The One-Way Communication Complexity of Subgroup Membership

Scott Aaronson∗ François Le Gall Alexander Russell† Seiichiro Tani

Received: September 10, 2009; revised: December 5, 2011; published: December 20, 2011.

Abstract: This paper studies the one-way communication complexity of the subgroup membership problem, a classical problem closely related to basic questions in quantum computing. Here Alice receives, as input, a subgroup H of a finite group G; Bob receives an element $y \in G$. Alice is permitted to send a single message to Bob, after which he must decide if his input y is an element of H. We establish the following bounds on the classical communication complexity of this problem in the bounded-error setting:

1. The problem can be solved with $O(\log |G|)$-bit communication with the promise that H is normal.

2. The problem can be solved with $O(d_{\text{max}} \cdot \log |G|)$-bit communication, where d_{max} is the maximum degree of an irreducible complex representation of G.

3. For any prime p not dividing $|G|$, the problem can be solved with $O(\log |G| + d_{\text{max}} \cdot \log p)$-bit communication, where d_{max} is the maximum degree of an irreducible \mathbb{F}_p-representation of G.

Key words and phrases: communication complexity, finite group

1 Introduction

Background The power of quantum computing in various settings has been gradually clarified over the last few decades: while quantum computation offers spectacular efficiency improvements for certain—often well-structured—computational problems, it has little effect on others. One computational model

∗This material is based upon work supported by the National Science Foundation under Grant No. 0844626. Also supported by a DARPA YFA grant, an NSF STC grant, a TIBCO Chair, and a Sloan Fellowship.

†Supported by NSF grants 1117427 and 0835735, and the DTO under contract W911NF-04-R-0009.
that has been extensively studied from this perspective is the communication complexity model. The one-way communication model is one of the simplest settings but has rich connections to areas such as information theory, coding theory, on-line computing, and learning theory. Therefore, its quantum version has been the target of intensive research [1, 12, 14, 8, 17, 19].

Let \(f : X \times Y \to \{0, 1\} \) be a Boolean function, where \(X \) and \(Y \) are arbitrary sets. The one-way communication task associated to \(f \) is the following: Alice receives an input \(x \in X \), Bob receives an input \(y \in Y \) and the goal is for Bob to output \(f(x, y) \). The assumption here is that only one message can be sent, from Alice to Bob, and the communication cost of a protocol is the number of bits of this message on the worst-case input. We say that a protocol for \(f \) has completeness error \(\epsilon \) if it outputs 1 with probability at least \(1 - \epsilon \) whenever \(f(x, y) = 1 \), and soundness error \(\delta \) if it outputs 0 with probability at least \(1 - \delta \) whenever \(f(x, y) = 0 \). The one-way classical bounded-error communication complexity of \(f \), denoted by \(R_1(f) \), is the minimum, over all protocols \(P \) for \(f \) with completeness and soundness error \(1/3 \), of the communication cost of \(P \). The one-way quantum bounded-error communication complexity of \(f \), denoted by \(Q_1(f) \), is defined similarly, but a quantum message can be used this time from Alice to Bob and the number of qubits of the message is considered. (In this paper we suppose that there is no prior entanglement and no shared randomness between Alice and Bob). Obviously, for any function \(f \), the relation \(Q_1(f) \leq R_1(f) \leq \lceil \log_2 |X| \rceil \) holds.

One of the main open problems in quantum communication complexity is to understand how large the gap between \(R_1 \) and \(Q_1 \) can be. For partial functions (functions restricted to some domain \(R \subset X \times Y \) or, equivalently, functions with a promise on their inputs), exponential separations between these two quantities have been recently established [8, 17, 19]. However the situation for total functions is far less clear: the largest gap known is an asymptotic factor of 2 [23].

Note that in the exact setting, i.e., the setting where no error and no give up are allowed, the quantum and classical one-way communication complexities are known to be the same for any total function [14]. In the unbounded-error setting, i.e., the setting where any error probability less than \(1/2 \) is allowed, it is known that the gap is exactly a factor 2 for both partial and total functions [12].

Note also that for total functions in the bounded-error setting, quadratic gaps are known in the two-way model [13, 2] and exponential gaps are known in the simultaneous message-passing model [18, 5]; and these models are respectively stronger and weaker than the one-way model. Thus, whether a superlinear gap between \(R_1 \) and \(Q_1 \) can be achieved for some total function is an intriguing question.

The subgroup membership function

Many of the problems for which quantum computation is more powerful than classical computation have group-theoretic structure. In particular, Watrous [22] has used the subgroup membership problem (as a computational problem) to separate the complexity classes \(MA \) and \(QMA \) relative to an oracle. Inspired by Watrous’s work [22], we propose the subgroup membership function as a candidate to show a superlinear gap between \(R_1 \) and \(Q_1 \). Let \(G \) be any finite group, and let \(\mathcal{H}_G \) denote the set of subgroups of \(G \). Then the subgroup membership function for \(G \), denoted by \(MEMB_G \), is the total function with domain \(\mathcal{H}_G \times G \) such that

\[
MEMB_G(H, y) = \begin{cases}
1 & \text{if } y \in H, \\
0 & \text{if } y \notin H.
\end{cases}
\]
THE ONE-WAY COMMUNICATION COMPLEXITY OF SUBGROUP MEMBERSHIP

For any group G, the upper bound $|H_G| \leq 2^{(\log_2 |G|)^2}$ follows easily from the fact that any subgroup of G is generated by at most $\log_2 |G|$ elements. Furthermore, there exist families of groups G such that $|H_G| = 2^{\Omega((\log |G|)^2)}$: for example, the abelian groups $G = \mathbb{Z}_r^*$ with $r \geq 1$. Thus there exist groups G for which the “trivial protocol,” wherein Alice simply sends Bob the name of her subgroup, requires $\Theta((\log |G|)^2)$-bit communication. The one-way classical communication complexity of the function MEMB$_G$ was previously considered by Miltersen et al. [16] who showed that for the family of groups $G = \mathbb{Z}_r^*$, any one-way protocol with perfect soundness and completeness error $1/2$ requires $\Omega((\log |G|)^2)$-bit communication. For certain groups G, we conjecture that $\Omega((\log |G|)^2)$-bit communication is needed even if the completeness and soundness errors are both $1/3$.

