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A concentration inequality for the overlap of
a vector on a large set

With application to the communication complexity of the
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Abstract: Given two sets A,B⊆ Rn, a measure of their correlation is given by the expected
squared inner product between random x ∈ A and y ∈ B. We prove an inequality showing
that no two sets of large enough Gaussian measure (at least e−δn for some constant δ > 0)
can have correlation substantially lower than would two random sets of the same size. Our
proof is based on a concentration inequality for the overlap of a random Gaussian vector on
a large set.

As an application, we show how our result can be combined with the partition bound of
Jain and Klauck to give a simpler proof of a recent linear lower bound on the randomized
communication complexity of the Gap-Hamming-Distance problem due to Chakrabarti and
Regev.
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1 Introduction

Let A,B be two non-empty measurable subsets of Rn equipped with the n-dimensional Gaussian measure
γ . Denote by γ|A×B the probability measure corresponding to the normalized restriction of γ× γ to A×B,
and let

ν(A,B) := E(x,y)∼γ|A×B

[
(x · y)2 ] .

∗Supported by the National Science Foundation under Grant No. 0844626.

2012 Thomas Vidick
Licensed under a Creative Commons Attribution License DOI: 10.4086/cjtcs.2012.001

http://dx.doi.org/10.4086/cjtcs
http://cjtcs.cs.uchicago.edu/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/cjtcs.2012.001


THOMAS VIDICK

The quantity ν(A,B) can be interpreted as a measure of correlation between A and B: a large ν indicates
sets with mostly aligned vectors, while a small ν indicates sets of vectors that are close to being pairwise
orthogonal.

A vector x ∈ Rn distributed according to γ has squared norm tightly concentrated around n (precisely,
it follows a χ2(n) distribution, with expectation n, variance

√
2n and sub-exponential tails). By rotation

invariance of γ , for any fixed vector y ∈ Rn the inner-product x · y is distributed as a centered Gaussian
with variance ‖y‖2. Hence for any non-empty measurable set A it holds that ν(A,Rn) = n = ν(Rn,Rn).

We study the following question: How much smaller than the average value ν(Rn,Rn) can ν(A,B)
be for arbitrary sets A,B of given measure? If we allow both sets A, B to be arbitrarily small then ν can
also be arbitrarily small: take A = {x}, B = {y}, with x,y orthogonal, as the limiting example. If we
allow A to be arbitrarily small, but constrain B to have measure γ(B) ≥ t, where t is a small constant,
then ν(A,B) can still be quite small. Indeed, for a fixed vector x (of norm

√
n) choose B as the fattened

equator B = {y ∈ Rn :−t
√

π n/2≤ y · x≤ t
√

π n/2}, of measure γ(B)≈ t. Then for A an infinitesimal
ball centered at x we get ν(A,B)≤ t2n, an arbitrarily small fraction of ν(Rn,Rn) = n.

In this note we show that in case both A and B are restricted to not being too small, then ν(A,B)
cannot be much lower than ν(Rn,Rn). More precisely we show the following:

Theorem 1.1. For any η > 0, there exists1 a δ > 0 such that for all large enough n, if A, B both have
measure γ(A),γ(B)≥ e−δn then

ν(A,B) ≥ (1−η)ν(Rn,Rn) = (1−η)n. (1.1)

We remark that an analogue of Theorem 1.1 can also be proved for subsets of the unit sphere Sn−1 ⊂ Rn,
with the Haar measure playing the role of the Gaussian measure: indeed, our proof of Theorem 1.1 relies
on concentration properties of the n-dimensional Gaussian measure which also hold for the Haar measure
on the sphere.

Choosing A = B = {x ∈ Rn, ‖x‖2 ≤ (1−δ )n}, of measure at least e−cδn for some fixed c > 0, shows
that the dependence of δ on η in Theorem 1.1 should be at least linear. Our proof only achieves a weaker
dependence δ = Ω(η4).

Note that one may not hope for such a strong inequality as the one proven in Theorem 1.1, but in the
opposite direction: the half-spaces A = B = {x ∈ Rn, x1 ≥

√
2δn} have measure approximately e−δn but

correlation ν(A,B) = Ω(δ 2n2).

