
CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24
http://cjtcs.cs.uchicago.edu/

Computational Models with No Linear
Speedup

Amir M. Ben-Amram Niels H. Christensen Jakob Grue Simonsen∗

Received: October 11, 2011; revised: October 1st, 2012; published: October 16, 2012.

Abstract: The linear speedup theorem states, informally, that constants do not matter: It
is essentially always possible to find a program solving any decision problem a factor of
2 faster. This result is a classical theorem in computing, but also one of the most debated.
The main ingredient of the typical proof of the linear speedup theorem is tape compression,
where a fast machine is constructed with tape alphabet or number of tapes far greater than
that of the original machine. In this paper, we prove that limiting Turing machines to a fixed
alphabet and a fixed number of tapes rules out linear speedup. Specifically, we describe
a language that can be recognized in linear time (e. g., 1.51n), and provide a proof, based
on Kolmogorov complexity, that the computation cannot be sped up (e. g., below 1.49n).
Without the tape and alphabet limitation, the linear speedup theorem does hold and yields
machines of time complexity of the form (1+ ε)n for arbitrarily small ε > 0.

Earlier results negating linear speedup in alternative models of computation have often
been based on the existence of very efficient universal machines. In the vernacular of
programming language theory: These models have very efficient self-interpreters. As the
second contribution of this paper, we define a class, PICSTI, of computation models that
exactly captures this property, and we disprove the Linear Speedup Theorem for every model
in this class, thus generalizing all similar, model-specific proofs.

∗Jakob Grue Simonsen is partially supported by the Danish Council for Independent Research Sapere Aude grant “Complexity
through Logic and Algebra” (COLA).

Key words and phrases: complexity, hierarchy theorem, linear speedup, self-interpretation

2012 Amir M. Ben-Amram, Niels H. Christensen, and Jakob Grue Simonsen
Licensed under a Creative Commons Attribution License DOI: 10.4086/cjtcs.2012.007

http://dx.doi.org/10.4086/cjtcs
http://cjtcs.cs.uchicago.edu/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/cjtcs.2012.007

AMIR M. BEN-AMRAM, NIELS H. CHRISTENSEN, AND JAKOB GRUE SIMONSEN

1 Introduction

The classical linear speedup theorem (a.k.a. the constant-factor speedup theorem) is due to Hartmanis and
Stearns [11]. In stating the theorem, one has to be precise regarding the Turing Machine model assumed.
We cite a version from [48, Thm. 18.12]:

Theorem 1.1. Let k ≥ 1 and consider the class of Turing machines with 1-way, read-only input tape
and k one- or two-way work tapes. For every t : N−→ N, if there exists a real number c > 1 such that
t(n)≥ cn for all but finitely many n, then any problem decidable in deterministic time O(t(n)) is decidable
in deterministic time t(n).

The linear speedup theorem remains valid for non-deterministic time and for machines where the
input tape is two-way, or identified with one of the work tapes (when there is more than one of those).

All known proofs of the theorem are constructive and work by a technique that can aptly be called
tape compression: Either increasing the size of the alphabet or allowing the number of tapes of M′ to
be much greater than that of M. As an artifact of the definition of time complexity for Turing machines,
tape compression allows the reading or writing of a great number of bits simultaneously in a single
computation step. Furthermore, the number of bits can be as large as you like, a property whose basis in
realistic computation is quite dubious.

In this paper, we prove that tape compression is not only sufficient, but also necessary for the linear
speedup theorem to hold: Limiting Turing machines to a fixed alphabet and a fixed number of tapes
disproves the linear speedup theorem. Specifically, we describe a language that can be recognized in
linear time (e. g.1.51n) and prove that the computation cannot be sped up (e. g., below 1.49n); without the
limitation on tape and alphabet, the speedup theorem does hold and yields solutions of time complexity
of the form (1+ ε)n for arbitrarily small ε > 0.

Linear speedup seems to be particular to Turing machines. In more sophisticated models we often
have hierarchy theorems that contradict speedup. These theorems are mostly proved by diagonalization;
for the hierarchy to be tight, we need very efficient universal machines (“self-interpreters” in programming
language vernacular). In Turing machines, an interpreter intuitively has to scan the simulated program in
each step of the simulation, due to the lack of efficient memory access.