On the other hand, there is a simple quantum one-way protocol, using $O(\log |G|)$-qubit communication, by which Bob can compute MEMB$_G$ with perfect completeness and constant soundness for any group G. In this protocol—inspired by [22]—Alice sends the quantum state $|H\rangle = |H\rangle^{−1/2} \sum_{h \in H} |h\rangle$. Bob then creates the state

$$\frac{1}{\sqrt{2}} (|H\rangle|0\rangle + |yH\rangle|1\rangle)$$

where $|yH\rangle = |H\rangle^{−1/2} \sum_{h \in H} |yh\rangle$, applies a Hadamard gate on the last register, and measures it in the basis $\{|0\rangle, |1\rangle\}$ to decide which of $|H\rangle = |yH\rangle$ and $\langle H|yH\rangle = 0$ holds.

Thus, proving that there exists a family of groups G such that $R^1(\text{MEMB}_G) = \Omega((\log |G|)^2)$ would lead to a quadratic separation between R^1 and Q^1 for a total function. In other words, a major objective has been to prove a 2-sided-error version of the lower bound by Miltersen et al. [16] mentioned above. Apart from the goal of proving a separation between R^1 and Q^1, we believe that the communication complexity of deciding subgroup membership is interesting in itself, since the latter is a key task in many group-theoretic computational problems.

Overview of our results In this paper we present four upper bounds on the one-way classical communication complexity of the subgroup membership function:

- We give a classical protocol using $[\log_2 |G|]$-bit communication, with perfect completeness and constant soundness, for the subgroup membership function in the case where Alice’s subgroup H is normal. This suggests that in order to obtain a separation between R^1 and Q^1 using the subgroup membership problem, one must consider groups with many nonnormal subgroups. We also present a lower bound which is tight for some families of groups. Notice that this situation appears to be similar to the status of the Hidden Subgroup Problem: there exists an efficient quantum algorithm solving the problem in the case where the hidden subgroup is normal [10]; without the normality condition, however, very little is known. Our results rely on the theory of representations of finite groups and especially on the connection between kernels of irreducible representations and normal subgroups, as did the algorithms of [10].

- We then discuss an immediate generalization of this protocol that efficiently recovers general subgroups of a group G under the assumption that G possesses a large abelian subgroup A. This yields a protocol with communication complexity $O([G : A] \log |G|)$, where $[G : A] = |G|/|A|$

\footnote{Borovik, Pyber, and Shalev [4] have improved this naive bound to $|G|^{(1/4 + o(1)) \log_2 |G|}$.}
As we remarked above, one can obtain some control of the ratio d_{MEMB} of subgroup membership problem, and provide natural candidates for which a superlinear separation seems more challenging. In general, one has, for any prime p, $\log_p G \leq [G : A]$ for any abelian subgroup A of G; hence this result subsumes the previous one.

- Let p be a prime not dividing $|G|$. Then we show that $R^1(\text{MEMB}_G) = O(d_{\text{max}}^0 \cdot \log |G|)$, where d_{max}^0 is the maximum degree of an irreducible complex representation of G. We remark that $d_{\text{max}}^0 \leq [G : A]$ for any abelian subgroup A of G; hence this result subsumes the previous one.

- Let p be a prime not dividing $|G|$. Then we show that $R^1(\text{MEMB}_G) = O(d_{\text{max}}^0 \cdot \log |G|)$, where d_{max}^0 is the maximum degree of an irreducible complex representation of G. We remark that $d_{\text{max}}^0 \leq [G : A]$ for any abelian subgroup A of G; hence this result subsumes the previous one.

The key idea behind the third and fourth protocols is to send a random vector in the subspace of the group algebra $\mathbb{F}[G]$ stabilized by the subgroup H. A direct implementation of this strategy would require sending a vector of dimension $|G|$. Instead, we use a beautiful characterization of the subspaces of $&mathbb{F}[G]$ stabilized by a subgroup H relying on the representation theory of G. In particular, we observe that it suffices to send a vector of dimension at most d_{max}^0 (in the case $\mathbb{F} = \mathbb{F}_p$) or d_{max}^0 (in the case $\mathbb{F} = \mathbb{C}$) drawn from a probability distribution on the irreducible representations that depends on H. In the former case each component of the vector is an element in \mathbb{F}_p, leading to the $O(\log |G| + d_{\text{max}}^0 \cdot \log p)$ upper bound. For the complex case, the upper bound $O(d_{\text{max}}^0 \cdot \log |G|)$ is obtained by suitably discretizing the vector space and controlling “geometric expansion” around invariant spaces.

As there is a straightforward protocol with communication complexity $O(\log^2 |G|)$, the third and fourth protocols above are interesting for groups with $d_{\text{max}}^0 = o(\log^2 |G|)$ or $d_{\text{max}}^0 = o(\log |G|)$. Recall that abelian groups have $d_{\text{max}}^0 = 1$ and that, in general, $d_{\text{max}}^0 < \sqrt{|G|}$. In this context, we can interpret the condition that d_{max}^0 is small as a quantitative notion that a group is “nearly abelian.” Indeed, by Frobenius reciprocity, one can immediately conclude that $d_{\text{max}}^0 \leq [G : A]$ for any abelian subgroup A of G; see Proposition 4.1 below. Conversely, there is always an abelian subgroup A_0 of G of index no more than $(d_{\text{max}}^0)^K$ for a constant K [9]. Establishing a purely group-theoretic interpretation for bounds on d_{max}^0 seems more challenging. In general, one has, for any prime p not dividing $|G|$, the relation $d_{\text{max}}^p \geq d_{\text{max}}^0$. As we remarked above, one can obtain some control of the ratio $d_{\text{max}}^p/d_{\text{max}}^0$ as a function of exponent; see Proposition 4.4 below. We also remark that there are groups for which $d_{\text{max}}^p \log p < d_{\text{max}}^0 \log |G|$, so that the modular protocol can be more efficient than the C-protocol. An example is the group $\mathbb{Z}_5 \ltimes \mathbb{Z}_{31}$ (with GAP SmallGroup index $[155,1]$), for which $d_{\text{max}}^p = d_{\text{max}}^0 = 5$.

