
CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 06, pages 1–10
http://cjtcs.cs.uchicago.edu/

Interactive proofs with efficient quantum
prover for recursive Fourier sampling

Matthew McKague∗

Received: August 24, 2011; revised: September 18, 2012; published: September 21, 2012.

Abstract: We consider the recursive Fourier sampling problem (RFS), and show that there
exists an interactive proof for RFS with an efficient classical verifier and efficient quantum
prover.

Key words and phrases: interactive proofs, quantum computing, recursive Fourier sampling

1 Introduction

The Recursive Fourier Sampling (RFS) problem is an oracle based decision problem that was proposed by
Bernstein and Vazirani in [3]. Historically, RFS was the first problem that showed a relativized separation
between BQP and P.

Along with their definition of RFS, Bernstein and Vazirani also proved a lower bound for the classical
query complexity and an upper bound for the quantum query complexity, establishing the P versus
relativized BQP separation. Later Aaronson [1] proved matching lower bounds for the quantum query
complexity of RFS. Johnson [7] extended and improved these results, including bounds on the polynomial
degree of RFS. Hallgren and Harrow [6] subsequently generalized the recursive structure of the problem
to allow a super-polynomial speedup, relative to an oracle, based on randomly generated quantum circuits.

Bernstein and Vazirani also showed that RFS is not in NP. Aaronson [1] claims that the proof can
be extended to show that RFS is not in MA, and it has been conjectured by Vazirani and others that it
is not even in PH. This gives an oracle relative to which BQP is not in MA, and hope that a relativized
separation may be found between BQP and PH.

∗Thanks to Scott Aaronson for his comments and suggestion for VERIFIER2. This work is funded by the Centre for Quantum
Technologies, which is funded by the Singapore Ministry of Education and the Singapore National Research Foundation.

2012 Matthew McKague
Licensed under a Creative Commons Attribution License DOI: 10.4086/cjtcs.0006

http://dx.doi.org/10.4086/cjtcs
http://cjtcs.cs.uchicago.edu/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/cjtcs.0006

MATTHEW MCKAGUE

In the remainder of this section we recall the definition of the recursive Fourier sampling problem and
the optimal classical and quantum algorithms. Our main contribution is in section 2, where we give an
algorithm for an interactive proof for RFS and show how the standard quantum algorithm for RFS can be
adapted to be used as an efficient prover for the interactive proof.

1.1 The recursive Fourier sampling problem

We begin by defining a type of tree. Let n, l be a positive integers and consider a symmetric tree where
each node, except the leaves, has 2n children, and the depth is l. Let the root be labeled by (/0). The
root’s children are labelled (x1) with x1 ∈ {0,1}n. Each child of (x1) is, in turn, labelled (x1,x2) with
x2 ∈ {0,1}n. We continue until we have reached the leaves, which are labelled by (x1, . . . ,xl). Thus each
node’s label can be thought of as a path describing how to find the node from the root.

Now we add the Fourier component to the tree. We begin by fixing an efficiently computable
function g : {0,1}n → {0,1}.1 With each node of the tree (x1, . . . ,xk) we associate a “secret” string
s(x1,...,xk) ∈ {0,1}

n. These secrets are promised to obey

g
(
s(x1,...,xk)

)
= s(x1,...,xk−1) · xk (1.1)

for k ≥ 1, and the inner product taken modulo 2. (Here we take s(x1,...,xk−1) to mean s(/0) if k = 1.) In this
way, each node’s secret encodes one bit of information about its parent’s secret.

Now suppose that we are given an oracle A : ({0,1}n)l →{0,1} which behaves as2

A(x1, . . . ,xl) = g
(
s(x1,...,xl)

)
. (1.2)

Note that A works for the leaves of the tree only. Our goal is to find g
(
s(/0)

)
. This is the recursive Fourier

sampling problem (RFS).
At this point we wish to discuss the recursive nature of the RFS problem. First, note that the subtree

rooted at any node obeys the same promises as the whole tree. Thus each subtree defines an RFS problem.
(The subtree rooted at a leaf is a trivial problem, where the oracle just returns the solution.) Thus we have
a methodology for solving RFS problems: solve subtrees in order to determine information about the
root’s secret, then calculate the secret. Solving subtrees uses the same method, except when we reach a
leaf, where the oracle is used instead. This is a type of top down recursive structure, where the tree is
built from a number of subtrees with the same structure.

