ,ζt (and also distant from ρ). For
completeness we show a particular way how to get such a subdivision.

A suitable triangulation of a simplex. An example of the following construction is depicted in Figure 6.
Let ∆ be a d-dimensional (geometric) simplex with a set of vertices V = {v1, . . . ,vd+1}, let b be its
barycentre, and let t be an integer. Next, we define

W =

{
wi, j

∣∣∣∣ wi, j = b+
j

3t
(vi−b), i ∈ [d +1], j ∈ [3t]

}
.

Note that V ⊂W . For j ∈ [t], ζ j is a (d−1)-face
{

w1,3 j−2,w2,3 j−2, . . . ,wd,3 j−2
}

.
Now we define polyhedra Q1, . . . ,Q3t . The polyhedron Q1 is the convex hull conv{w1,1 . . . ,wd+1,1}.

For j ∈ [3t]\{1} the polyhedron Q j is the union of the convex hulls⋃
i∈[d+1]

conv{wk,l | k ∈ [d +1]\{i} , l ∈ { j−1, j}} .

The polyhedron Q1 is a simplex. For j > 1, the polyhedra Q j are isomorphic to the prisms ∂∆d× [0,1],
where ∆d is a d-simplex. Each such prism admits a (standard) triangulation such that ∂∆d ×{0} and
∂∆d×{1} are not subdivided (see [23, Exercise 3, p. 12]).
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ζ1

ζ2

v1 =w1,3t v2 =w2,3t

v3 =w3,3t

ρ

Figure 6: The complex D(ζ1, ζ2) (left) and C(ρ; ζ1, ζ2) (right), here d = 2.

3.4 The complex C(ρ; ζ1, . . . , ζt)

Now we assume that t ≥ 1 and we construct the complex C(ρ; ζ1, . . . , ζt), which
is a refinement of C(ρ). The idea of the construction is quite simple. We pick an
interior simplex of C(ρ); and we subdivide it in such a way that we obtain distant
(d − 1)-dimensional faces ζ1, . . . , ζt (and also distant from ρ). For completeness
we show a particular way how to get such a subdivision.

A suitable triangulation of a simplex. An example of the following con-
struction is depicted in Figure 6. Let ∆ be a d-dimensional (geometric) simplex
with a set of vertices V = {v1, . . . ,vd+1}, let b be its barycentre, and let t be an
integer. Next, we define

W =

{

wi,j

∣

∣

∣

∣

wi,j = b +
j

3t
(vi − b), i ∈ [d + 1], j ∈ [3t]

}

.

Note that V ⊂ W . For j ∈ [t], ζj is a (d − 1)-face {w1,3j−2,w2,3j−2, . . . ,wd,3j−2}.
Now we define polyhedra Q1, . . . , Q3t. The polyhedron Q1 is the convex hull

conv {w1,1 . . . ,wd+1,1}. For j ∈ [3t] \ {1} the polyhedron Qj is the union of the
convex hulls

⋃

i∈[d+1]

conv {wk,l | k ∈ [d + 1] \ {i} , l ∈ {j − 1, j}} .

The polyhedron Q1 is a simplex. For j > 1, the polyhedra Qj are isomorphic
to the prisms ∂∆d × [0, 1], where ∆d is a d-simplex. Each such prism admits a
(standard) triangulation such that ∂∆d × {0} and ∂∆d × {1} are not subdivided
(see [Mat03, Exercise 3, p. 12]).

Let D(ζ1, . . . , ζt) denote an abstract simplicial complex on a vertex set W ,
which comes from a triangulation of ∆ obtained by first subdividing it into

14

Figure 6: The complex D(ζ1,ζ2) (left) and C(ρ;ζ1,ζ2) (right), here d = 2.

Let D(ζ1, . . . ,ζt) denote an abstract simplicial complex on a vertex set W , which comes from a
triangulation of ∆ obtained by first subdividing it into the polyhedra Q1, . . . ,Q3t and subsequently
triangulating these polyhedra as described above.

The definition of C(ρ;ζ1, . . . ,ζt). Let ξ be a d-face of H such that ‖ξ‖ ⊂ int‖H‖. Although there are
multiple such d-faces only some of them are used as ξ . For example, in Figure 6, only one out of four
such d-faces is chosen. Suppose that the set V (from above) is the set of vertices of ξ . We define

C(ρ;ζ1, . . . ,ζt) = (C(ρ)\{〈ξ 〉})∪D(ζ1, . . . ,ζt)

while recalling that 〈ξ 〉 denotes the equivalence class of ≈+ from the definition of C. See Figure 6.

Proof of Proposition 3.2. The claims (i), (iii) and (iv) follow straightforwardly from the construction.
Regarding the claim (ii), informally, we first d-collapse the face ρ ; after that we d-collapse the “interior”
of C in order to collapse all d-dimensional faces except the faces that should remain in C′ \{ρ}. Formally,
we use Lemma 5.4.

Gluing. Here we focus on gluing briefly discussed above Lemma 3.1. As the name of connecting gadget
suggests, we want to use it (in Section 4) for connecting several other complexes (gadgets). In particular,
we want to have some notation for gluing this gadget. We introduce this notation here.

Again we suppose that σ , γ1, . . . ,γt are already known (d−1)-dimensional faces of a given complex
L. They are assumed to be distinct, but not necessarily disjoint. There is a complex K= 2σ ∪2γ1 ∪·· ·∪2γt .
We take a new copy of C(ρ;ζ1, . . . ,ζt) and we perform identifications ρ = σ , ζ1 = γ1, . . . ,ζt = γt . After
these identifications, the complex K∪C(ρ;ζ1, . . . ,ζt) is denoted by Cglued(σ ;γ1, . . . ,γt). Note that C
(before gluing) and Cglued are generally not isomorphic since the gluing procedure can identify some
faces of C.