These results suggest a nontrivial connection between the representation theory of the group G and the subgroup membership problem, and provide natural candidates for which a superlinear separation
between $R^1(\text{MEMB}_G)$ and $Q^1(\text{MEMB}_G)$ may be obtained: groups with large irreducible representations and many nonnormal subgroups, e.g., the symmetric group.

2 Preliminaries

We assume the reader is familiar with basic concepts of group theory. Here we introduce some notions from representation theory that we will need. In this paper, G always denotes a finite group and 1 denotes its identity element.

Let F be a field whose characteristic p does not divide the order of G (so the characteristic of F could be zero). An F-representation ρ of G is a homomorphism from G to $\text{GL}(V)$, the group of invertible linear transformations over a vector space V (over the field F). The degree of ρ, denoted d_ρ or $\text{dim}\rho$, is the dimension of V.

For a representation $\rho : G \to \text{GL}(V)$, we say that a subspace $W \subset V$ is invariant if $\rho(g)W \subset W$ for all $g \in G$. We say that a representation $\rho : G \to \text{GL}(V_p)$ is irreducible if the only invariant subspaces of V_p are the trivial ones: $\{0\}$ and V_p.

The group algebra $F[G]$ is the F-algebra of formal sums $\sum_{g \in G} \alpha_g \cdot e_g$, $\alpha_g \in F$, with coordinate-wise addition and multiplication defined by linearly extending the rule $e_g \cdot e_h = e_{gh}$. Note that $F[G]$ has dimension $|G|$ as a vector space over F. The natural action of G on the group algebra gives it the structure of a representation: the action of $x \in G$ on a vector $v = \sum_{g \in G} \alpha_g \cdot e_g$ in $F[G]$ is denoted by xv and is given by $xv = \sum_{g \in G} \alpha_g \cdot e_{gx}$.

Maschke’s theorem (see, e.g., [6, 20]) asserts that in this case where $p \nmid |G|$, the algebra $F[G]$ is semi-simple and, in particular, may be written as the direct sum of a family of irreducible representations. It follows, additionally, that every irreducible representation appears in the direct sum and hence that there are a finite number of irreducible representations up to isomorphism. In general, we may write

$$F[G] \cong \bigoplus_{\rho \in \text{Irr}(G,F)} V_\rho^{\oplus m_\rho},$$

where $\text{Irr}(G,F)$ denotes the set of (representatives of) all the irreducible F-representations and m_ρ denotes the multiplicity with which ρ appears in $F[G]$. We remark that when F is algebraically closed we have $m_\rho = d_\rho$, the degree of ρ.

Now, if H is a subgroup of G, let $I_H = \{ v \in F[G] \mid hv = v \text{ for all } h \in H \}$ be the subspace of H-invariant vectors of $F[G]$. It is easy to check that a vector v lies in I_H if and only if v is constant on each left coset of H in G; thus $\dim I_H = [G : H]$, where $[G : H] = |G|/|H|$ denotes the index of H in G. Likewise, for an irreducible representation $\rho : G \to \text{GL}(V_p)$, we let $I_H(\rho) = \{ v \in V_p \mid hv = v \text{ for all } h \in H \}$.

Let $v \in I_H$ be an H-invariant vector; decomposing v according to the direct sum (2.1) we may write $v = \sum_\alpha v_\alpha$ in which case

$$hv = \sum_\alpha hv_\alpha = \sum_\alpha v_\alpha.$$
As each factor is invariant, it follows that each v_α is H-invariant and hence that
\[
I_H \cong \bigoplus_{\rho \in \text{Irr}(G,F)} [I_H(\rho)]^{\oplus m_\rho} \quad \text{and} \quad \sum_{\rho \in \text{Irr}(G,F)} m_\rho \dim I_H(\rho) = [G : H].
\] (2.2)

A final remark is in order about the case when F is algebraically closed. In this case, as mentioned above $m_\rho = d_\rho$ and by counting dimensions in (2.1) we obtain the equality $\sum \rho d_\rho^2 = |G|$. For any irreducible F-representation ρ of G, the kernel of ρ is defined as $\ker(\rho) = \{g \in G \mid \rho(g) = \rho(1)\}$, a normal subgroup of G. Let H be a normal subgroup of G and let $\Lambda_F(G,H) = \{\rho \in \text{Irr}(G,F) \mid H \leq \ker \rho\}$ be the set of irreducible F-representations of G whose kernel contains H. Then the elements of $\Lambda_F(G,H)$ are in bijective correspondence with the elements of $\text{Irr}(G/H,F)$ and the following equality holds:
\[
\sum_{\rho \in \Lambda_F(G,H)} d_\rho^2 = |G : H|.
\] (2.3)

3 Normal subgroups

In this section we give an efficient classical protocol computing the subgroup membership function in the special case where Alice’s subgroup H is normal.

Given a finite group G, let \mathcal{H}_G^n be the set of normal subgroups of G. In this section we work with the algebraically closed field $F = \mathbb{C}$. The protocol testing membership in normal subgroups, denoted by $\text{NORM}(G)$, is as follows.

Protocol $\text{NORM}(G)$

ALICE’S INPUT: a normal subgroup $H \in \mathcal{H}_G^n$.

BOB’S INPUT: an element $y \in G$.

BOB’S OUTPUT: $z \in \{0,1\}$.

1. Alice chooses a random element ρ of $\Lambda_F(G,H)$ with probability $d_\rho^2 |H|/|G|$;
2. Alice sends the name of ρ to Bob;
3. Bob outputs 1 if $\rho(y) = \rho(1)$ and outputs 0 otherwise.

Observe that by (2.3), the weights of Step 1 do indeed determine a probability distribution. Notice that, since $|\Lambda_F(G,H)| \leq |G|$, Protocol $\text{NORM}(G)$ can be implemented using $\lceil \log_2 |G| \rceil$ bits of communication. We now establish the correctness of this protocol.

Proposition 3.1. On any input $(H,y) \in \mathcal{H}_G^n \times G$, Protocol $\text{NORM}(G)$ outputs 1 with probability 1 if $y \in H$, and outputs 0 with probability at least 1/2 if $y \notin H$.