Another way of viewing the tree is from the bottom up. Note that if we remove all the leaf nodes,
truncating the tree, then the remaining tree still obeys all the required promises. The oracle no longer
returns relevant information, however. This problem can be solved by building a new oracle using the old
one. The new oracle, given (x1, . . . ,xl−1), calculates the secret s(x1,...,xl−1) by accessing the old oracle. The
new oracle then returns g(s(x1,...,xl−1)). An oracle constructed in this way behaves exactly as the old oracle
does, but for the truncated tree. The tree can be truncated again to depth l−2 and another new oracle is
built on the previous one. The result is a recursive algorithm that eventually solves the RFS problem.

1For concreteness g(s) may be taken to be 0 if h(s)∼= 0 mod 3 and 1 otherwise, where h(x) is the Hamming weight of s
(number of 1s in s).

2In fact the values s(x1,...,xl) are not necessary, since we can only ever learn g(s(x1,...,xl)). However, including them in the
definition eliminates special cases at the level l.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 06, pages 1–10 2

http://dx.doi.org/10.4086/cjtcs

INTERACTIVE PROOFS WITH EFFICIENT QUANTUM PROVER FOR RECURSIVE FOURIER SAMPLING

With a little thought, it is easy to see that both pictures of the recursive structure of the RFS problem
are essentially equivalent. Indeed, solving a subtree rooted at (x1, . . . ,xk) just means returning g(s(x1,...,xk)),
which is what the oracle for the tree truncated at level k does. However, each picture can be useful in
understanding the structure of algorithms.

1.2 Classical solution

Now let us consider the following solution to the recursive Fourier sampling problem in the classical
setting. To calculate g

(
s(/0)

)
we must first find s(/0). To do so, let us define 1 j to be the n-bit string with a

1 in the jth position and 0 elsewhere. Define (s(/0)) j to be the jth bit of s(/0), which is given by s(/0) ·1 j.
These values are given by the solution to the RFS problem defined on the subtree rooted at (x1) with
x1 = 1 j. After determining these values for j = 1 . . .n we have determined s(/0). Hence we obtain the
following algorithm:

Algorithm 1 (RFS). Input: oracle A, subroutine g, l,k, (x1, . . . ,xk)

1. If k = l then return A(x1, . . . ,xl)

2. For j = 1 . . .n

(a) Set (s) j = RFS(A,g, l,k+1,(x1, . . . ,xk,1 j))

3. Return g(s)

Lemma 1.1. RFS(A,g, l,0,()) returns g(s(/0)).

Proof. We proceed by induction. We claim that for 0≤ k ≤ l

RFS(A,g, l,k,(x1, . . . ,xk)) = g(s(x1,...,xk)). (1.3)

For k = l this is true by the definition of the oracle.
Now suppose that 0 ≤ k < l. By induction, step (a) sets (s) j = g

(
s(x1,...,xk,1 j)

)
which is promised

to equal s(x1,...,xk) · 1 j. Thus s = s(x1,...,xk) and the function returns g(s(x1,...,xk)), as claimed. Calling
RFS(A,g, l,0,()) then returns g

(
s(/0)

)
.

The query complexity of this algorithm is nl , since each call to RFS calls itself n times, and the depth
of recursion is l.

This solution is due to Bernstein and Vazirani [3], who also gave a matching lower bound on the
number of queries, so the query complexity is Θ(nl).

1.3 Quantum solution

We now consider the analogous quantum problem, where the oracle A allows quantum access according
to

A |x1〉 . . . |xl〉 |y〉= |x1〉 . . . |xl〉
∣∣y⊕g(s(x1,...,xl))

〉
. (1.4)

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 06, pages 1–10 3

http://dx.doi.org/10.4086/cjtcs

MATTHEW MCKAGUE

In addition, we have an efficient quantum algorithm which calculates g as

G |s〉 |y〉= |s〉 |y⊕g(s)〉 . (1.5)

The main idea behind the algorithm is to use the fact that H⊗n transforms |y〉 into ∑x(−1)x·y |x〉 and vice
versa. We use phase feedback and a call to A to create the state ∑xl

(−1)s(x1 ,...,xl−1)
·xl |x〉, then apply H⊗n

to obtain
∣∣s(x1,...,xl−1)

〉
. After calculating g(s(x1,...,xl−1)), we uncompute

∣∣s(x1,...,xl−1)

〉
to disentangle this

register from other registers.

Algorithm 2 (QRFS). Input: oracle A, subroutine G j, l, k, quantum registers X1, . . . ,Xk, Y.