As the second contribution of this paper, we define a class, PICSTI, of computation models that
captures the property of having a highly efficient self-interpreter (along with a few, more technical,
properties, required for establishing a diagonalization argument). We disprove the Linear Speedup
Theorem for every model in this class, thus generalizing all similar, model-specific proofs.

Organization of the paper Section 2 shows (by means of a specific counter-example) that the lin-
ear speedup theorem fails for Turing machines when alphabet- or tape compression is disallowed.
Section 3 introduces the class of models that are PICSTI—have program-independent, constant-time
self-interpretation overhead. Section 3.4 shows that the linear speedup theorem does not hold in any
PICSTI model. Section 4 concludes with a list of open problems related to our results.

The reader is assumed to be familiar with introductory computability and complexity theory at the
level of standard textbooks [17, 44, 18, 27].

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 2

http://dx.doi.org/10.4086/cjtcs

COMPUTATIONAL MODELS WITH NO LINEAR SPEEDUP

1.1 Related work

The term “speedup” seems to have been employed for two related, but quite different phenomena: (i)
linear speedup as in Theorem 1.1 above, (ii) the lack of an (asymptotically) optimal algorithm, sometimes
called Blum Speedup. In its original form [4, 23], the Blum Speedup Theorem described a construction of
a decision problem for which it could be shown that no asymptotically fastest algorithm exists. More
precisely, given a (suitable) speedup function, a decision problem is generated so that for every algorithm
solving the problem, an algorithm faster by the given “amount of speedup” exists. Thus there is an infinite
sequence of increasingly faster algorithms. Schnorr and Stumpf later showed that one could control the
complexity of the algorithms, so that, for example, they all lie in PTIME, or even quasi-linear time [38].

While the problems exhibiting speedup considered by Blum, Schnorr and Stumpf were all artificially
constructed for the purpose, Coppersmith and Winograd showed that for a particular class of algorithms
for matrix multiplication in polynomial time, any of these algorithms could always be replaced by another
with slightly smaller exponent. It is conjectured that a similar result holds true for any algorithm for
matrix multiplication [25, 26].

The present paper considers only linear speedup; we next review some previous work on this problem.
Speedup theorems à-la Turing machine, but for different models, are scarce. Regan [33] generalized

the linear speedup of Turing machines to his class of Block-Move models, with a certain range of cost
measures. A Block-Move model operates on a tape, like a Turing machine, but using a more complex
programming model in which finite-state transducers are invoked to operate on data as they are copied
from one part of the tape to another.

A linear speedup theorem is also known to hold for cellular automata, as proved by Mazoyer and
Reimen [22]. The construction increases the number of possible states of each of the potentially infinite
number of cells in a run of the automaton by an amount exponential in the speedup factor, hence the
method effectively extends the amount of “memory” readable in a single computation step in the same
fashion as the standard proof for Turing machines.

For counter machines with a one-way input tape, Fischer, Meyer and Rosenberg [8] proved a linear
speedup theorem stating that for any real constant c > 0 and any k-counter machine (k ≥ 1) operating
in time n+E(n), for some function E, there exists an equivalent counter machine operating in time
n+ bc ·E(n)c. Interestingly, this speedup does not require some analogue of tape compression or the use
of additional counters; it only records a greater amount of information in the finite-state control.

For several restrictions or variants of the Turing machine, linear speedup does not hold.
For single-tape Turing machines, S̆akuov claimed in [36, 37] the existence of problems, decidable in

time between n logn and n2, that do not admit linear speedup, but no proofs were given, nor have they
ever appeared.

For online Turing machines, where the input is a sequence x1, . . . ,xn of queries and the machine must
answer query xi before accessing query xi+1, it is in general easier for a malicious adversary to force the
machine to use more computational resources; thus lower-bound results (counteracting speedup) have
sometimes been obtained in this model, whereas off-line counterparts have not been proved as yet. A
line of research in which the on-line assumption has often been made is the comparison of the power
of different abstract storage units (e.g., simulating a multi-tape storage device using fewer tapes); see
[29, 28, 15] and references within. Several proofs of this kind can possibly be simplified, or new proofs
enabled, by the use of Kolmogorov complexity theory, as done for example in [30].