Proof. If $y \in H$, then for any element ρ in $\Lambda_F(G,H)$ the equality $\rho(y) = \rho(1)$ holds. Then Bob always outputs 1. Protocol $\text{NORM}(G)$ has thus perfect completeness.

Now suppose that $y \notin H$. Denote $B = \{\mu \in \Lambda_F(G,H) \mid \mu(y) = \mu(1)\}$. The error probability of the protocol is
\[
\frac{|H|}{|G|} \sum_{\mu \in B} d_\mu^2.
\]
To conclude our proof, we now prove that $\sum_{\mu \in B} d_{\mu}^2 \leq |G|/(2|H|)$. Let K denote the normal closure of the set $H \cup \{y\}$ in G. Recall that the normal closure of a set $S \subseteq G$ is the smallest normal subgroup of G including S, and can be defined explicitly as the subgroup of G generated by all the elements gzg^{-1} for $g \in G$ and $z \in S$. Since $y \notin H$ the subgroup H is a proper subgroup of K. In particular $|K|/|H| \geq 2$. We now claim that $B = \Lambda_F(G,K)$. Then (2.3) implies that

$$\sum_{\mu \in B} d_{\mu}^2 = \sum_{\mu \in \Lambda_F(G,K)} d_{\mu}^2 = |G : K| \leq \frac{|G|}{2|H|}.$$

The proof of the claim follows. First suppose that μ is an element of $\Lambda_F(G,K)$. Then $\mu(y) = \mu(1)$ and thus $\mu \in B$. Now suppose that μ is an element of B. Then $H \cup \{y\} \subseteq \ker(\mu)$. From the fact that $\ker(\mu)$ is a normal subgroup of G, we conclude that $K \subseteq \ker(\mu)$ and thus $\mu \in \Lambda_F(G,K)$.

We conclude that Protocol NORM(G) solves the restriction of MEMB$_G$ to the domain $\mathcal{K}_G^* \times G$ (notice that this is still a total function).

Theorem 3.2. For any finite group G, the restriction of MEMB$_G$ to the domain $\mathcal{K}_G^* \times G$ can be computed with perfect completeness and soundness error $1/2$ by communicating at most $\lfloor \log_2 |G| \rfloor$ bits.

Note that, when H is not normal, our protocol can still be used to decide efficiently membership in the normal closure of H (the smallest normal subgroup of G containing H).

We now show a simple lower bound on the communication complexity of MEMB$_G$. We first recall the definition of the VC-dimension of a set of functions [21].

Definition 3.3. Let Σ be a set of Boolean functions over a finite domain Y. We say that a set $S \subseteq Y$ is shattered by Σ if for every subset $R \subseteq S$ there exists a function $\sigma_R \in \Sigma$ such that $\forall y \in S, (\sigma_R(y) = 1$ if and only if $y \in R)$. The largest size of set S over all S shattered by Σ is the VC-dimension of Σ, denoted by $VC(\Sigma)$.

We say that a subset S of a finite group G is an independent subset of G if, for each $g \in S$, element g cannot be written as any product of elements of $S \setminus \{g\}$. We denote by $\gamma(G)$ the maximum size of an independent subset of G. Notice that, for any finite group G, the inequality $\gamma(G) \leq \log_2 |G|$ holds. We now state our lower bound.

Proposition 3.4. $Q^1(\text{MEMB}_G) = \Omega(\gamma(G))$. In particular, the family of groups $G = \mathbb{Z}_2^r$ for $r \geq 1$ satisfies $Q^1(\text{MEMB}_G) = \Omega(\log |G|)$.

Proof. For each subgroup $H \in \mathcal{K}_G$, define the function $f_H : G \rightarrow \{0,1\}$ as $f_H(y) = \text{MEMB}_G(H,y)$ for every $y \in G$. Denote $\Sigma = \{f_H \mid H \in \mathcal{K}_G\}$. A result by Klauck [14] implies that $Q^1(\text{MEMB}_G) \geq (1 - h(1/3)) \cdot VC(\Sigma)$, where h is the binary entropy function.

Let $g_1, \ldots, g_{\gamma(G)}$ be distinct elements of G such that $S = \{g_1, \ldots, g_{\gamma(G)}\}$ is a subset of independent elements of G. The subset $S \subseteq G$ is shattered by Σ since it is easy to show that, for any subset $R \subseteq S$, the function $f_{\langle R \rangle}$ is such that $\forall y \in S, f_{\langle R \rangle}(y) = 1$ if and only if $y \in R$ (here $\langle R \rangle$ denotes the subgroup generated by the elements in R). Then $VC(\Sigma) \geq \gamma(G)$ and $Q^1(\text{MEMB}_G) \geq (1 - h(1/3)) \cdot \gamma(G)$.

The second part of the proposition follows from the observation that each group \mathbb{Z}_2^r is also a vector space of dimension r over the finite field \mathbb{Z}_2 and, thus, $\gamma(\mathbb{Z}_2^r) = r = \log_2 (|\mathbb{Z}_2^r|)$. \square
Proposition 3.4 shows that, for the family of groups $G = \mathbb{Z}_2^r$, Protocol NORM(G) is optimal up to a constant factor.

4 Algorithms for general subgroups

We begin by considering the case where G has a large abelian subgroup A which can be handled as a natural extension of the protocol above for normal subgroups.

Proposition 4.1. Let A be an abelian subgroup of G. Then $R^1(\text{MEMB}_G) = O(\langle G : A \rangle \log |G|)$. In particular, if G possesses an abelian subgroup of constant index then $R^1(\text{MEMB}_G) = O(\log |G|)$.

Proof. Let $T \subset G$ be a left transversal for the subgroup A so that G is the disjoint union $\bigcup_{t \in T} tA$ and $|T| = \langle G : A \rangle$. For each coset tA for which $tA \cap H \neq \emptyset$ let h_t be an element of $tA \cap H$; for bookkeeping purposes, we write $h_t = \perp$ in the case that $A_t \cap H = \emptyset$.

Now, Alice sends to Bob the entire vector $(h_t)_{t \in T}$, a message of length $O(\langle G : A \rangle \log |G|)$. Following this, she executes the protocol described above for the subgroup $H \cap A$ of the group A (in which all subgroups are normal); this uses $O(\log |A|)$ bits.