Application: the communication complexity of the Gap-Hamming-Distance problem. The moti-
vation for, and main application of, Theorem 1.1 is to give a new, simpler proof of a recent breakthrough
result by Chakrabarti and Regev [2], who proved a linear lower bound on the bounded-error randomized
communication complexity of the Gap-Hamming-Distance (GHD) problem. In this problem, Alice is
given an n-bit string x, and Bob an n-bit string y such that either ∆(x,y)≥ n/2+

√
n or ∆(x,y)≤ n/2−

√
n,

where ∆(x,y) denotes the Hamming distance. The goal is to decide which holds. Proving an Ω(n) lower

1An explicit estimate of δ (as a function of η) can easily be extracted from our proof, although in general we do not attempt
to optimize the exact numerical constants that we give.
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bound for this problem was a long-standing open problem in communication complexity (see [2] for a
detailed history of the problem).

Chakrabarti and Regev’s proof is based on a variant of the smooth rectangle bound [4], and at its core
is an inequality similar to the one we prove in Theorem 1.1, except that it applies to the cosh function,
instead of the square function. More precisely, if one defines

ν̃α(A,B) := E(x,y)∼γ|A×B
[cosh(α x · y) ]

for any α > 0, then the key step in the proof of Theorem 3.5 from [2] consists in showing that, for every
c,η > 0 there is a δ > 0 such that for every 0≤ α ≤ c/

√
n and A, B of measure at least e−δn,

ν̃α(A,B) ≥ (1−η) ν̃α(Rn,Rn). (1.2)

Given that the cosh function has a quadratic behavior around 0, coshx = x2

2 +O(x4), our theorem may
not be so surprising once one knows of (1.2). However, for large values of α x · y the behavior of the
two functions, x2 and coshx, is different enough that we do not see how one could deduce Theorem 1.1
from (1.2) or vice-versa.

The proof of (1.2) is based on a powerful result, Theorem 3.1 in [2], which shows that if A is large
enough then for almost all y ∈ Rn the distribution of 〈x,y〉 for x∼ γ|A is close to a mixture of translated
Gaussians. Theorem 3.1 can be seen to imply both (1.2) and our Theorem 1. The proof of Theorem 3.1,
though, is quite involved, and the main contribution of our work consists in giving a direct proof of
our Theorem 1, which we show is strong enough to imply a linear lower bound on the randomized
communication complexity of GHD.

Related work. After the completion of our work, Sherstov [6] provided yet another proof of Chakrabarti
and Regev’s lower bound for GHD. His proof is shorter and combinatorial, while the one in [2], as
well as ours, uses geometric arguments and concentration of measure in (Rn,γ). The main innovation
of Sherstov’s proof is to consider a problem equivalent to GHD, called gap orthogonality, for which a
linear lower bound can be proved using the corruption method [8], while the proof in [2] goes through
the more powerful but also more involved partition bound of Jain and Klauck [4]. We note that key
to both Sherstov’s and Chakrabarti and Regev’s proofs of an anti-concentration result similar to our
Theorem 1.1 is a technical argument showing that any large enough set A must contain a linear number
of almost-orthogonal vectors. We completely avoid that step and instead work directly with a matrix
representation of the set A (cf. Section 3 for a definition).

Organization. We review useful concentration bounds in Section 2. Our main result, Theorem 1.1, is
further discussed and proved in Section 3. The application to the communication complexity of GHD is
detailed in Section 4.

2 Preliminaries

Distributions. Let N(0,σ2) denote the distribution of a normal random variable with mean 0 and
variance σ2. Let χ2 be the distribution of the square of a random variable distributed as N(0,1), and
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χ2(k) the distribution of the sum of the squares of k independent N(0,1) random variables. γ is the
n-dimensional Gaussian measure on Rn, with density γ(x) = (2π)−n/2e−‖x‖

2/2. We sometimes abuse
notation and also denote by γ the 2n-dimensional distribution γ× γ . If S⊆Rn is measurable with positive
measure, γ|S denotes the normalized restriction of γ to S: for any measurable A, γ|S(A) = γ(A∩S)/γ(S).