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 3

http://dx.doi.org/10.4086/cjtcs

AMIR M. BEN-AMRAM, NIELS H. CHRISTENSEN, AND JAKOB GRUE SIMONSEN

Hühne [13] considered online Turing machines with an efficient tree-structured memory model
instead of the usual tape, and showed, using Kolmogorov complexity, that constant (time) factor speedup
does not hold for online machines of this kind. Regan [32] later explained the success of Hühne’s proof
(in contradiction with the fact that such a result cannot be proved for ordinary TMs, given the speedup
theorem). He gave an informal argument according to which only machine models that have polynomial
vicinity can have the speedup phenomenon. Polynomial vicinity means that O(tc) storage cells can be
reached in t steps from any given configuration, where c is some constant. This class of models has
been noted before (with a definition nearly identical to Regan’s) by Cook and Anderaa [6], who proved,
for such machines, a non-linear lower bound for online multiplication. However, none of the authors
achieved a constant-factor tight lower bound (contradicting linear speedup) for the full range of such
models. Regan has been able to refine Hühne’s arguments and show that linear speedup does not hold
for online machines in his class of Block-Move models, with a certain range of cost measures. These
measures endow the machines with super-polynomial vicinity (and differ, of course, from those measures
for which he proved linear speedup, as mentioned above).

Žák [47] considered a somewhat artificial complexity model for Turing machines, in which the
machine has to be executed by a single fixed interpreter, and the time of interpretation is measured. In
this model he shows that a constant-factor separation holds.

Contrasting the result of Fischer, Meyer and Rosenberg [8], Petersen [31] proves that linear speedup
does not hold for k-counter machine with a 2-way input tape, for any fixed k.

For space complexity of Turing machines, some hierarchy results that contradict speedup are known.
An early example is [14] which establishes constant-factor tight hierarchies within polynomial-space
complexity classes: specifically, they prove that for any real constants b > a > 0 and r ≥ 1, when the
alphabet size (≥ 2) is fixed, more sets can be decided in space anr than in space bnr, for machines with
a fixed number of tapes. Increasing the number of tapes, or the size of the alphabet, is tantamount,
roughly, to increasing the space bound (an observation originally made by Stearns [45]). Another
“folklore theorem” is that for machines working within space S, an extra head is worth additional space
proportional to logS (namely, the representation of the head position).

A further investigation of tradeoffs between alphabet size, work space, and tape heads was done by
Seiferas [42, 41]. For example, given a sufficiently large m ∈ N and space-constructible S(n), which does
not grow too fast, there are problems decidable by an offline Turing machine M having alphabet size
m+1 within space S(n) that are not decidable by any Turing machine M′ with alphabet size m within
such space, no matter the number of tape heads available to M′.

Seiferas and Meyer [43] wrote an exposition of a fundamental theorem by Levin [20], characterizing
the sets of functions that describe the space usage of Turing machines solving some problem. This sets
the scene in general for both speedup and hierarchy results; a corollary closely related to our work is
a very tight hierarchy theorem for the special case of space on a Turing machine of a fixed alphabet,
showing that every constructible space bound is the space complexity of some problem, which cannot
be “sped up” even by the tiniest constant factor (note that this is stronger than a hierarchy theorem as
in [14]). Next, we mention some results that contradict Linear speedup (in time) for several models of
computation quite distinct from the Turing machine.

For random access machines (RAMs), Sudborough and Zalcberg showed that the unit-cost RAM
does not have linear speedup by proving a constant-factor hierarchy theorem [46]:

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 4

http://dx.doi.org/10.4086/cjtcs

COMPUTATIONAL MODELS WITH NO LINEAR SPEEDUP

Theorem 1.2. For every RAM time-constructible function T (n) where T (n)≥ n, there is a constant c > 1
and a language L⊆ {0,1}∗ such that
(i) L is decided by a RAM in time at most cT (n), and
(ii) L is not decided by any RAM in time at most T (n).