As for Bob, he determines the (left-)coset $t_y A$ in which his input y lies. If $h_t = \perp$, $H \cap t_y A = \emptyset$ and he can answer “$y \not\in H$” with certainty. Otherwise, he computes $(h_t)^{-1} y$; observe that $(h_t)^{-1} y \in A$ and, furthermore,

$$(h_t)^{-1} y \in H \cap A \iff y \in H,$$

because $h_t \in H$. Thus the result of the protocol for $H \cap A$ with this translated element $(h_t)^{-1} y$ suffices to determine (with soundness 1/2) if $y \in H$.

Defining

$$a(G) \triangleq \min_{\substack{A \subseteq G \text{ \text{ab}}}} \langle G : A \rangle,$$

the above protocol establishes $R^1(\text{MEMB}_G) = O(a(G) \log |G|)$. In order to beat this $O(a(G) \log |G|)$ bound, we will develop two noncomparable protocols exploiting the representation-theoretic properties of the group. We present a protocol over finite fields first, as both the protocol and the proof are easier to describe; this provides the complexity guarantee $O(\log |G| + d^0_{\max} \log p)$. Following this, we present a protocol using C-representations with $O(d^0_{\max} \log |G|)$ complexity which, as we show below, is no worse than that offered by Proposition 4.1.

Lemma 4.2. Let G be a finite group, then $d^0_{\max} \leq a(G)$.

Proof. We use some elementary representation-theoretic machinery not discussed in the introduction: induced representations and Frobenius reciprocity. Our notation follows [20].

Let ρ be an irreducible representation of G and A an abelian subgroup of G. It suffices to show that $\dim \rho \leq \langle G : A \rangle$. To this end, let χ be an irreducible representation of A appearing in $\text{Res}_A \rho$. Observe that

$$1 \leq \langle \text{Res}_A \rho, \chi \rangle_A = \langle \rho, \text{Ind}^G \chi \rangle_G$$

by Frobenius reciprocity: thus ρ appears in $\text{Ind}^G \chi$. Hence $\dim \rho \leq \dim \text{Ind}^G \chi = \langle G : A \rangle$, as χ (an irreducible representation of an abelian group) has degree one. \hfill \Box
4.1 Algorithms for groups with small modular representations

In this section we present a protocol computing the group membership function for groups with small modular representations. Let \mathbb{F}_q be a finite field with characteristic p not dividing $|G|$. Our protocol, denoted by $\text{MOD-REP}(G, \mathbb{F}_q)$, is the following.

Protocol $\text{MOD-REP}(G, \mathbb{F}_q)$
- **ALICE’S INPUT**: a subgroup $H \subseteq \mathcal{H}_G$.
- **BOB’S INPUT**: an element $y \in G$.
- **BOB’S OUTPUT**: $z \in \{0, 1\}$.

1. Alice chooses a representation $\rho : G \to \text{GL}(V)$ in $\text{Irr}(G, \mathbb{F}_q)$ with probability $|H| \cdot m_\rho \cdot \dim I_H(\rho)/|G|$;
2. Alice chooses a random vector $v \in I_H(\rho) \subseteq V$;
3. Alice sends the name of ρ and the vector v to Bob;
4. Bob outputs 1 if $\rho(y) v = v$ and outputs 0 otherwise.

Observe that by (2.2), the weights of Step 1 do indeed determine a probability distribution.

We now establish the correctness of this protocol.

Theorem 4.3. Let G be a finite group and \mathbb{F}_q be a finite field of characteristic p not dividing $|G|$. Protocol $\text{MOD-REP}(G, \mathbb{F}_q)$ computes MEMB_G with perfect completeness and constant soundness error. Its communication complexity is at most $\lceil \log_2 |G| \rceil + d_{\max}^q \cdot \lceil \log_2 q \rceil$ bits, where d_{\max}^q is the maximum degree of an irreducible \mathbb{F}_q-representation of G.

Proof. Note that the protocol is clearly complete: if $y \in H$, then Bob always accepts.

To establish soundness, let $y \notin H$ and define $K = \langle H, y \rangle$, the smallest subgroup containing both H and y. Recall that $I_K(\rho)$ denotes the subspace of V pointwise fixed by K. Observe that for any ρ, $I_K(\rho) \subseteq I_H(\rho)$ and, when ρ is selected according to the probability distribution above,

$$E_\rho \left[\frac{\dim I_K(\rho)}{\dim I_H(\rho)} \right] = \sum_{\rho} \frac{|H|m_\rho \dim I_K(\rho)}{|G|} = \frac{|H|}{|K|} \geq \frac{1}{|K:H|} \leq \frac{1}{2},$$

again by (2.2). Considering that

$$E_\rho \left[\frac{\dim I_K(\rho)}{\dim I_H(\rho)} \right] \geq \Pr[I_K(\rho) = I_H(\rho)]$$

we conclude that

$$\Pr[I_K(\rho) \neq I_H(\rho)] = 1 - \Pr[I_K(\rho) = I_H(\rho)] \geq 1/2.$$

In the event that $I_K(\rho) \neq I_H(\rho)$, the vector v chosen by Alice has probability no more than $1/q$ to lie in $I_K(\rho)$. Then $\rho(y)v \neq v$ with constant probability in her choices of ρ and v.

Since $|\text{Irr}(G, \mathbb{F}_q)| \leq |G|$, the communication complexity of the protocol is at most $\lceil \log_2 |G| \rceil + d_{\max}^q \cdot \lceil \log_2 q \rceil$. □
We remark that in certain cases, it could be possible to optimize the protocol by adjusting the probability distribution on the representations of G as a function of the subgroup H (and the structure of the representations of G).

In light of the complexity guarantee of the protocol above, it is natural to ask how the degrees of the irreducible representations of a finite group G compare over various fields and, especially, how the modular case compares to the complex case. When the group algebras involved are semi-simple (as they are in this paper due to our insistence that $p \nmid |G|$), there is a tight connection expressed in the following proposition.

Proposition 4.4. Let G be a finite group of exponent m and p be any prime not dividing $|G|$. Then the relation $d_{\text{max}}^p \leq d_{\text{max}}^0 \cdot \text{ord}_m(p)$ holds, where d_{max}^0 is the maximum degree of a complex irreducible representation of G, d_{max}^p is the maximum degree of an irreducible \mathbb{F}_p-representation of G, and $\text{ord}_m(p)$ is the order of p in \mathbb{Z}_m, the multiplicative group of the integers relatively prime to m.