Proof of Lemma 3.1. The first claim follows from Lemma 5.6. The second claim follows from Proposi-
tion 3.2(i) and (iii). The last claim follows from Proposition 3.2(iv).
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4 NP-completeness

Here we prove Theorem 1.1(ii). Throughout this section we assume that d ≥ 4 is a fixed integer. We have
that d-COLLAPSIBILITY is in NP since if we are given a sequence of faces of dimension at most d−1
we can check in a polynomial time whether this sequence determine a d-collapsing of a given complex.

For NP-hardness, we reduce the problem 3-SAT to d-COLLAPSIBILITY. The problem 3-SAT is
NP-complete according to Cook [8]. Given a 3-CNF formula Φ, we construct a complex F that is
d-collapsible if and only if Φ is satisfiable.

4.1 Sketch of the reduction

Let us recall the construction of the bad complex B. We have started with a simplex 2S and we
distinguished the initial face ι and the bad face σB. We were allowed to start the collapsing either with σB

or with liberation faces and then with ι . As soon as one of the options was chosen the second one was
unavailable. The idea is that these two options should represent an assignment of variables in the formula
Φ.

A disadvantage is that we cannot continue after collapsing σB. Thus we rather need to distinguish
two initial faces ι+ and ι− each of them having its own liberation faces. However, we need that these two
collections of liberation faces do not interfere. That is why we have to assume d ≥ 4.

For every variable x j of the formula Φ we thus construct a certain variable gadget V j with two initial
faces ι

+
j and ι

−
j . For a clause Ci in the formula Φ there is a clause gadget Gi. Initially it is not possible to

collapse clause gadgets. Assume, e.g., that Ci contains variables x j and x j′ in positive occurrence and x j′′

in negative occurrence. Then it is possible to collapse Gi as soon as ι
+
j , ι

+
j′ , or ι

−
j′′ was collapsed. (This is

caused by attaching a suitable copy of the connection gadget C from the previous section.) Thus the idea
is that the complex F in the reduction is collapsible if and only if all clause gadgets can be simultaneously
collapsed which happens if and only if Φ is satisfiable.

There are few more details to be supplied. Similarly as for the construction of B we have to attach a
copy T of the connecting gadget C to the faces which are neither initial nor liberation (i.e., to attaching
faces). This step is necessary for controlling which faces can be collapsed. This copy of connecting
gadget is called a tidy connection and once it is activated (at least on of its faces is collapsed) then it
is consequently possible to collapse the whole complex F. Finally, there are inserted certain gadgets
called merge gadgets. Their purpose is to merge the information obtained by clause gadgets: they can
be collapsed after collapsing all clause gadgets and then they activate the tidy connection. The precise
definition of F will be described in following subsections. At the moment it can be helpful for the reader
to skip few pages and look at Figure 8 (although there is a notation on the picture not introduced yet).

4.2 Simplicial gadgets

Now we start supplying the details. As sketched above we introduce several gadgets called simplicial
gadgets. They consist of full simplices (on varying number of vertices) with several distinguished
(d−1)-faces. These gadgets generalize the complex 2S. Every simplicial gadget contains one or more
(d−1)-dimensional pairwise disjoint initial faces. Every initial face ι contains several (possibly only one)
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ι+ι−

one
base

one
base

the variable gadget

ι

three
bases

the clause gadget

ιmerge

λmerge, 1 λmerge, 2one
base

the merge gadget

Figure 7: A schematic pictures of simplicial gadgets; the liberation faces of the
merge gadget are distinguished.

The remaining (d − 1)-faces are attaching faces.
Now we define several concrete examples of simplicial gadgets.

The variable gadget. The variable gadget V = V(ι+, ι−, β+, β−) is described
by the following table:

vertices: p+, q+
1 , . . . , q+

d−1, p−, q−1 , . . . , q−d−1;
initial faces: ι+ =

{

p+, q+
1 , . . . , q+

d−1

}

, ι− =
{

p−, q−1 , . . . , q−d−1

}

;
bases: β+ =

{

q+
1 , . . . , q+

d−1

}

, β− =
{

q−1 , . . . , q−d−1

}

.

The clause gadget. The clause gadget G(ι,λ1,λ2,λ3) is given by:
vertices: p1, . . . , pd, q;
initial face: ι = {p1, p2, . . . , pd};
bases: β1 = ι \ {p1}, β2 = ι \ {p2}. β3 = ι \ {p3}.

Every base βj is contained in exactly one liberation face λj = βj ∪ {q}.

The merge gadget. The merge gadget M(ιmerge,λmerge,1,λmerge,2) is given by:
vertices: p1, . . . , pd, q, r;
initial face: ιmerge = {p1, p2, . . . , pd};
base: ιmerge \ {p1}.

The merge gadget contains exactly two liberation faces, which we denote λmerge,1

and λmerge,2.
We close this subsection by proving a lemma about d-collapsings of simplicial

gadgets.

Lemma 4.1. Suppose that S is a simplicial gadget, ι is its initial face, β ⊆ ι is
a base face, and λ1, . . . ,λt are liberation faces containing β. Then d-collapsing of
λ1, . . . ,λt (even in any order) yields a complex R such that

(i) ι is a maximal face of R;

(ii) R \ {ι} is d-collapsible;

17

Figure 7: A schematic pictures of simplicial gadgets; the liberation faces of the merge gadget are
distinguished.

distinguished (d−2)-faces called bases of ι . The liberation faces of the gadget are such (d−1)-faces λ

that contain a base of some initial face ι , but λ 6= ι . The remaining (d−1)-faces are attaching faces.
Now we define several concrete examples of simplicial gadgets.

The variable gadget. The variable gadget V = V(ι+, ι−,β+,β−) is described by the following table:
vertices: p+,q+1 , . . . ,q

+
d−1, p−,q−1 , . . . ,q

−
d−1;

initial faces: ι+ =
{

p+,q+1 , . . . ,q
+
d−1

}
, ι− =

{
p−,q−1 , . . . ,q

−
d−1

}
;

bases: β+ =
{

q+1 , . . . ,q
+
d−1

}
, β− =

{
q−1 , . . . ,q

−
d−1

}
.