The proof, like all other proofs mentioned below, uses the standard diagonalization argument, and the
tightness of the result is due to the efficiency of the interpreter.

Blass and Gurevich [3] independently rediscovered the hierarchy theorem for random access machines
and—significantly—extended the result to the Abstract State Machines of Gurevich.

For Jones’ language I — a simple, Turing-complete imperative programming language where all data
are binary trees — Jones [16] and Jones and Ben-Amram [2] showed that linear speedup does not hold.
Rose [35] showed that speedup does not hold for the class of Categorical Abstract Machines, a model of
higher-order functional programming languages.

All of the above results concern deterministic computation. Surprisingly, even when explicitly
disallowing tape compression, non-determinism allows for linear speedup, as shown by the following
remarkable result by Geffert [10]:

Theorem 1.3. For every nondeterministic single-tape Turing machine M with alphabet {0,1} such that
the running time of M is bounded above by T (n)≥ n2, and each K ≥ 1, there exists an equivalent one-tape
Turing machine M′ with alphabet {0,1} whose running time is bounded above by T (n)/K.

Geffert also showed that for time bounds T (n) that do not meet the requirement T (n) ≥ n2, the
machine M′ can be constructed by adding a only a single symbol to the original tape alphabet.

Geffert posed two open problems [10, p. 64]: Whether it is possible to extend the above theorem to
(i) deterministic machines, and (ii) to two-tape non-deterministic machines. The results of the present
paper provide a very partial answer to (i): The theorem cannot be extended to multi-tape deterministic
machines (the case for single-tape machines is still unknown). Geffert’s question (ii) is still open.

Many Turing-machine lower bounds are proved using the method of crossing sequences—even
constant-factor tight bounds: for example, Kobayashi [19] proved a constant-factor tight hierarchy
theorem for one-tape non-deterministic Turing machines, for a restricted class of time bounds. However,
this theorem shows that increasing the time bound increases the class of decidable sets under the
assumption that the number of control states cannot be increased. In general, the calculation of the
number of crossing sequences involves the number of states, which makes it difficult to prove a constant-
factor separation if a bound on the number of states is not imposed. Note that the lower bound we present
in this paper does not assume a bound on the number of states. Kobayashi noted: “Crossing sequences
are also difficult to use for the analysis of how the size of the working-tape alphabets affects efficiency of
computations.” An earlier, related paper by Hennie [12] also used crossing sequences for a separation
that becomes constant-factor tight if the number of states is bounded. Hennie remarked that the method
“does not seem to be useful for obtaining time bounds for (two-tape) machines”. It therefore comes as a
surprise that Petersen’s result [31] for counter machines does use crossing sequence arguments for the
lower bound (which is so formulated that the dependence on the number of states disappears when input
size grows); it rests the single example of its kind known to us.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 5

http://dx.doi.org/10.4086/cjtcs

AMIR M. BEN-AMRAM, NIELS H. CHRISTENSEN, AND JAKOB GRUE SIMONSEN

2 Linear speedup fails for multi-tape Turing machines without tape com-
pression

This section establishes that for offline Turing machines with a fixed alphabet size and a fixed number of
tapes, there is a decision problem that defies linear speedup (as expressed by Theorem 1.1).

Note that offline machines are special cases of online machines: The sequence of queries is trivial,
the machine gets all of its input at once. Consequently, our results in this section are valid for online
models as well.

Tight complexity results regarding Turing machines may be sensitive to the specification of the model.
We consider Turing machines with input and work-tape alphabet containing ‘0’ and ‘1’, where 0 doubles
as blank. On a given input, a machine either halts in the designated “accept” or “reject” states, or fails to
halt.

Each Turing machine has a read-only, one-way input tape and two (two-way, read-write) work tapes.
Each tape is assumed to have exactly one head. In the taxonomy of Wagner and Wechsung [48], our
machines are 1-2T1-DMs (the first tape is one-way and read-only by convention, the next two tapes are
2-way, and the machine is deterministic).

We assume the work-tapes to be semi-infinite, with a beginning-of-tape mark on the left (as in [27]);
the input tape also has and end marker. In the initial configuration, all heads scan the beginning-of-tape
marks. The cells of the work tapes are numbered consecutively starting with 1.