Proof. This is a consequence of the “c-d-e triangle” (see [20]). See Appendix A for a brief discussion.

As there always exists a prime p of size $O(\log |G|)$ that does not divide $|G|$, we obtain the following corollary.

Corollary 4.5. $R^1(\text{MEMB}_G) = O(\log |G| + d_{\text{max}}^0 \cdot m \cdot \log \log |G|)$, where m denotes the exponent of G and d_{max}^0 is the maximum degree of a complex irreducible representation of G.

4.2 Algorithms for groups with small \mathbb{C}-representations

We now focus on the case where the degrees of the irreducible \mathbb{C}-representations of G is under control. The key idea is to discretize the protocol given in the previous section. To achieve this goal we use the concept of an ε-net of a sphere. (As our nets will lie in the vector spaces acted upon by the irreps of G, we define them as subsets of complex Hilbert spaces.)

Definition 4.6. Let V be a finite-dimensional complex Hilbert space. An ε-net of V is a finite family of unit-vectors $N \subseteq V$ so that for every unit-length vector $w \in V$, there is a vector $n \in N$ so that $|\langle n, w \rangle|^2 > 1 - \varepsilon^2$.

Proposition 4.7. For any $\varepsilon > 0$ and for any complex Hilbert space V of dimension d, there exists an ε-net of size at most $(4/\varepsilon)^{2d}$.

Proof. For any dimension d and distance $\varepsilon > 0$, there is a set of points $A \subseteq S^{d-1}$ of cardinality no more than $(4/\varepsilon)^d$ with the property that every point of S^{d-1} has distance no more than ε from some point of A (see, e.g., [15, §3.1]). This yields a set with analogous properties of size no more than $(4/\varepsilon)^{2d-1}$ for the complex d-sphere, which has the same metric as the real $2d - 1$ sphere. Note that if v and w are two unit vectors of V, we may write $v = \langle v, w \rangle w + r$ with $\langle r, w \rangle = 0$ in which case, $||r|| \leq ||v - \langle v, w \rangle w|| = ||v - w||$ and $||r||^2 = 1 - |\langle v, w \rangle|^2$. The statement of the proposition follows.

Our protocol requires the choice of a sufficiently dense ε-net for each irreducible representation in $\text{Irr}(G, \mathbb{C})$. This choice is independent of the inputs of the protocol and so can be done by Alice and Bob without communication. The protocol is as follows.
THE ONE-WAY COMMUNICATION COMPLEXITY OF SUBGROUP MEMBERSHIP

Protocol COMP-REP(G, ε)

ALICE’S INPUT: a subgroup $H \in \mathcal{H}_G$
BOB’S INPUT: an element $y \in G$
BOB’S OUTPUT: $z \in \{0, 1\}$.
1. Alice and Bob agree on an ε-net N_ρ of V_ρ for each $\rho : G \to \text{GL}(V_\rho)$ in $\text{Irr}(G, \mathbb{C})$;
2. Alice chooses a representation $\rho : G \to \text{GL}(V_\rho)$ in $\text{Irr}(G, \mathbb{C})$ with probability $|H| \cdot d_\rho \cdot \dim I_H(\rho)/|G|$;
3. Alice chooses a random (according to Haar measure) unit length vector $v \in I_H(\rho) \subseteq V_\rho$;
4. Alice sends Bob the name of ρ and the closest vector \mathbf{n} in N_ρ to the vector v;
5. If $|1 - \langle \rho(y)\mathbf{n}, \mathbf{n} \rangle| < 2\varepsilon$, then Bob outputs 1;
 Otherwise $|1 - \langle \rho(y)\mathbf{n}, \mathbf{n} \rangle| > 2\varepsilon$, and Bob outputs 0.

Observe that by (2.2), the weights at Step 2 do indeed determine a probability distribution on $\text{Irr}(G, \mathbb{C})$. Ideally, at Step 3, Alice would communicate v to Bob: Bob could then check if $\rho(y)v = v$ and, if so, would figure that $y \in H$. If $\rho(y)v \neq v$, Bob would be sure that $y \notin H$, since $I_H(\rho)$ is precisely the fixed space of H. The proof below shows that by sending a sufficiently close approximation to v, Bob can still answer confidently.

The following theorem states the correctness and the communication complexity of this protocol.

Theorem 4.8. There exists a choice of ε_G such that Protocol COMP-REP(G, ε_G) computes MEMB$_G$ with perfect completeness and constant soundness error by communicating $O(d_{\text{max}}^0 \cdot \log |G|)$ bits, where d_{max} denotes the maximum degree of an irreducible \mathbb{C}-representation of G.

Proof. As the name of the representation ρ can be encoded using $\lceil \log_2 |G| \rceil$ bits, the communication complexity of the protocol will be dominated by the number of bits necessary to encode the vector \mathbf{n}. We will show that a choice $\varepsilon = \varepsilon_G = \Omega(1/|G|^2 \text{poly} \log |G|)$ suffices to achieve perfect completeness and constant soundness. According to Proposition 4.7, such an ε-net can be indexed with $O(d_{\rho} \log |G|)$ bits. This gives our upper bound.

We proceed with the analysis of the completeness and soundness of the protocol.