1. If k = l then apply A to (X1 . . .Xl) and Y, then return.

2. Introduce ancilla Xk+1 in the state 1√
2n ∑xk+1∈{0,1}n |xk+1〉Xk+1

.

3. Introduce ancilla Y′ in state 1√
2
(|0〉Y′−|1〉Y′).

4. Call QRFS(A,G, l,k+1,(X1 . . .Xk+1),Y
′)

5. Apply H⊗n on register Xk+1.

6. Apply G to Xk+1 and Y.

7. Apply H⊗n on register Xk+1.

8. Call QRFS(A,G, l,k+1,(X1 . . .Xk+1),Y
′)

9. Discard Xk+1 and Y′.

10. Return

Lemma 1.2. QRFS(A,G, l,0,(), |0〉) returns
∣∣g(s(/0))

〉
.

Proof. To analyze the correctness of the algorithm we proceed by induction with the hypothesis that for
each 0≤ k ≤ l, QRFS(A,G, l,k,(X1 . . .Xk),Y) applied to |x1〉 . . . |xk〉 |y〉 gives

|x1〉 . . . |xk〉
∣∣y⊕g

(
s(x1,...,xk)

)〉
. (1.6)

(The output for general input states is determined by linearity.) This is true for k = l by definition of the
oracle.

Now let 0≤ k < l. We introduce the state 1√
2
(|0〉− |1〉) in step 3 in order to use phase kickback. By

hypothesis, then, step 4 introduces phase of (−1)g(s(x1 ,...,xk+1)
), which is the same as (−1)s(x1 ,...,xk)

·xk+1 . The
state after step 4 is thus

1√
2n ∑

xk+1

(−1)s(x1 ,...,xk)
·xk+1 |x1〉 . . . |xk+1〉 |y〉 |−〉 . (1.7)

After step 5 the state then becomes

|x1〉 . . . |xk〉
∣∣s(x1,...,xk)

〉
|y〉 |−〉 . (1.8)

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 06, pages 1–10 4

http://dx.doi.org/10.4086/cjtcs

INTERACTIVE PROOFS WITH EFFICIENT QUANTUM PROVER FOR RECURSIVE FOURIER SAMPLING

Step 6 changes |y〉 to
∣∣y⊕g

(
s(x1,...,xk)

)〉
. Next, steps 7 and 8 uncompute the Xk+1 register, so it and the Y′

register are returned to their original state when they are discarded in step 9. Thus we obtain the required
output state.

From the inductive hypothesis, we see that QRFS(A,G, l,0,(),Y) applied to |0〉 gives
∣∣g

(
s(/0)

)〉
.

Note that if we apply QRFS(A,G, l,k,(X1 . . .Xk),Y) to |x1〉 . . . |xk〉 |y〉, and stop after step 5, we
obtain

∣∣s(x1,...,xk
)
〉

in the Xk+1 register. This is equivalent to solving the RFS problem defined by the
subtree rooted at (x1, . . . ,xk). Thus we can also efficiently calculate any s(x1,...,xk

).
This algorithm is due to Bernstein and Vazirani [3]. The quantum query complexity of this algorithm

is O(2l), since two recursive calls are made, and the depth is l. Aaronson [1] gave a matching lower
bound.

1.4 Complexity implications

In the previous sections we have kept both n, the size of the bit strings, and l, the depth of the tree.
Typically, RFS is considered with l = log2 n. In this case we obtain query complexities of Θ(nlog2 n)
classically, and O(n) quantumly. Hence we obtain the relativized separation of BQP* P. It is also for
this value of l that RFS /∈MA.

2 Interactive proof

Suppose now that we have, in addition to the oracle A and classical computing resources, access to a
prover P who has more powerful computing resources. We have seen that for the choice l = log2 n there
is no way of efficiently computing the solution to the recursive Fourier sampling problem directly. In
fact, since RFS is not in NP, we cannot even efficiently verify a solution if it is given (along with a short
proof.) We will show, however, that by interacting with P we can efficiently compute the solution, or
detect if P is giving false information. That is, RFS is in IP.

It is not surprising that RFS is in IP, indeed BQP ⊆ IP in the unrelativized world. However, IP is
defined with an computationally unbounded prover, and here we will see that for RFS it suffices to have
an efficient quantum prover.

2.1 Classical verifier 1

Looking back at the original classical solution to RFS in Algorithm 1 we see that there are two steps:
find s(x1,...,xk) and calculate g(s(x1,...,xk)). The difficult part is finding s(x1,...,xk), so we can instead ask P to
do this for us. Since we do not trust P, we should perform some type of test to see whether P has really
given us the correct value of s(x1,...,xk).