Concentration bounds. We will use the following large deviation bounds.

Fact 2.1 (Gaussian tail bound). Let X be a standard normal random variable. Then for every t ≥ 0,

Pr
(
|X | ≥ t

)
≤ e−t2/2.

Proof. Bound the upper tail as

Pr
(
X ≥ t

)
=

1√
2π

∫
∞

t
e−x2/2dx

=
1√
2π

∫
∞

0
e−(x+t)2/2dx

≤ e−t2/2
√

2π

∫
∞

0
e−x2/2dx =

1
2

e−t2/2.

A similar bound holds for the lower tail.

Fact 2.2 (Bernstein’s inequality, see, e.g., Prop. 16 in [7]). Let X1, . . . ,XN be independent random
variables such that for every i, E[Xi] = 0, and there exists K > 0 such that, for all i and t ≥ 0, Pr(|Xi| ≥
t)≤ e1−t/K . Then for every a = (a1, . . . ,aN) ∈ RN and t ≥ 0, we have

Pr
(∣∣∣∑

i
aiXi

∣∣∣≥ t
)
≤ 2e

− 1
4e min

(
t2

2eK2‖a‖22
, t

K‖a‖∞

)
.

As a corollary, one can obtain the following bound for the tail of the χ2 distribution.

Claim 2.3 (χ2 tail bound). Let N ∈ N, and X1, . . . ,XN be i.i.d. standard normal random variables. Then
for every a = (a1, . . . ,aN) ∈ RN and t ≥ 0,

Pr
(∣∣∣ N

∑
i=1

ai X2
i −

N

∑
i=1

ai

∣∣∣≥ t
)
≤ 2e

− 1
8e min

(
t2

4e‖a‖22
, t
‖a‖∞

)
.

Proof. By Fact 2.1, for every i the Xi satisfy that for every t ≥ 0,

Pr(|X2
i −1| ≥ t) = Pr(X2

i ≥ t +1)+Pr(X2
i ≤ 1− t)

≤ e1−(t+1)/2

where the extra factor e ensures that the bound is trivial whenever the second term Pr(X2
i ≤ 1− t) is

nonzero. Hence the Yi := X2
i −1 satisfy the hypothesis of Fact 2.2 with K = 2, which leads to the claimed

bound.
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The bound in Claim 2.3 becomes very weak as soon as even one of the coefficients ai is large
compared to the others. In the case where the ai are non-negative and most are small we can still keep a
good control over the lower tail, as the following claim shows.

Claim 2.4. Let N ∈ N, let X1, . . . ,XN be i.i.d. standard normal random variables, a1 ≥ ·· · ≥ aN ≥ 0
non-negative reals sorted in non-increasing order, and M = ∑

N
i=1 ai. Then for every integer 1≤ k ≤ N

and t ≥ 0,

Pr
( N

∑
i=1

ai X2
i −M ≤−

k

∑
i=1

ai− t
)
≤ 2e−

kt
8eM min

(
kt

4eM2 ,1
)
.

Proof. Since the ai are sorted, for every i > k we have ai ≤M/k, so that

‖a>k‖2
2 :=

N

∑
i=k+1

a2
i ≤ NM2/k2 and ‖a>k‖∞ := max

i>k
|ai| ≤ M/k.

Hence applying Claim 2.3 to Xk+1, . . . ,XN yields that for every t ≥ 0,

Pr
(∣∣∣ N

∑
i=k+1

ai X2
i −

N

∑
i=k+1

ai

∣∣∣≥ t
)
≤ 2e−

1
8e min

(
k2t2

4eNM2 , kt
M

)
,

which proves the claim since ∑
N
i=k+1 ai X2

i ≤ ∑
N
i=1 ai X2

i .

We will also use the Berry-Esseen theorem.