The clause gadget. The clause gadget G(ι ,λ1,λ2,λ3) is given by:
vertices: p1, . . . , pd ,q;
initial face: ι = {p1, p2, . . . , pd};
bases: β1 = ι \{p1}, β2 = ι \{p2}. β3 = ι \{p3}.

Every base β j is contained in exactly one liberation face λ j = β j ∪{q}.

The merge gadget. The merge gadget M(ιmerge,λmerge,1,λmerge,2) is given by:
vertices: p1, . . . , pd ,q,r;
initial face: ιmerge = {p1, p2, . . . , pd};
base: ιmerge \{p1}.

The merge gadget contains exactly two liberation faces, which we denote λmerge,1 and λmerge,2.
We close this subsection by proving a lemma about d-collapsings of simplicial gadgets.

Lemma 4.1. Suppose that S is a simplicial gadget, ι is its initial face, β ⊆ ι is a base face, and λ1, . . . ,λt

are liberation faces containing β . Then d-collapsing of λ1, . . . ,λt (even in any order) yields a complex R
such that

(i) ι is a maximal face of R;

(ii) R\{ι} is d-collapsible;

(iii) R\{ι}� 2ι ′ where ι ′ is an initial face different from ι (if exists).
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Proof. We prove each of the claims separately.

(i) Let V be the set of vertices of S and let λt+1 = ι . We (inductively) observe that d-collapsing of
faces λ1, . . . ,λk for k ≤ t yields a complex in which λk+1 is contained in a unique maximal face
(V \ (λ1∪·· ·∪λk))∪β . This implies that R is well defined and also finishes the first claim since

(V \ (λ1∪·· ·∪λt))∪β = ι .

We remark that the few details skipped here are exactly the same as in the proof of Lemma 5.1.

(ii) We observe that β is a maximal (d−2)-face of R\{ι} and Sβ = R\{ι ,β}, hence R\{ι}→ Sβ .
(We recall that Kσ denotes the resulting complex of an elementary d-collapse K→ Kσ = K \
[σ ,τ(σ)].) Next, Sβ � S /0 = /0 by Lemma 5.1.

(iii) Similarly as before we have R\{ι}→ Sβ . Let v be a vertex of β , we have Sβ → S{v} by Lemma 5.1.
The complex S{v} is a full simplex (S with removed v), this complex even 1-collapse to 2ι ′ by
collapsing vertices of V \ (ι ′∪{v}) (in any order).

4.3 The reduction

Let the given 3-CNF formula be Φ = C1 ∧C2∧ ·· · ∧Cn, where each Ci is a clause with exactly three
literals (we assume without loss of generality that every clause contains three different variables). Suppose
that x1, . . . ,xm are variables appearing in the formula. For every such variable x j we take a fresh copy of
the variable gadget and we denote it by V j = V j(ι

+
j , ι
−
j ,β

+
j ,β

−
j ). For every clause Ci containing variables

x j1 , x j2 and x j3 (in a positive or negative occurrence) we take a new copy of the clause gadget and we
denote it by Gi = Gi(ι i,λ i

j1 ,λ
i
j2 ,λ

i
j3). Moreover, for Ci with i≥ 2, we also take a new copy of the merge

gadget and we denote it Mi =Mi(ι i
merge,λ

i
merge,1,λ

i
merge,2).

Now we connect these simplicial gadgets by glued copies of the connecting gadget called connections.
Suppose that a variable x j occurs positively in the clauses Ci1 , . . . ,Cik . We construct the positive

occurrence connections by setting

O+
j = Cglued(ι

+
j ;λ

i1
j , . . . ,λ

ik
j ).

The negative occurrence connections O−j are constructed similarly (we use ι
−
j instead of ι

+
j ; and we use

clauses in which is x j in negative occurrence).
The merge connections are defined by

I11 = Cglued(ι
1;λ 2

merge,2);
Ii1 = Cglued(ι

i;λ i
merge,1) where i ∈ {2, . . . ,n};

Ii2 = Cglued(ι
i
merge;λ

i+1
merge,2) where i ∈ {2, . . . ,n−1}.

For convenient notation we denote I11 also by I12.
Finally, the tidy connection is defined by

T= Cglued(ι
n
merge;α1, . . . ,αt)
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Figure 8: A schematic example of F for the formula Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨
¬x2 ∨x4)∧ (¬x1 ∨¬x3 ∨¬x4)∧ (x2 ∨¬x3 ∨x4). Initial faces are drawn as points.
(Multi)arrows denote connections. Each (multi)arrow points from the unique d-
collapsible face of the connection to simplicial gadgets that are attached to the
connection by some of its liberation faces.
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Figure 9: d-collapsing of F for the Φ from Figure 8 assigned (FALSE, TRUE,
TRUE, FALSE). The numbers denote the order in which the parts of F vanish.
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Figure 8: A schematic example of F for the formula Φ = (x1 ∨ x2 ∨ x3)∧ (¬x1 ∨¬x2 ∨ x4)∧ (¬x1 ∨
¬x3∨¬x4)∧ (x2∨¬x3∨ x4). Initial faces are drawn as points. (Multi)arrows denote connections. Each
(multi)arrow points from the unique d-collapsible face of the connection to simplicial gadgets that are
attached to the connection by some of its liberation faces.

where α1, . . . ,αt are attaching faces of all simplicial gadgets in the reduction, namely the variable gadgets
V j for j ∈ [m], the clause gadgets Gi for i ∈ [n], and the merge gadgets Mi for i ∈ {2, . . . ,n}.