Completeness Observe that if $y \in H$, then the vector v chosen by Alice in the protocol is fixed by $\rho(y)$. Recall that Alice sends Bob a vector \mathbf{n} for which $|\langle \mathbf{n}, v \rangle|^2 \geq 1 - \varepsilon^2$; writing $\mathbf{n} = \langle \mathbf{n}, v \rangle v + r$ (where $r = 0$) we have $1 = \langle \mathbf{n}, \mathbf{n} \rangle = |\langle \mathbf{n}, v \rangle|^2 + \langle r, r \rangle$ and $|r| \leq \varepsilon$. Considering that $\langle \rho(y)\mathbf{n}, \mathbf{n} \rangle = |\langle \mathbf{n}, v \rangle|^2 + \langle \rho(y)r, \mathbf{n} \rangle$ we conclude that

$$|1 - \langle \rho(y)\mathbf{n}, \mathbf{n} \rangle| = |1 - |\langle \mathbf{n}, v \rangle|^2 - \langle \rho(y)r, \mathbf{n} \rangle| \leq (1 - |\langle \mathbf{n}, v \rangle|^2) + |\langle \rho(y)r, \mathbf{n} \rangle| \leq \varepsilon^2 + |\langle \rho(y)r, \mathbf{n} \rangle| .$$

Recall that $\rho(y)$ is unitary, so that $||\rho(y)r|| = ||r||$. Then, by the Cauchy-Schwarz inequality,

$$|1 - \langle \rho(y)\mathbf{n}, \mathbf{n} \rangle| \leq \varepsilon^2 + ||r|| \leq \varepsilon^2 + \varepsilon .$$

As $\varepsilon < 1$, we have $\varepsilon^2 + \varepsilon \leq 2\varepsilon$ and it follows that the protocol has perfect completeness (for any ε).
Soundness We wish to show that for sufficiently small $\varepsilon = 1/\text{poly } |G|$, the protocol has constant soundness. Assume that $y \notin H$ and let $K = \langle H, y \rangle$, the smallest subgroup containing H and y. Our goal will be to show that with constant probability $\langle v, \rho(y)v \rangle$ is far from 1, in which case the same can be said of n so long as ε is sufficiently small.

From (2.2),
\[
\mathbb{E}_\rho \left[\frac{\dim I_K(\rho)}{\dim I_H(\rho)} \right] = \sum_\rho \frac{|H| \dim I_K(\rho)}{|G|} = \frac{|H|}{|K|} = \frac{1}{|K : H|} \leq \frac{1}{2}.
\]
Then, with constant probability, the subspace of $I_K(\rho)$ fixed by y has dimension no more than $2/3 \cdot \dim I_H(\rho)$. We may write the vector $v \in I_H(\rho)$ as $v = v_y + v'$, where $v_y \in I_K(\rho)$ and $v' \in [I_K(\rho)]^\perp$, the space perpendicular to $I_K(\rho)$. We then have $\rho(y)v_y = v_y$ and $v_y \in I_K(\rho) \subset I_H(\rho)$. Now, as v is chosen uniformly on the unit sphere in V_ρ, we have $\mathbb{E}_\rho \|v_y\|^2 = \dim I_K(\rho)/\dim I_H(\rho)$ and the probability $\Pr_{\rho, y} \{ \|v\|^2 \geq 1/6 \}$ is lower bounded by a constant.\(^3\) We wish to conclude that, conditioned on the event $\|v\|^2 \geq 1/6$, the value $\langle v', \rho(y)v' \rangle/\|v'\|^2$ cannot be too close to 1. We will show, in fact, that the real part is appropriately bounded below 1.

Consider the restriction of the representation $\rho : G \to \text{GL}(V_\rho)$ chosen by Alice to the subgroup K: specifically, we may decompose V_ρ as an orthogonal direct sum of K-invariant subspaces: $V_\rho = \bigoplus_{\sigma} W_{\sigma}$, where each σ is in $\text{Irr}(K, \mathbb{C})$ (but copies of the same irrep may appear several times in the direct sum). In this decomposition, v_y is precisely the projection of v into the subspace $\bigoplus_{\sigma \neq 1} W_{\sigma}$ corresponding to the copies of the trivial representation; v', on the other hand, lies solely in $\bigoplus_{\sigma \neq 1} W_{\sigma}$. As both v and v_y lie in $I_H(\rho)$, the difference v' does as well and the projection of v' into each W_{σ} is H-invariant (that is, lies in $I_H(\sigma)$). With this in mind, we shall upper bound
\[
\Re \langle v', \rho(y)v' \rangle
\]
by controlling
\[
\lambda_y \triangleq \max_{\sigma \neq 1} \max_{w \in \text{Irr}(\sigma)} \frac{\Re \langle w, \sigma(y)w \rangle}{\|w\|^2}
\]
taken over all nontrivial irreps σ of K and all H-invariant vectors w in W_{σ}. In particular, writing $v' = \sum_{i : \sigma_i \neq 1} v'_i$ (with each v'_i lying in W_{σ}), we have $\|v'\|^2 = \sum_{i : \sigma_i \neq 1} \|v'_i\|^2$ and
\[
\Re \langle v', \rho(y)v' \rangle = \sum_{i : \sigma_i \neq 1} \Re \langle v'_i, \rho(y)v'_i \rangle \leq \sum_{i : \sigma_i \neq 1} \lambda_y \|v'_i\|^2 = \lambda_y \|v'\|^2.
\]
Observe that if A is a set of generators for H and w is an H-invariant vector of W_{σ},
\[
\langle w, \sigma(y)w \rangle = \langle w, \sigma(y)S_Aw \rangle
\]
where $S_A = S_A^G = \frac{1}{|A|} \sum_{a \in A} \sigma(a)$. Then
\[
\lambda_y \leq \max_{\sigma \neq 1} \max_{w \in W_{\sigma}} \frac{\Re \langle w, \sigma(y)S_Aw \rangle}{\|w\|^2}.
\]
\(^3\)Of course, when $\dim I_K(\rho) < 2/3 \cdot \dim I_H(\rho)$, the random variable $\|v'\|^2$ possesses much stronger concentration around the expected value than this. However, this weak estimate will suffice for us.
(Note that the vector w is not constrained to be H-invariant in this expression.) If we choose A to be a symmetric generating set (so that $a \in A \iff a^{-1} \in A$) then S_A is self-adjoint and $\sigma(y)$ is unitary so that

$$\max_{\sigma \neq 1} \max_{\|w\|=1} \Re \langle w, \sigma(y)S_Aw \rangle = \max_{\sigma \neq 1} \max_{\|w\|=1} \frac{1}{2} \left[\langle w, \sigma(y)S_Aw \rangle + \langle w, S_A\sigma(y^{-1})w \rangle \right].$$

As the operator $\sigma(y)S_A + S_A\sigma(y^{-1})$ is Hermitian, we have

$$\max_{\sigma \neq 1} \max_{\|w\|=1} \Re \langle w, \sigma(y)S_Aw \rangle \leq \max_{\sigma \neq 1} \left\| \frac{\sigma(y)S_A + S_A\sigma(y^{-1})}{2} \right\|$$

where $\| \cdot \|$ denotes the operator norm.