Fact 2.5 (Berry-Esseen Theorem, see, e.g., [3], Chapter XVI). Let X1, . . . ,XN be i.i.d. such that E[Xi] = 0,
E[X2

i ] = σ2 and E[|Xi|3] = ρ . Define Y = (X1 + · · ·+ XN)/(
√

Nσ) and let Z be distributed as N(0,1).
Then for all t ≥ 0, ∣∣Pr(Y ≥ t)−Pr(Z ≥ t)

∣∣ ≤ 3ρ

σ3
√

N
.

Communication complexity. For a partial function f : X×Y →{0,1,?}, we let Rε( f ) be the ε-error
randomized communication complexity of the function f (we refer to [5] for more background on
communication complexity). Here we allow X ,Y to be infinite subsets of Rn and measure input size by
the dimension n alone.

3 Proof of the main inequality

The proof of Theorem 1.1 is based on a concentration bound for the average squared inner product
between a vector y ∈ Rn and a random x ∈ S, where S is a fixed non-empty measurable subset of Rn.
Given such a set, it will be convenient to work with the positive semidefinite matrix S = Ex∼γ|S

[
xxT
]
,

where the expectation is taken entrywise. This matrix satisfies the following key relation

∀y ∈ Rn yT Sy = Ex∼γ|S

[
yT xxT y

]
= Ex∼γ|S

[
(x · y)2] . (3.1)

As we will see, (3.1) lets us relate the concentration properties of ν({y},S), for y∼ γ , to the eigenvalues
of S. The following simple claim will be useful.
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Claim 3.1. Let 0 < δ < 1/2, and S a measurable subset of Rn such that γ(S)≥ e−δn. Then for all large
enough n it holds that ∣∣TrS−n

∣∣≤ 50e
√

δ n.

Proof. For any measurable set S,

TrS = Ey∼γ

[
yT Sy

]
= Ex∼γ|S,y∼γ

[
(x · y)2]

= Ex∼γ|S,y1∼γ

[
‖x‖2y2

1
]

= Ex∼γ|S

[
‖x‖2] ,

where the third equality follows from the rotation invariance of γ , and the last uses independence of x and
y. Clearly, the set S of fixed measure e−δn which maximizes |TrS−n| is then either S = {x ∈ Rn, ‖x‖2 >
n+t} or S′= {x∈Rn, ‖x‖2 < n−t ′}, where t (resp. t ′) is chosen so that γ(S) = e−δn (resp. γ(S′) = e−δn).
By Claim 2.3, for S or S′ to have measure at least e−δn it is necessary that t, t ′ ≤ t0 = 6e

√
δ n. Using

E[X ]≤ α +
∫

∞

u=α

Pr(X ≥ u)du

for any non-negative random variable X and non-negative α , we can bound∣∣TrS−n
∣∣≤ Ex∼γ|S

[∣∣‖x‖2−n
∣∣]

≤ 8t0 + eδn
∫

∞

u=8t0
Pr

x∼γ

(∣∣‖x‖2−n
∣∣> u

)
du

≤ 8t0 + eδn
∫ 4en

u=8t0
2e−u2/(32e2n)du+ eδn

∫
∞

u=4en
2e−u/(8e)du

≤ 8t0 +2eδn
∫

∞

u=2
√

δn
e−u2/2du+

1
4e

e−(1−2δ )n/2

≤ 8t0 +1+
√

2πe−δn

≤ 8t0 +2,

where the 3rd inequality uses the bound from Claim 2.3, the 5th inequality uses the Gaussian tail bound
proved in Fact 2.1, and the 5th and 6th inequalities hold for all large enough n. Finally, the same bound
holds for

∣∣TrS′−n
∣∣.

We show the following concentration bound.

Lemma 3.2. There exists a constant c > 0 such that the following holds. Let δ > 0 and S ⊆ Rn a
non-empty measurable set such that γ(S)≥ e−δn. Then for all α > (50e)δ and all large enough n,

Pr
y∼γ

(
yT Sy≤ TrS−αn

)
≤ e−cα4n. (3.2)
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As shown in Claim 3.1 above, if γ(S)≥ e−δn then TrS is within a factor ≈ (1±O(
√

δ )) of n, so that for
small α the αn factor in (3.2) corresponds to a small fraction of TrS.