The complex F in the reduction is defined by

F=
m⋃

j=1

V j ∪
n⋃

i=1

Gi∪
n⋃

i=2

Mi∪
m⋃

j=1

(O+
j ∪O

−
j )∪

n⋃
i=1

Ii1∪
n−1⋃
i=2

Ii2∪T.

See Figure 8 for an example.
We observe that the number of faces of F is polynomial in the number of clauses in the formula

(regarding d as a constant). Indeed, we see that the number of gadgets (simplicial gadgets and connections)
is even linear in the number of variables. Each simplicial gadget has a constant size. Each connection has
at most linear size due to Lemma 3.1(iii).

Collapsibility for satisfiable formulae. We suppose that the formula is satisfiable and we describe a
collapsing of F; see Figure 9.

We assign each variable TRUE or FALSE so that the formula is satisfied. For every variable gadget
V j we proceed as follows. First, suppose that x j is assigned TRUE. We d-collapse5 the liberation faces

5Note that after d-collapsing a liberation face containing β
+
j the liberation faces containing β

−
j are no more d-collapsible

(and vice versa). This will be a key property for showing that unsatisfiable formulae yield to non-collapsible complexes.
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Figure 8: A schematic example of F for the formula Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨
¬x2 ∨x4)∧ (¬x1 ∨¬x3 ∨¬x4)∧ (x2 ∨¬x3 ∨x4). Initial faces are drawn as points.
(Multi)arrows denote connections. Each (multi)arrow points from the unique d-
collapsible face of the connection to simplicial gadgets that are attached to the
connection by some of its liberation faces.
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Figure 9: d-collapsing of F for the Φ from Figure 8 assigned (FALSE, TRUE,
TRUE, FALSE). The numbers denote the order in which the parts of F vanish.

20

Figure 9: d-collapsing of F for the Φ from Figure 8 assigned (FALSE, TRUE, TRUE, FALSE). The
numbers denote the order in which the parts of F vanish.

containing β
+
j (see Lemma 4.1(i)), after that ι

+
j is d-collapsible, and we d-collapse O+

j (following
Lemma 3.1(i) in the same way as in the proof of Theorem 1.2(ii)). Similarly, we d-collapse O−j if x j is
assigned FALSE.

We use several times Lemma 4.1(i) and Lemma 3.1(i) in the following paragraphs. The use is very
similar is in the previous one, thus we do not mention these lemmas again.

After d-collapsings described above, we have that every clause gadget Gi contains at least one
liberation face that is d-collapsible since we have chosen such an assignment that the formula is satisfied.
We d-collapse this liberation face and after that the face ι i is d-collapsible. We continue with d-collapsing
the merge gadgets Ii1 for i ∈ [n].

The next step is that we gradually d-collapse the merge gadgets Ii2 for i ∈ {2, . . . ,n−1}. For this,
we have that both liberation faces of I22 are d-collapsible, we d-collapse them and we have that ι2

merge is
d-collapsible. We d-collapse I22 and now we continue with the same procedure with I32, the I42, etc.

Finally, we d-collapse the tidy gadget. The d-collapsing of tidy gadget makes all the attaching faces
of simplicial gadgets d-collapsible. After this “tidying up” we can d-collapse all variable gadgets (using
Lemma 4.1(iii)), then all remaining connections, and at the end all remaining simplicial gadgets due to
Lemma 4.1(ii).

Non-collapsibility for unsatisfiable formulae. Now we suppose that Φ is unsatisfiable and we prove
that F is not d-collapsible.

For contradiction, we suppose that F is d-collapsible. Let

F= F1→ F2→ ··· → /0
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be a d-collapsing of F. We call it our d-collapsing. For a technical reason, according to Lemma 5.2, we
can assume that first (d−1)-dimensional faces are collapsed and after that faces of less dimensions are
removed.

Let us fix a subcomplex F` in our d-collapsing. Let N be a connection (one of that forming F) and let
N` = F`∩N. We say that N is activated in F` if N` is a proper subcomplex of N.

The connection N is defined as Cglued(σ ;γ1, . . . ,γs) for some (d−1)-faces σ ,γ1, . . . ,γs of simplicial
gadgets in F. We remark that Lemma 3.1(ii) implies that if N is activated in F` then σ 6∈ F`.

We also prove the following lemma about activated connections.

Lemma 4.2. Let F` be a complex from our d-collapsing such that T is not activated in F`. Then we have:

(i) Let j∈ [m]. If the positive occurrence connection O+
j is activated in F`, then the negative occurrence

connection O−j is not activated in F` (and vice versa).

(ii) Let i ∈ [n]. If the merge connection Ii1 is activated in F`, then at least one of the three occurrence
connections attached to Gi is activated in F`.

(iii) Let i ∈ {2, . . . ,n−1}. If the merge connection Ii2 is activated in F`, then the merge connections Ii1
and Ii−1

2 are activated in F`.

Proof. Let us consider first `−1 d-collapses of our d-collapsing

F= F1→ F2→ ·· · → F`,

where Fk+1 = Fk \ [σk,τk] for k ∈ [`− 1]. According to assumption on our d-collapsing, we have that
σ1, . . . ,σ`−1 are (d−1)-dimensional (since T is not activated in F` yet).

Now we prove each of the claims separately.

(i) For a contradiction we suppose that both O+
j and O−j are activated in F`.

We consider the variable gadget V j. We say that an index k ∈ [`−1] is relevant if σk ∈ V j. We
observe that if k is a relevant index then σk is a liberation face or an initial face of V j, because
attaching faces are contained in T.

By positive face we mean either the initial face ι
+
j or a liberation face containing β

+
j . A negative

face is defined similarly. Let k+ (respectively k−) be the smallest relevant index such that σk+ is a
positive face (respectively negative face). These indexes have to exist since both O+

j and O−j are
activated in F`. Without loss of generality k+ < k−.