Our goal is to prove the following theorem—note the contrast with Theorem 1.1.

Theorem 2.1. There is a family of languages {Lk | k > 0} such that for every ε > 0, there is a k such that
Lk is decidable by a TM in our class in at most (1+ ε) ·1.5n steps for all n, while any machine deciding
Lk must use at least (1− ε) ·1.5n steps on infinitely many inputs.

Proof. The proof comprises the definition of the languages (given next in this subsection), An upper
bound (Lemma 2.5), and a lower bound (Corollary 2.14).

As intermediate steps in both the proof of the upper bound and of the lower bound we will use a
single problem L (independent of ε) and a setting which is easier to work with—specifically, we include
an additional symbol] in the alphabet.

Definition 2.2. When b0 . . .bm−1 ∈ {0,1}m and n is a natural number (in binary, least significant bit first),
define

get(n,b0 . . .bm−1) =

{
0 when n≥ m
bn otherwise

We define L to be the language {w]i | get(i mod 2dlog |w|e,w) = 1}

Example: The following four values are in L: 011]1, 011]01, 011]101, 011]011. None of the following
four values are in L: 011]0, 011]11, 011]001, 011]111.

For this language, we will have an upper bound as in Theorem 2.1, but the lower bound will be weaker,
and to enable our tight result, we replace L with a family Lk of languages over the binary alphabet.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 6

http://dx.doi.org/10.4086/cjtcs

COMPUTATIONAL MODELS WITH NO LINEAR SPEEDUP

. #

0 1 0 0 1 0 1

.

Input

Tape 2

Tape 3

. #

#.

b2 b6

b0 b2 b4

b2 b4b3b1b0

Figure 1: The contents of the tapes of machine M1, as the first iteration of the main loop (3) is nearing
its end. The dashed arrows indicate the trajectory of the work-tape heads during this iteration. Note
that the symbols copied to Tape 3 have indices which match the two lower bits of i.

Definition 2.3. For any k > 0, define Lk = {ck(w)0i | w]i ∈ L}, where ck(w) is the string obtained from
w by padding it with zeros, if necessary, to a multiple of k bits, and inserting a 1 before every block of k
consecutive bits.

Observe that |ck(w)| = (k + 1) · d(1/k) · |w|e, and that, when reading a word in Lk, it is easy to
recognize where the first part (representing w) ends and the representation of i begins.

2.1 Upper bound

Lemma 2.4. For every ε > 0, there exists a 1-2T1-DM with alphabet {0,1,]} that decides L using at
most (1+ ε) ·1.5n steps for all n.

Proof. For clarity, we describe the general idea by giving a machine M1 that obtains the bound (1+ ε)2n.
The idea is then refined by a machine Mb that obtains the desired bound. b is a parameter to be specified
later.

We assume that the input has the form w]i where w = b0 . . .bm−1 ∈ {0,1}m, m≤ n, and i represents
a binary string which is interpreted as a number, as in Definition 2.2. It is trivial to ensure that the
machine rejects strings which are not in this form. We use the identifiers w, i and b j for the substrings they
represent in this description (b j is a single bit). Note that the essential task of the machine is to retrieve bi.

Description of M1.

1. Split the input word (up to the]) among tapes 2 and 3. That is, copy b0b2b4 . . . to Tape 2, and
b1b3b5 . . . to Tape 3, all in one pass over w. In case that the length of w is odd, an extra 0 is copied
to Tape 3, so that the same number of cells has been written on both tapes. The machine keeps track
of the parity of the number of cells written (in other words, the position in the tape is maintained
modulo 2).