Suppose that P gives us a string s′(x1,...,xk)
. In principle we can detect the case s′(x1,...,xk)

6= s(x1,...,xk)

by instead looking at whether s′(x1,...,xk)
· xk+1 = s(x1,...,xk) · xk+1 for a randomly chosen xk+1 ∈ {0,1}n. If

s′(x1,...,xk)
6= s(x1,...,xk) then s′(x1,...,xk)

·xk+1 6= s(x1,...,xk) ·xk+1 for half of all strings xk+1 ∈ {0,1}n. If we check
for c independently chosen strings xk+1 then we will fail to detect P’s deception with probability 2−c.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 06, pages 1–10 5

http://dx.doi.org/10.4086/cjtcs

MATTHEW MCKAGUE

Since we have s′(x1,...,xk)
, we can calculate s′(x1,...,xk)

· xk+1 readily, but how do we find s(x1,...,xk) · xk+1?
We use recursion: we ask P for s(x1,...,xk+1) and again perform the test. After the recursion is deep enough,
we can query the oracle directly to find s(x1,...,xl−1) · xl = A(x1, . . . ,xl).

Algorithm 3 (VERIFIER). Input: Oracle A, Prover P, subroutine g, total number of levels l, current level
k, queries (x1, . . .xk).

1. If k = l then return A(x1, . . . ,xl)

2. Query P for s′(x1,...,xk)

3. Repeat 3 times:

(a) Randomly choose xk+1 ∈ {0,1}n

(b) Set a = VERIFIER(A,P,g, l,k+1,(x1, . . . ,xk+1))

(c) If a 6= s′(x1,...,xk)
· xk+1 then abort

4. Return g(s′x1,...,xk
)

We must also specify what the behaviour of P should be. When P receives a query (x1, . . . ,xk), it
should return a string s′(x1,...,xk)

∈ {0,1}n. For an honest P this should be equal to s(x1,...,xk).
Clearly there exists a prover P which always returns s(x1,...,xk) when queried: P can solve a subtree

of the full RFS problem, rooted at (x1, . . . ,xk) to find s(x1,...,xk). For such a prover, we may perform
VERIFIER(A,P,g, l,0,()) to obtain g

(
s(/0)

)
, which is the answer to the RFS problem.

Lemma 2.1. Let P be a prover that always returns s′(x1,...,xk)
= s(x1,...,xk) when queried. Then

VERIFIER(A,P,g, l,0,()) = g(s(/0)). (2.1)

Proof. We proceed via induction, as in previous proofs. We claim that for 0≤ k ≤ l

VERIFIER(A,P,g, l,k,(x1, . . . ,xk)) = g(s(x1,...,xk)). (2.2)

This is true for k = l from the definition of the problem and line 1. For k < l we see from line 4 that the
claim holds for this choice of P so long as the algorithm does not abort in line (c).

Now suppose that 0 ≤ k < l. By induction, step (b) sets a = g(s(x1,...,xk+1)) = s(x1,...,xk−1) · xk by the
definition of the problem. Again, by the choice of P this is always equal to s′(x1,...,xk−1)

·xk and the algorithm
never aborts.

Our next concern is what the algorithm does when interacting with a prover P that does not return
correct strings. The next lemma says that the algorithm returns an incorrect result with low probability;
the rest of the time the algorithm aborts. Hence we are protected from a malicious P.

Lemma 2.2. For any P, the probability that VERIFIER(A,P,g, l,0,()) does not abort and returns a value
not equal to g(s(/0)) is at most 1

4 .

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 06, pages 1–10 6

http://dx.doi.org/10.4086/cjtcs

INTERACTIVE PROOFS WITH EFFICIENT QUANTUM PROVER FOR RECURSIVE FOURIER SAMPLING

Proof. Let pk, 0 ≤ k ≤ l be the probability that VERIFIER does not abort and returns a value that is
not equal to g(s(x1,...,kk)). To be precise, we should specify what P does, since pk can depend on P’s
behaviour. Let us then take the maximal pk over all choices of P, which will give us an upper bound for
any particular P.

We proceed by induction with the hypothesis that pk ≤ 1/4. For k = l this true since A(x1, . . .xl) =
g(s(x1,...,xl)) so pl = 0.