We show that σk− is not a d-collapsible face of Fk−−1, thus we get a contradiction. Indeed, let
S = σk+ \σk− . We have |S| ≥ 2 since d ≥ 4 (here we crucially use this assumption). Let s ∈ S.
Then we have σk− ∪{s} ∈ Fk−−1, because σk− ∪{s} does not contain a positive subface (it does
not contain β

+
j since |σk− ∩β

+
j | ≤ 1, but |β+

j | ≥ 3). On the other hand σk− ∪S 6∈ Kk−−1 since it
contains σk+ . I.e., σk− is not in a unique maximal face.

(ii) We again define a relevant index; this time k ∈ [`− 1] is relevant if σk ∈ Gi. We consider the
smallest relevant index k′. Again we have that σk′ is either the initial face ι i or a liberation face of
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Gi. In fact, σk′ cannot be ι i: by Lemma 3.1(ii) we would have that Ii1 ⊆ Fk′−1 and also Gi ⊆ Fk′−1
from minimality of k′, which would contradict that σk′ is a collapsible face of Fk′−1. Thus σk′ is
a liberation face of Gi. This implies, again by Lemma 3.1(ii), that at least one of the occurrence
gadgets attached to liberation faces is activated even in Fk′−1.

(iii) By a similar discussion as in previous step we have that at least one of the liberation faces λ i
merge,1

and λ i
merge,2 of Mi have to be d-collapsed before d-collapsing ι i

merge. However, we observe that
d-collapsing only one of these faces is still insufficient for possibility of d-collapsing ι i

merge. Hence
both of the liberation faces have to be d-collapsed, which implies that both the gadgets Ii1 and Ii−1

2
are activated in F`.

We also prove an analogy of Lemma 4.2 for the tidy gadget. We have to modify the assumptions, that
is why we use a separate lemma. The proof is essentially same as the proof of Lemma 4.2(iii), therefore
we omit it.

Lemma 4.3. Let ` be the largest index such that T is not activated in F`, then the merge connections In1
and In−1

2 are activated in F`.

Now we can quickly finish the proof of non-collapsibility. Let ` be the integer from Lemma 4.3.
By this lemma and repeatedly using Lemma 4.2(iii) we have that all merge connections are activated in
F`. By Lemma 4.2(ii), for every clause gadget Gi there is an occurrence gadget attached to Gi, which is
activated in F`. Finally, Lemma 4.2(i) implies that for every variable x j at most one of the occurrence
gadgets O+

j , O−j is activated in F`. Let us assign x j TRUE if it is O+
j and FALSE otherwise. This is

satisfying assignment since for every Gi at least one occurrence gadget attached to it is activated in F`.
This contradicts the fact that Φ is unsatisfiable.

5 Technical properties of d-collapsing

In this section, we prove several auxiliary lemmas on d-collapsibility used throughout the paper.

5.1 d-collapsing faces of dimension strictly less than d−1

Lemma 5.1. Let K be a complex, d an integer, and σ a d-collapsible face (in particular, dimσ ≤ d−1).
Let σ ′ ⊇ σ be a face of K of dimension at most d−1. Then σ ′ is d-collapsible and Kσ ′ � Kσ .

Proof. We assume that σ 6= σ ′ otherwise the proof is trivial.
First, we observe that τ(σ) is a unique maximal face containing σ ′. Indeed, σ ′ ⊆ τ(σ) since τ(σ) is

the unique maximal face containing σ , and also if η ⊇ σ ′, then η ⊇ σ , which implies η ⊆ τ(σ). Hence
we have that σ ′ is d-collapsible.
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→ → → →

K1 = K K2 = Kσ′ K3 K4 Kσ

σσ′ v1

v2 v3

Figure 10: An example of 2-collapsing K → Kσ′ ! Kσ.

As a corollary, we obtain the following lemma.

Lemma 5.2. Suppose that K is a d-collapsible complex. Then there is a d-
collapsing of K such that first only (d − 1)-dimensional faces are collapsed and
after that faces of dimensions less then (d − 1) are removed.

Proof. Suppose that we are given a d-collapsing of K. Suppose that in some step
we d-collapse a face σ that is not maximal and its dimension is less than d − 1.
Let us denote this step by K′ → K′

σ. Let σ′ ⊇ σ be such a face of K′ that either
dim σ′ = d− 1 or σ′ is a maximal face. Then we replace this step by d-collapsing
K′ → K′

σ′ ! Kσ.
We repeat this procedure until every d-collapsed face is either of dimension

d − 1 or maximal. We observe that this procedure can be repeated only finitely
many times since in every replacement we increase the number of elementary
d-collapses in the d-collapsing, while this number is bounded by the number of
faces of K.

Finally, we observe that if we first remove a maximal face of dimension less
than d− 1 and then we d-collapse a (d− 1)-dimensional face, we can swap these
steps with the same result.

5.2 d-collapsing to a subcomplex

Suppose that K is a simplicial complex, K′ is a subcomplex of it, which d-collapses
to a subcomplex L′. If certain conditions are satisfied, then we can perform d-
collapsing K′

! L′ in whole K; see Figure 11 for an illustration. The precise
statement is given in the following lemma.

Lemma 5.3 (d-collapsing a subcomplex). Let K be a simplicial complex, K′ a
subcomplex of K, and L′ a subcomplex of K′. Assume that if σ ∈ K′ \ L′, η ∈ K,
and η ⊇ σ, then η ∈ K′\L′. Moreover assume that K′

! L′. Then L = (K\K′)∪L′

is a simplicial complex and K ! L.

Proof. It is straightforward to check that L is a simplicial complex using the
equivalence

24

Figure 10: An example of 2-collapsing K→ Kσ ′ � Kσ .

Let v1 be a vertex of σ ′ \σ . It is sufficient to prove that Kσ ′ � Kσ ′\{v1} and proceed by induction.
Thus, for simplicity of notation, we can assume that σ ′ = σ ∪{v1}.