Before turning to the proof of the lemma, and showing how it implies our main theorem, we give
an example showing that the constraint α > c′δ is necessary (for some c′ > 0). The same example also
shows that one cannot hope for a similar bound on the probability that yT Sy is greater than TrS+αn,
even for relatively large α .

Example. Fix a parameter δ > 0 (think of δ as a small constant), and consider the halfspace Sδ = {x ∈
Rn : x1 ≥

√
δn}, which has measure γ(Sδ )≈ e−δn/2. By definition, the (i, j)-th coefficient of the matrix

Sδ associated to Sδ takes the value

(
Sδ

)
i, j = Ex∼γ|S

δ

[xix j] =

{
Ex∼γ|S

δ

[
x2

i
]

if i = j,(
Ex∼γ|S

δ

[xi]
)(

Ex∼γ|S
δ

[x j]
)

= 0 if i 6= j,

since Ex∼γ|S
δ

[xi] = 0 whenever i > 1. Hence Sδ is diagonal, with first diagonal entry equal to Ex∼γ|S
δ

[
x2

1
]
≈

δn, and the remaining (n−1) each equal to 1. In particular the trace of Sδ is

TrSδ ≈ δn+(n−1).

Now take a random y ∈ Rn, distributed according to γ . The distribution of y2
1 is standard χ2, which has

constant probability of being less than 1/2. Conditioning on this event,

yT Sδ y ≈ δny2
1 +(y2

2 + · · ·+ y2
n) ≤ (δ/2)n+(y2

2 + · · ·+ y2
n),

which is less than TrSδ − (δ/2)n with constant probability. This shows that in (3.2) it is necessary to
allow the overlap yT Sδ y to be moderately smaller than its expectation TrSδ , since this can hold even with
constant probability.

To show that one cannot hope to prove a bound similar to (3.2) for the upper tail of yT Sδ y, observe
that if y1 ∼ N(0,1) then Pr(y1 > n1/4)≈Ω(n−1/2e−

√
n/2). In case this holds, the overlap yT Sδ y is at least

δn5/4, which is much larger than TrSδ ≈ (δ +1)n.

Before proving Lemma 3.2, we show that it implies Theorem 1.1.

Proof of Theorem 1.1. Let η > 0 be given, and let A := Ex∼γ|A

[
xxT
]
. Fix a δ > 0 small enough so that

both the following hold:

1. |TrA−n| ≤ η n/4. This is made possible by Claim 3.1.

2. The set of y for which yT Ay≤ TrA−ηn/4 has measure less than (η/4)e−δn. This can be obtained
from Lemma 3.2.

Combining these two estimates, we obtain

Ey∼γ|B

[
yT Ay

]
≥ 1

γ(B)
(γ(B)− (η/4)e−δn)(TrA−ηn/4)

≥ (1−η/4)(n−η n/2)
≥ (1−η)n,

which proves the theorem in light of (3.1).
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We turn to the proof of Lemma 3.2. Let λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0 be the eigenvalues of S, sorted in
non-increasing order. For any y ∈ Rn one can write

yT Sy = ∑
i

λi y2
i ,

where the yi are y’s coefficients in the eigenbasis of S. Since γ is rotation-invariant, the yi are independently
distributed according to the standard normal distribution. However, as shown in the example of the
halfspace S2δ = {x ∈ Rn : x1 ≥

√
2δn} discussed above, some of the λi can be quite large: S2δ has

measure γ(S)≈ e−δn, but the corresponding matrix S2δ has λ1 ≈ 2δn. Hence a direct use of Claim 2.3
would lead to a rather poor bound. Rather, we will use Claim 2.4. For this to be effective, we need to
show that, while the largest eigenvalues of S can be quite large, its spectrum must still be relatively spread
out. This is made precise in the following claim.