Now suppose that 0≤ k < l. There are two cases. First, P returns s′(x1,...,xk)
such that g(s′(x1,...,kk)

) =

g(s(x1,...,kk)). In this case VERIFIER always returns the correct value, so pk = 0. Note that VERIFIER
may still abort, since s′(x1,...,xk)

may not equal s(x1,...,xk), or the recursion may return an incorrect result.
Now consider the case where P returns some s′(x1,...xk)

such that g(s′(x1,...xk)
) 6= g(s(x1,...xk)). If the

algorithm does not abort in line (c) then one of two things happened: either s′(x1,...xk)
·xk+1 = s(x1,...xk) ·xk+1

for this choice of xk+1, which happens with probability 1
2 , or s′(x1,...xk)

· xk+1 6= s(x1,...xk) · xk+1 and at the
same time the recursion in (b) returns an incorrect value. The latter two events occur together with
probability at most pk+1

2 . Thus, for each of the three repetitions, the probability of not aborting is at most
1
2(1+ pk+1) and the overall chance of not aborting is

pk ≤
1
23 (1+ pk+1)

3 . (2.3)

By the induction hypothesis, pk+1 ≤ 1
4 . Then

pk ≤
1
8

(
1+

1
4

)3

=
125
512
≤ 1

4
. (2.4)

Using induction, we obtain the result for 0≤ k ≤ l. In particular, p0 ≤ 1/4, which is the desired result.

Corollary 2.3. VERIFIER(A,P,g, l,0,()) solves the recursive Fourier sampling problem with complete-
ness 1 and soundness 1/4.

The algorithm uses 3l queries to the oracle and fewer than 3l to the prover. With the choice l = log2 n
this is polynomial in n.

2.2 Classical Verifier 2

While the previous verifier can be seen as a type of parallel repetition, we can also perform serial
repetition, gaining some advantage in running time. This solution is due to by Scott Aaronson (personal
communication).

Algorithm 4 (VERIFIER2). Input: Oracle A, Prover P, subroutine g, total number of levels l, current
level k, queries (x1, . . .xk).

1. If k = l then return A(x1, . . . ,xl)

2. Query P for s′(x1,...,xk)

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 06, pages 1–10 7

http://dx.doi.org/10.4086/cjtcs

MATTHEW MCKAGUE

3. Randomly choose xk+1 ∈ {0,1}n

4. Set a = VERIFIER2(A,P,g, l,k+1,(x1, . . . ,xk+1))

5. If a 6= s′(x1,...,xk)
· xk+1 then abort

6. Return g(s′x1,...,xk
)

Lemma 2.4. VERIFIER2(A,P,g, l,0,()) solves the recursive Fourier sampling problem with complete-
ness 1 and soundness 1−2−l .

Proof. Clearly an honest prover can always provide s = s′ and the test in step 5 always passes, so the
verifier accepts with probability 1.

Let pk, 0 ≤ k ≤ l be the minumum probability that at level k VERIFIER2 either aborts or returns
g(sx1,...,xk). Thus pl = 1 by definition of A.

Now suppose that for some k, pk+1 ≥ 2−k. If prover provides s′x1,...,xk
6= sx1,...,xk then with probability

1/2, xk+1 is chosen in step 3 such that xk+1 ·s′x1,...,xk
6= xk+1 ·sx1,...,xk . In this case, in step 4, with probability

pk+1, we either abort or are given g(sx1,··· ,xk) in which case we detect the cheating prover and abort in
step 5. Thus if g(s′x1,...,xk

) 6= g(sx1,...,xk) the protocol will abort with probability at least pk ≥ 2−k−1.
We find, then, that p0 ≥ 2−l . This indicates that a cheating prover causes the verifier to accept with

probability no greater than 1−2−l .

Using this protocol, together with serial repetition, we may achieve constant soundness through O(2l)
repetitions of the protocol. For l = logn this again gives a polynomial complexity.

2.3 Quantum prover

Although the class IP is usually defined for a computationally unbounded prover, it happens that for RFS
and the verifier presented above, the prover can be an efficient quantum prover. That is, if the prover is
quantum then it need only make a polynomial number of queries to the oracle.

As mentioned in section 1.3, algorithm 2 makes at most 2l queries to find s(/0) and can be adapted
to find s(x1,...,xk) using at most this number of queries. We can thus readily adapt algorithm 2 to create a
prover for the above classical verifier. The total number queries that the prover will make is less than
3l2l ≤ n2.58. For VERIFIER2 the number of queries is less than 22l = n2.