Let v2, . . . ,vt be vertices of τ(σ)\σ ′. By ηi we denote the face σ ∪{vi} for i ∈ [t]. (In particular,
σ ′ = η1.) For i ∈ [t +1] we define a complex Ki by the formula

Ki = {η ∈ K | η 6⊇ η1, . . . ,η 6⊇ ηi−1 }=
{

η ∈ K
∣∣ if η ⊇ σ then v j 6∈ η for j < i

}
.

From these descriptions we have that ηi is a d-collapsible face of Ki contained in a unique maximal face
τi = τ(σ)\{v1, . . . ,vi−1}. Moreover (Ki)ηi = Ki+1. Thus, we have a d-collapsing

K= K1→ K2→ ··· → Kt+1.

See Figure 10 for an example.
To finish the proof it remains to observe that K2 = Kσ ′ and Kt+1 is a disjoint union of Kσ and {σ},

hence Kt+1→ Kσ .

As a corollary, we obtain the following lemma.

Lemma 5.2. Suppose that K is a d-collapsible complex. Then there is a d-collapsing of K such that first
only (d− 1)-dimensional faces are collapsed and after that faces of dimensions less then (d− 1) are
removed.

Proof. Suppose that we are given a d-collapsing of K. Suppose that in some step we d-collapse a face σ

that is not maximal and its dimension is less than d−1. Let us denote this step by K′→ K′σ . Let σ ′ ⊇ σ

be such a face of K′ that either dimσ ′ = d− 1 or σ ′ is a maximal face. Then we replace this step by
d-collapsing K′→ K′

σ ′ � Kσ .
We repeat this procedure until every d-collapsed face is either of dimension d−1 or maximal. We

observe that this procedure can be repeated only finitely many times since in every replacement we
increase the number of elementary d-collapses in the d-collapsing, while this number is bounded by the
number of faces of K.

Finally, we observe that if we first remove a maximal face of dimension less than d−1 and then we
d-collapse a (d−1)-dimensional face, we can swap these steps with the same result.
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! !implies

K’ L’ K L

Figure 11: Complexes K, K′, L and L′ from the statement of Lemma 5.3.

η ∈ L if and only if η ∈ K and η /∈ K′ \ L′.

In order to show K ! L, it is sufficient to show the following (and proceed by
induction over elementary d-collapses):

Suppose that σ′ is a d-collapsible face of K′ such that K′
σ′ ⊇ L′. Then we have

1. σ′ is a d-collapsible face of K.

2. If σ ∈ K′
σ′ \ L′, η ∈ Kσ′ and η ⊇ σ, then η ∈ K′

σ′ \ L′.

3. L = (Kσ′ \ K′
σ′) ∪ L′.

We prove the claims separately:

1. We know that σ′ /∈ L′ since K′
σ′ ⊇ L′. Thus, σ′ ∈ K′\L′. If η′ ∈ K and η′ ⊇ σ′,

then, by the assumption of the lemma, η′ ∈ K′ \ L′ ⊆ K′. In particular, the
maximal faces in K′ containing σ′ coincide with the maximal faces in K

containing σ′. It means that σ′ is a d-collapsible face of K.

2. We have K′
σ′ \ L′ ⊆ K′ \ L′ and Kσ′ ⊆ K. Thus the assumption of the lemma

implies that η ∈ K′ \ L′. Next we have Kσ′ ∩ K′ = K′
σ′ since the maximal

faces in K′ containing σ′ coincide with the maximal faces in K containing
σ′. We conclude that η ∈ K′

σ′ \ L′.

3. One can check that K \ K′ = Kσ′ \ K′
σ′ .

Suppose that F is a set system. For an integer k we define the graph
Gk(F) = (V (Gk), E(Gk)) as follows:

V (Gk) = {F ∈ F | |F | = k + 1 (i.e., dim F = k if F is regarded as a face)};
E(Gk) = {{F, F ′} | F, F ′ ∈ V (Gk), F ∩ F ′ ∈ F and |F ∩ F ′| = k}.

Lemma 5.4 (d-collapsing a d-dimensional complex). Suppose that K is a d-
dimensional complex, L is its subcomplex and the following conditions are satis-
fied:

25

Figure 11: Complexes K, K′, L and L′ from the statement of Lemma 5.3.

5.2 d-collapsing to a subcomplex

Suppose that K is a simplicial complex, K′ is a subcomplex of it, which d-collapses to a subcomplex L′.
If certain conditions are satisfied, then we can perform d-collapsing K′� L′ in whole K; see Figure 11
for an illustration. The precise statement is given in the following lemma.

Lemma 5.3 (d-collapsing a subcomplex). Let K be a simplicial complex, K′ a subcomplex of K, and L′ a
subcomplex of K′. Assume that if σ ∈ K′ \L′, η ∈ K, and η ⊇ σ , then η ∈ K′ \L′. Moreover assume that
K′� L′. Then L= (K\K′)∪L′ is a simplicial complex and K� L.

Proof. It is straightforward to check that L is a simplicial complex using the equivalence
η ∈ L if and only if η ∈ K and η /∈ K′ \L′.

In order to show K � L, it is sufficient to show the following (and proceed by induction over
elementary d-collapses):

Suppose that σ ′ is a d-collapsible face of K′ such that K′
σ ′ ⊇ L′. Then we have

1. σ ′ is a d-collapsible face of K.

2. If σ ∈ K′
σ ′ \L′, η ∈ Kσ ′ and η ⊇ σ , then η ∈ K′

σ ′ \L′.

3. L= (Kσ ′ \K′σ ′)∪L′.

We prove the claims separately:

1. We know that σ ′ /∈ L′ since K′
σ ′ ⊇ L′. Thus, σ ′ ∈ K′ \L′. If η ′ ∈ K and η ′ ⊇ σ ′, then, by the

assumption of the lemma, η ′ ∈ K′ \L′ ⊆ K′. In particular, the maximal faces in K′ containing σ ′

coincide with the maximal faces in K containing σ ′. It means that σ ′ is a d-collapsible face of K.