In order to control this operator norm, observe that the linear operator $(1/2) \left[\sigma(y)S_A + S_A\sigma(y^{-1}) \right]$ is precisely given by the left action of the group algebra element

$$[A, y] \triangleq \frac{1}{2|A|} \left[\sum_{a \in A} e_{ya} + \sum_{a \in A} e_{ay^{-1}} \right] \in \mathbb{C}[K] \tag{4.1}$$

on the invariant subspace W_σ of $\mathbb{C}[K]$ corresponding to the representation σ. Alternatively, we may consider the Cayley graph on the group K given by the symmetric generating (multi-)set $yA \cup Ay^{-1}$. The (normalized) adjacency matrix of this Cayley graph is identical to the regular representation evaluated at the group algebra element (4.1) above. As $yA \cup Ay^{-1}$ is a (symmetric) generating set for K, the operator norm of $\sigma([A, y])$ is bounded below 1 for each nontrivial σ (see, e.g., [11]). In order to conclude the proof, we require explicit bounds on this spectral gap.

A result of Erdős and Rényi [7] asserts that we may select a set of generators A for H of size $O(\log |H|)$ so that the diameter of the resulting Cayley graph (generated by A over H) is $O(\log |H|)$. Considering that the diameter of A (as generators for H) is $O(\log |H|)$, it is easy to see that the set $yA \cup Ay^{-1}$ induces a Cayley graph on K of diameter no more than $O(|K : H| \log |H|)$.

Now we may invoke a theorem of Babai [3] asserting that the second eigenvalue of any (undirected) Cayley graph with degree d and diameter Δ is no more than $d - \Omega(1/\Delta^2)$. (If we normalize the adjacency matrix by degree, the second eigenvalue is no more than $1 - \Omega(1/(d\Delta^2))$.) We conclude that

$$\Re \frac{\langle v', \rho(y)v \rangle}{\|v'\|^2} \leq \lambda_y \leq \max_{\sigma \neq 1} \left\| \frac{\sigma(y)S_A + S_A\sigma(y^{-1})}{2} \right\| \leq 1 - \Omega \left(\frac{1}{|K : H|^2 \log^3 |H|} \right)$$

and, considering that $\|v'\|^2 \geq 1/6$, that

$$\Re \langle v, \rho(y)v \rangle \leq \|v_y\|^2 + \frac{\Re \langle v', \rho(y)v' \rangle}{\|v'\|^2} \cdot \|v'\|^2 \leq 1 - \Omega \left(\frac{1}{|K : H|^2 \log^3 |H|} \right).$$

Finally, Alice’s n can be written $n = v + r$ with $\|r\| \leq \varepsilon$, in which case

$$| \langle n, \rho(y)n \rangle | \leq 1 - \Omega \left(\frac{1}{|K : H|^2 \log^3 |H|} \right) + 3\varepsilon \leq 1 - 2\varepsilon,$$

for $\varepsilon^{-1} = \Omega(|K : H|^2 \log^3 |H|)$; thus the protocol is sound. \qed
Scott Aaronson, François Le Gall, Alexander Russell, and Seiichiro Tani

Acknowledgments

The authors are grateful to Keith Conrad, Iordanis Kerenidis, and Troy Lee for helpful discussions on this subject. This work has been done when FLG and ST were affiliated with the ERATO-SORST Quantum Computation and Information Project, Japan Science and Technology Agency.

References

THE ONE-WAY COMMUNICATION COMPLEXITY OF SUBGROUP MEMBERSHIP

A Remarks on the relationship between \mathbb{C} and \mathbb{F}_p representations

Let G be a finite group of exponent m (so m is the smallest integer for which $g^m = 1$ for all $g \in G$). We outline a technique for reducing \mathbb{C}-representations of G to \mathbb{F}_p-representations in a manner that preserves irreducibility. For a complete account, see [20]. By a difficult theorem of Brauer (see, e.g., [6]), one may always realize a \mathbb{C}-irrep over the field $\mathbb{Q}[\zeta_m]$ where ζ_m is a primitive mth root of unity. (It is natural to guess that this might be true, as all eigenvalues of a representation of G are mth roots of unity.) Let $\mathbb{Z}[\zeta_m]$ be the ring of algebraic integers in $\mathbb{Q}[\zeta_m]$ (it so happens that in this cyclotomic case $\mathbb{Z}[\zeta_m]$ is indeed the ring of algebraic integers). Let $p > 2$ be a prime, and let $\mathfrak{P} = \mathbb{Z}[\zeta_m](p)$; this is a prime ideal of $\mathbb{Z}[\zeta_m]$ lying over p in the sense that $\mathfrak{P} \cap \mathbb{Z} = (p)$. Now, if only the representation could be realized over $\mathbb{Z}[\zeta_m]$, we could simply reduce mod \mathfrak{P} and obtain a representation over an extension of \mathbb{F}_p. However, this is either not always true or just not known to be true by the authors. To fix the problem, one first localizes at \mathfrak{P}; that is, we consider the ring $\mathbb{Z}[\zeta_m][\mathfrak{P}]$ of all fractions with the property that the denominator lies outside \mathfrak{P}; this is a principal ideal domain with a single prime (and maximal) ideal \mathfrak{P}. In this case, the representation can be realized over $\mathbb{Z}[\zeta_m][\mathfrak{P}]$, as this PID generates the whole field as its field of fractions (see [6, §73.6]). Now we can reduce mod \mathfrak{P}; the result is a matrix realization over the field $\mathbb{Z}[\zeta_m]/\mathfrak{P}$; it is easy to check that this is an extension of the field $\mathbb{F}_p = \mathbb{Z}/(p)$. Furthermore, the degree of this extension field is the multiplicative order of p modulo m (the same as the extension of the splitting field of the polynomial $X^m - 1$ over \mathbb{F}_p). This immediately gives rise to a representation over the field \mathbb{F}_q with $q = p^{\text{ord}_m} \leq p^{\phi(m)}$. We remark that this process preserves irreducibility, and induces a complete decomposition of $\mathbb{F}_p[G]$ into irreducible representations.