3 Discussion

Recently there has been interest in interactive proofs in a quantum context and, most relevant here,
interaction between quantum provers and classical verifiers. Work in this direction began with Mayers
and Yao [10], and Magniez et al. [9] who showed how to classically verify (with certain assumptions) the
operation of quantum apparatus, including entire circuits. Recently, Aharonov et al. [2] and Broadbent et
al. [4] (with later improvements by Fitzsimons and Kashefi [5]) considered verifiers with limited quantum
capabilities. As well, Broadbent et al. suggest that their result can be modified for classical verifiers by
introducing an additional entangled prover. Ideally we would like to show that every problem in BQP

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 06, pages 1–10 8

http://dx.doi.org/10.4086/cjtcs

INTERACTIVE PROOFS WITH EFFICIENT QUANTUM PROVER FOR RECURSIVE FOURIER SAMPLING

has an interactive proof with a single efficient quantum prover and a classical verifier (let us call the
class of such problems IPBQP.) Unfortunately, self-testing and the Broadbent et al. protocol both rely
fundamentally upon non-local properties of quantum theory, making the techniques unsuitable to the
single-prover scenario.

In this context, the current work is interesting because it shows that there is an oracle relative to which
IPBQP *MA3. Since BQP⊆ PSPACE= IP an interactive proof exists for every problem in BQP, but
the only known construction, due to Shamir [11] and Lund et al. [8], uses a PSPACE prover. The interest
for the current result, then, is the fact that the interactive proof has an efficient quantum prover.

Another interesting aspect of this work is the fact that the structure of the interactive proof is not
informed by the structure of the prover but arises naturally from the structure of the problem. This is in
contrast to results in [9] and [4], which essentially analyze the quantum provers in action to verify correct
operation. This may indicate that a different methodology from these partial results is necessary, or at
least useful, in order to reduce the number of provers down to one.

Acknowledgements Thanks to Scott Aaronson for his comments and suggestion for VERIFIER2.
This work is funded by the Centre for Quantum Technologies, which is funded by the Singapore Ministry
of Education and the Singapore National Research Foundation.

References

[1] Scott Aaronson. Quantum lower bound for recursive Fourier sampling. Quantum Information and
Computation, 3:165, 2003. 1, 5

[2] Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive proofs for quantum computations,
October 2008. 8

[3] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on Computing,
26(5):1411–1473, 1997. 1, 3, 5

[4] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum computation. In
50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27,
2009, Atlanta, Georgia, USA, pages 517–526, Los Alamitos, CA, USA, 2009. IEEE Computer
Society. 8, 9

[5] Joseph F. Fitzsimons and Elham Kashefi. Unconditionally verifiable blind computation, March
2012. 8

[6] Sean Hallgren and Aram Harrow. Superpolynomial speedups based on almost any quantum circuit.
In Luca Aceto, Ivan Damgård, Leslie Goldberg, Magnús Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, Automata, Languages and Programming, volume 5125 of Lecture Notes in
Computer Science, pages 782–795. Springer Berlin / Heidelberg, 2008. 1, 9

3Note that the more general result of Hallgren and Harrow [6] does not have this property, since the oracle in their construction
can be used to verify a certificate.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 06, pages 1–10 9

http://dx.doi.org/10.4086/cjtcs

MATTHEW MCKAGUE

[7] Benjamin Johnson. Upper and Lower Bounds for Recursive Fourier Sampling. PhD thesis,
University of California Berkeley, 2008. 1

[8] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. In
Foundations of Computer Science, 1990. Proceedings., 31st Annual Symposium on, pages 2 –10
vol.1, oct 1990. 9

[9] Frédéric Magniez, Dominic Mayers, Michele Mosca, and Harold Ollivier. Self-testing of quantum
circuits. In M et al. Bugliesi, editor, Proceedings of the 33rd International Colloquium on Automata,
Languages and Programming, number 4052 in Lecture Notes in Computer Science, pages 72–83,
2006. 8, 9

[10] Dominic Mayers and Andrew Yao. Self testing quantum apparatus. Quantum Information and
Computation, 4(4):273–286, July 2004. 8

[11] Adi Shamir. IP = PSPACE. Journal of the ACM, 39:869–877, October 1992. 9

AUTHOR

Matthew McKague
Centre for Quantum Technologies
National University of Singapore
matthew.mckague nus edu sg

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 06, pages 1–10 10

http://dx.doi.org/10.4086/cjtcs

	Introduction
	The recursive Fourier sampling problem
	Classical solution
	Quantum solution
	Complexity implications

	Interactive proof
	Classical verifier 1
	Classical Verifier 2
	Quantum prover

	Discussion