2. We have K′
σ ′ \L′ ⊆ K′ \L′ and Kσ ′ ⊆ K. Thus the assumption of the lemma implies that η ∈ K′ \L′.

Next we have Kσ ′ ∩K′ = K′
σ ′ since the maximal faces in K′ containing σ ′ coincide with the

maximal faces in K containing σ ′. We conclude that η ∈ K′
σ ′ \L′.

3. One can check that K\K′ = Kσ ′ \K′σ ′ .
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Figure 12: In top right picture there are complexes K and L from Lemma 5.4; L

is thick and dark. In top left picture there is the graph G2(K \ L). Collapsing
K ! L is in bottom pictures.

• K \ L contains a d-collapsible face σ such that τ(σ) ∈ K \ L;

• Gd(K \ L) is connected;

• for every (d − 1)-face η ∈ K \ L there are at most two d-faces in K \ L

containing η.

Then K ! L.

Proof. See Figure 12 when following the proof. Let τ0 = τ(σ), τ1, . . . , τj be
an order of vertices of Gd(K \ L) such that for every i ∈ [j] the vertex τi has a
neighbor τn(i) with n(i) < i. Such an order exists by the second condition. Let
σi = τi ∩ τn(i).

Consider the following sequence of elementary d-collapses

K → K0 = Kσ,
Ki−1 → Ki = (Ki−1)σi

for i ∈ [j].

This sequence is indeed a sequence of elementary d-collapses since τn(i) /∈ Ki−1,
thus τi is a unique maximal face containing σi in Ki−1 by the third condition.
Moreover, σi ∈ K \ L. Thus, Kj is a supercomplex of L.

The set system Kj \ L contains only faces of dimensions d − 1 or less. Hence
Kj ! L by removing faces, which establishes the claim.

26

Figure 12: In top right picture there are complexes K and L from Lemma 5.4; L is thick and dark. In top
left picture there is the graph G2(K\L). Collapsing K� L is in bottom pictures.

Suppose that F is a set system. For an integer k we define the graph Gk(F) = (V (Gk),E(Gk)) as
follows:
V (Gk) = {F ∈ F | |F |= k+1 (i.e., dimF = k if F is regarded as a face)};
E(Gk) = {{F,F ′}| F,F ′ ∈V (Gk),F ∩F ′ ∈ F and |F ∩F ′|= k}.

Lemma 5.4 (d-collapsing a d-dimensional complex). Suppose that K is a d-dimensional complex, L is
its subcomplex and the following conditions are satisfied:

• K\L contains a d-collapsible face σ such that τ(σ) ∈ K\L;

• Gd(K\L) is connected;

• for every (d−1)-face η ∈ K\L there are at most two d-faces in K\L containing η .

Then K� L.

Proof. See Figure 12 when following the proof. Let τ0 = τ(σ), τ1, . . . , τ j be an order of vertices of
Gd(K\L) such that for every i ∈ [ j] the vertex τi has a neighbor τn(i) with n(i)< i. Such an order exists
by the second condition. Let σi = τi∩ τn(i).

Consider the following sequence of elementary d-collapses
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K → K0 = Kσ ,
Ki−1 → Ki = (Ki−1)σi for i ∈ [ j].

This sequence is indeed a sequence of elementary d-collapses since τn(i) /∈ Ki−1, thus τi is a unique
maximal face containing σi in Ki−1 by the third condition. Moreover, σi ∈ K \ L. Thus, K j is a
supercomplex of L.

The set system K j \L contains only faces of dimensions d−1 or less. Hence K j � L by removing
faces, which establishes the claim.

5.3 Gluing distant faces

Let k be an integer. Suppose that K is a simplicial complex and let ω = {u1, . . . ,uk+1}, η = {v1, . . . ,vk+1}
be two k-faces of K. By

K(ω = η)

we mean the resulting complex under the identification u1 = v1, . . . ,uk+1 = vk+1 (note that this complex is
not unique—it depends on the order of vertices in ω and η ; however, the order of vertices is not important
for our purposes).

In a similar spirit, we define
K(ω1 = η1, . . . ,ωt = ηt)

for k-faces ω1, . . . ,ωt ,η1, . . . ,ηt .

Lemma 5.5 (Collapsing glued complex). Suppose that ω and η are two distant faces in a simplicial
complex K. Let L be a subcomplex of K such that ω,η ∈ L. Suppose that K d-collapses to L. Then
K(ω = η) d-collapses to L(ω = η).

Proof. Let K→ K2→ K3→ ·· · → L be a d-collapsing of K to L. Our task is to show that

K(ω = η)→ K2(ω = η)→ K3(ω = η)→ ··· → L(ω = η)

is a d-collapsing of K(ω ' η) to L(ω ' η).
It is sufficient to show K(ω = η)→ K2(ω = η) and proceed by induction.
For purposes of this proof, we distinguish faces before gluing ω = η by Greek letters, say σ ,σ ′, and

after gluing by Greek letters in brackets, say [σ ], [σ ′]. E.g., we have ω 6= η , but [ω] = [η ].
Suppose that K2 = Kσ for a d-collapsible face σ . We want to show that [τ(σ)] is the unique maximal

face containing [σ ]. By the distance condition, we can without loss of generality assume that σ ∩η = /0
(otherwise we swap ω and η). Suppose [σ ′]⊇ [σ ]. Now we show that σ ′ ⊇ σ : if σ ∩ω = /0 then [σ ] = σ ,
and hence σ ′ ⊆ σ since the vertices of σ are not glued to another vertices); if σ ∩ω 6= /0 then σ ′∩η = /0
due to the distance condition, which implies σ ′ ⊇ σ . Hence τ(σ)⊇ σ ′, and [τ(σ)]⊇ [σ ′]. Thus [τ(σ)]
is the unique maximal face containing [σ ].