Claim 3.3. For any δ > 0, let S⊆ Rn be of measure γ(S)≥ e−δn, and let λ1, . . . ,λn be the eigenvalues
of S sorted in non-increasing order. Let dδne ≤ k ≤ n be an integer. Then for all n large enough,

k

∑
i=1

λi ≤ (25e)k. (3.3)

Proof. Let λ1 ≥ ·· ·λn be the eigenvalues of S sorted in non-increasing order, and u1, . . . ,un the corre-
sponding eigenvectors. For i ∈ [n] and x ∈ Rn, let xi = x ·ui be the i-th coordinate of x in the basis given
by the ui. By definition

k

∑
i=1

λi =
k

∑
i=1

uT
i Sui = Ex∼γ|S

[ k

∑
i=1

(x ·ui)2
]

= Ex∼γ|S

[ k

∑
i=1

x2
i

]
.

For any β ≥ 0, Claim 2.3 gives the bound

Pr
x∼γ

(
x2

1 + · · ·+ x2
k ≥ (1+β )k

)
≤ 2e−

k
8e min

(
β2
4e ,β
)
,

so that, letting β ′ = β −8e we have that for every β ′ ≥−4e,

Pr
x∼γ|S

(
x2

1 + · · ·+ x2
k ≥ (1+8e+β

′)k
)
≤ 2e−

k
8e (β ′+8e)eδn ≤ 2e−

kβ ′
8e ,

where we used our assumption k ≥ dδne. Since for any non-negative random variable X , E[X ] =∫
∞

β ′=0 Pr(X ≥ β ′), we get

Ex∼γ|S

[
x2

1 + · · ·+ x2
k− (1+8e)k

]
≤ 16e+4ek,

which proves the claim.

We finish by showing how Claim 3.3 implies Lemma 3.2.
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Proof of Lemma 3.2. Let α be given, β := α/(100e), and let yi ∼ N(0,1) be i.i.d. By Claim 2.4, using a
crude bound TrS≤ 2n (which follows from Claim 3.1 for all large enough n), we get that for any t ≥ 0,

Pr
( n

∑
i=1

λiy2
i ≤ TrS− t−

2βn

∑
i=1

λi

)
≤ 2e−

β t
8e min

(
β t
8en ,1
)
. (3.4)

By Claim 3.3, ∑
2βn
i=1 λi ≤ (25e)2βn = αn/2, provided the condition 2β ≥ δ is satisfied, which follows

from our assumption that α > (50e)δ . Choosing t = αn/2 in (3.4) finishes the proof.

4 Application to communication complexity

In this section we explain how Theorem 1.1 leads to a lower bound on the communication complexity of
the GHD problem. In fact, we will show a lower bound for its continuous analogue, the Gap-Inner-Product
(GIP) problem, defined on Rn×Rn by

GIPn,t,g(x,y) =


1 if x · y≥ t +g,

0 if x · y≤ t−g,

? otherwise.

For us, the parameters of interest (and arguably the most natural2) are t,g = Θ(
√

n). A lower bound on
GIP is easily seen to imply an equivalent lower bound for GHD (see e.g. Proposition 3 in [1] for a proof
that the two problems have essentially the same randomized communication complexity).

The proof of the lower bound is based on a technique introduced in [2], and is closely related to
the “partition bound” of [4]. For the reader’s convenience we cite a “meta-theorem” from [2], which
we will combine with the results of the previous section to re-prove the linear lower bound on the
randomized communication complexity of the GIP problem first proved in [2], also through the following
meta-theorem, but using a much more involved technical argument than ours.

Theorem 4.1 (Theorem 2.2 in [2]). For all α0, α1, α+, ε > 0 such that ε < (α1−α+)/(α0 +α1), there
exist β ∈ R and ε ′ > 0 such that the following holds. Let f : X ×Y →{0,1,?} be a partial function. Let
A0 = f−1(0) and A1 = f−1(1). Suppose that there exist distributions µ0, µ1, µ+ on X ×Y , and a real
number m > 0 such that

1. for i ∈ {0,1}, µi is mostly supported on Ai, i.e., µi(Ai)≥ 1− ε , and

2. the following holds for all rectangles R⊆ X×Y :

α1µ1(R)−α+µ+(R)≤ α0µ0(R)+2−m.

Then Rε ′( f )≥ m+β .