Lemma 5.6 (Collapsing of the connecting gadget). Let t be an integer. Let L be a complex with distinct
d-dimensional faces σ , γ1, . . . ,γt such that σ is a maximal face of L. Let C = C(ρ,ζ1, . . . ,ζt) and
C′ = C′(ρ,ζ1, . . . ,ζt) be complexes defined in Section 3.

Then the complex (L∪̇C)(σ = ρ,ζ1 = γ1, . . . ,ζt = γt) d-collapses to the complex (L∪̇C′)(σ = ρ,ζ1 =
ϕ1, . . . ,ζt = γt)\{σ} .
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Proof. First, we observe that

(L∪̇C)(σ = ρ)� (L∪̇C′)(σ = ρ)\{σ} .

This follows from Lemma 5.3 by setting K = (L∪̇C)(σ = ρ), K′ = C, L′ = C′ \ {σ}, and then L =
(L∪̇C′)(σ = ρ)\{σ}. Assumptions of the lemma are satisfied by Proposition 3.2(ii) and the inspection.

Now it is sufficient to iterate Lemma 5.5, assumptions are satisfied by Proposition 3.2(i).

6 The complexity of d-representability

In this section we prove that d-REPRESENTABILITY is NP-hard for d ≥ 2.

Intersection graphs. Let F be a set system. The intersection graph I(F) of F is defined as the (simple)
graph such that the set of its vertices is the set F and the set of its edges is the set
{{F,F ′}| F,F ′ ∈ F,F 6= F ′,F ∩F ′ 6= /0}. Alternatively, I(F) is the 1-skeleton of the nerve of F.

A string graph is a graph, which is isomorphic to an intersection graph of finite collection of curves
in the plane. By STR we denote the set of all string graphs. By CON we denote the class of intersection
graphs of finite collections of convex sets in the plane, and by SEG we denote the class of intersection
graphs of finite collections of segments in the plane. Finally, by SEG(≤ 2) we denote the class of
intersection graphs of finite collections of segments in the plane such that no three segments share a
common point.

Suppose that G is a string graph. A system C of curves in the plane such that G is isomorphic I(C)
is called an STR-representation of G. Similar definitions apply to another classes. We also establish a
similar definition for simplicial complexes. Suppose that K is a d-representable simplicial complex. A
system C of convex sets in Rd such that K is isomorphic to the nerve of C is called a d-representation of
K.

We have STR ⊇ CON ⊇ SEG (actually, it is known that the inclusions are strict). Furthermore,
suppose that we are given a graph G ∈ SEG. By Kratochvı́l and Matoušek [19, Lemma 4.1], there is a
SEG-representation of G such that no two parallel segments of this representation intersect. By a small
perturbation, we can even assume that no three segments of this representation share a common point.
Hence SEG = SEG(≤ 2).

NP-hardness of 2-representability. Kratochvı́l and Matoušek [18] prove that for the classes mentioned
above (i.e., STR, CON and SEG) it is NP-hard to recognize whether a given graph belongs to the given
class. For this they reduce planar 3-connected 3-satisfiability (P3C3SAT) to this problem (see [17] for
the proof of NP-completeness of P3C3SAT and another background). More precisely (see [18, the proof
of Prop. 2]), given a formula Φ of P3C3SAT they construct a graph G(Φ) such that G(Φ) ∈ SEG if the
formula is satisfiable, but G(Φ) 6∈ STR if the formula is unsatisfiable. Moreover, we already know that
this yields G(Φ) ∈ SEG(≤ 2) for satisfiable formulae.

Let us consider G(Φ) as a 1-dimensional simplicial complex. We will derive that G(Φ) is 2-
representable if and only if Φ is satisfiable.

If we are given a 2-representation of G(Φ) it is also a CON-representation of G(Φ) since G(Φ) is
1-dimensional. Hence G(Φ) is not 2-representable for unsatisfiable formulae.
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On the other hand, a SEG(≤ 2)-representation of G(Φ) is also a 2-representation of G(Φ). Thus
G(Φ) is 2-representable for satisfiable formulae.

In summary, we have that 2-REPRESENTABILITY is NP-hard.

d-representability of suspension. Let K be a simplicial complex and let a and b be two new vertices.
By the suspension of K we mean the simplicial complex

suspK= K∪{{a}∪σ | σ ∈ K}∪{{b}∪σ | σ ∈ K} .

Lemma 6.1. Let d be an integer. A simplicial complex K is (d−1)-representable if and only if suspK is
d-representable.

Proof. First, we suppose that K is (d−1)-representable and we show that suspK is d-representable. Let
K1, . . . ,Kt ⊆ Rd−1 be convex set from a (d−1)-representation of K. Let K(a) and K(b) be hyperplanes
Rd−1×{0} and Rd−1×{1} in Rd . It is easy to see, that the nerve of the family

{K1× [0,1], . . . ,Kt × [0,1],K(a),K(b)}

of convex sets in Rd is isomorphic to suspK.
For the reverse implication, we suppose that suspK is d-representable and we show that K is (d−1)-

representable. Suppose that K(a),K(b),K1 . . . ,Kt is a d-representation of suspK (K(a) corresponds to a
and K(b) corresponds to b). We have that {a,b} 6∈ suspK, thus there is a hyperplane H ⊆ Rd separating
K(a) and K(b) (we can assume that the sets in the representation are compact). Then the nerve of the
family

{K1∩H, . . . ,Kt ∩H}

of convex sets in H ' Rd−1 is isomorphic to K.

Since 2-REPRESENTABILITY is NP-hard, we have the following corollary of Lemma 6.1 (consider-
ing complexes that are obtained as (d−2)-tuple suspensions):

Theorem 6.2. d-REPRESENTABILITY is NP-hard for d ≥ 2.
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[16] J. KRATOCHVÍL: String graphs II. Recognizing string graphs is NP-hard. J. Comb. Theory Ser. B,
52:67–78, 1991. 4
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