2Note that two random vectors taken according to γ have expected inner product 0, with a standard deviation of
√

n.
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We will apply this theorem to f = GIPn,t,g, with parameters t =−(d +c)
√

n/2 and g = (d−c)
√

n/2,
where c = 0.5 and d = 0.6 (note that Lemmas 4.1 and 4.2 in [2] show that the exact choice of t and g
does not affect the randomized communication complexity too much, as long as say t,g = Θ(

√
n)). We

instantiate µ1 as the 2n-dimensional standard Gaussian distribution γ . For µ0 we choose the distribution
with density

µ0(x,y) =

{
0 if x · y > 0,

2
n(2π)n (x · y)2e−‖x‖

2/2e−‖y‖
2/2 otherwise,

while µ+ is chosen with density µ+(x,y) = µ0(−x,y). All these distributions are invariant under arbitrary
simultaneous rotations of x and y; their densities are represented on Figure 1 for a fixed y = y0, as a
function of x = t y0

‖y0‖ , t ∈ R.

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 mu
0

mu
+

mu
1

Figure 1: The one-dimensional densities obtained from µ0 (dotted, left), µ+ (dotted, right) and µ1 (plain)
by conditioning on y = y0 and projecting x on Ry0.

We first verify Condition 1 of Theorem 4.1, which intuitively states that µ0 should be mostly supported
on 0-inputs, and µ1 on 1-inputs, as one can observe graphically in Figure 1. For this we will use that
for large n, for x,y ∈ Rn distributed independently according to γ , the inner product x · y is essentially
distributed as a Gaussian with standard deviation

√
n. This follows from the Berry-Esseen theorem

(Fact 2.5) applied to Xi = xi · yi, which are i.i.d. with variance σ2 = 1 and third moment ρ = 2
√

2/π .
This lets us write

µ1(A1) = Pr
(x,y)∼γ

(
x · y >−c

√
n
)

≥ 1√
2π

∫
∞

−c
e−t2/2dt−Ω

( 1√
n

)
≥ 1

2
+

c√
2π

e−c2/2−Ω
( 1√

n

)
≥ 0.76

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 01, pages 1–12 10

http://dx.doi.org/10.4086/cjtcs


A CONCENTRATION INEQUALITY FOR THE OVERLAP OF A VECTOR ON A LARGE SET

for large enough n. Similarly, we compute

µ0(A0) = 1− Pr
(x,y)∼µ0

(
x · y >−d

√
n
)

= 1− 2
n(2π)n

∫∫
−d
√

n<x·y≤0
(x · y)2e−‖x‖

2/2e−‖y‖
2/2 dx dy

≥ 1− 2d2

(2π)n

∫∫
−d
√

n<x·y≤0
e−‖x‖

2/2e−‖y‖
2/2 dx dy

≥ 1−2d2 1√
2π

∫ 0

−d
e−t2/2 dt−Ω

( 1√
n

)
= 1−2d2 1√

2π

∫ d

0
e−t2/2 dt−Ω

( 1√
n

)
≥ 0.78

for large enough n, so by setting ε := 0.3 we make sure that Condition 1. is satisfied. In order to verify
Condition 2., observe that for any rectangle R,

(µ0 + µ+)(R) =
2

n(2π)n

∫∫
(x,y)∈R

(x · y)2e−‖x‖
2/2e−‖y‖

2/2 dx dy =
2
n

γ(R)E(x,y)∼γ|R

[
(x · y)2 ] ,

so that by setting η = 0.05, Theorem 1.1 implies the existence of a δ > 0 such that that (µ0(R) +
µ+(R))/2≥ (1−η)γ(R), as long as γ(R)≥ e−δn. Choosing α0 = α+ = 1/2, α1 = 0.95 and m = (ln2)δn,
Condition 2. reads

µ0(R)+ µ+(R)
2

≥ 0.95γ(R)− e−δn,

which is trivially satisfied by any R with γ(R) < e−δn, and for all R such that γ(R)≥ e−δn by the previous
arguments. Note also that with our choice of coefficients α the inequality on ε is satisfied.

As a consequence, Theorem 4.1 directly implies the existence of ε ′ > 0 and β ∈ R such that

Rε ′(GIPn,−.55
√

n,.05
√

n)≥ (ln2)δn+β .
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