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 7

http://dx.doi.org/10.4086/cjtcs

AMIR M. BEN-AMRAM, NIELS H. CHRISTENSEN, AND JAKOB GRUE SIMONSEN

2. Skip the] on the input tape; write a] on each of the work tapes, thus marking the end of the part of
w stored there.

3. Let the first digit of i be x ∈ {0,1}. If x = 0 then the value of i is an even number and the symbol
which we want to retrieve, bi, is known to have been copied to Tape 2. If x = 1, bi has been copied
to Tape 3. Hence, t = 2+ x is the index of the tape of interest. The value of t is recorded in the
finite control once x has been read. Denote by t̄ the index of the other work tape (2+(1−x)). Now,
enter the main loop:

• Move the input head to the next digit of i. Let this digit be x ∈ {0,1}. Scanning Tape t in
a direction inverse to the last scan, copy only the even (if x = 0) or only the odd (if x = 1)
positions from tape t to tape t̄, overwriting its previous contents. The copying stops when
either the beginning-of-tape marker or the] is encountered1; in the case x = 0, if the stop
condition occurs after an odd number of symbols was scanned, another 0 is “copied.” As
above, the number of symbols written to tape t̄ is maintained modulo 2, allowing the machine
to identify the odd or even positions when scanning backwards in the next iteration. Switch t
with t̄.

4. The main loop ends when a single bit is all that remains of w after the repeated splitting2. That
remaining bit should be a 1 for the machine to accept.

The reader may observe that the “rounding up” to an even string length, each time we copy, is
equivalent to “virtually” extending w with zeros up to the next power of two, namely to a length of
2dlog |w|e (cf. Definition 2.2). At iteration k of the main loop, tape t contains the bits of w in positions that
agree with i on their k least-significant bits. The correctness of the result should now be obvious.

Analysis of M1: The sum of the lengths of the tape scans is

m+
⌈m

2

⌉
+
⌈m

4

⌉
+ · · ·+1≤ 2m+ logm

and the extra work at the end of each scan (recognizing the] or beginning-of-tape marker and moving the
input head) is one step more, so we have a bound of 2m+2logm, which, for all ε > 0, is bounded by
(1+ ε) ·2m for m large enough. Recall that m≤ n and that small n can always be handled by hard-wiring
results into the machine, thus the bound can be met for all n.

Description of Mb: The improvement is obtained by putting more burden on the Turing machine’s
finite control. This machine handles not one bit of i at a time, but b (so that the case b = 1 gives M1).
For example, if b = 3, the machine will read 3 bits at a time from i. Suppose that they are 101, that is,
5 in binary; then the machine will copy to the other tape the positions whose index equals 5 modulo 8.
Generally, Mb begins by splitting the w part of the input among tapes 2 and 3 just as in M1. The first bit
of i tells which tape will be, initially, t. A slight difference is that Mb keeps track of the position on the
work-tapes modulo 2b (that is, the b least significant bits of the position are maintained). Then the main
loop is performed:

1The interested reader should be able to see that the beginning-of-tape marker will always be met on the tape that was
initially t, and the] on the tape that was initially t̄.

2If the input representing i ends earlier, the machine proceeds as if it were extended with zeros.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 8

http://dx.doi.org/10.4086/cjtcs

COMPUTATIONAL MODELS WITH NO LINEAR SPEEDUP

• Move the input head over the next b digits of i. Let 0≤ x < 2b be the value represented by these
bits. The position on Tape t is known modulo 2b. Scanning the tape in a direction inverse to the
last scan, copy only the positions that match x modulo 2b to tape t̄. The copying stops when either
the beginning-of-tape marker or the] is encountered. Switch t with t̄.

As above, the number of symbols written to tape t̄ is maintained modulo 2b, and, as long as it exceeds
2b, is also rounded up to a multiple of 2b by adding zeros, which achieves the effect of virtually extending
the input w with zeros so that all divisions by 2b are exact.

The main loop ends when no more than 2b bits remain of w; these are read in one chunk. If r bits are
read, the next dlogre bits of i are used to select the position according to which the machine accepts or
rejects.

Analysis of Mb: The sum of the lengths of the tape scans is

m+
⌈m

2

⌉
+
⌈ m

21+b

⌉
+
⌈ m

21+2b

⌉
+ · · · ≤ m+

m
2

∞

∑
i=0

1
2ib + logm≤

(
1+

1
2
· 1

1−2−b

)
m+ logm.

The extra work at the end of each scan amounts to b additional steps, so the time complexity of Mb is
bounded by (1+ 1

2 ·
1

1−2−b)m+(1+b) logm.
We complete the proof of the lemma by noting that for all ε > 0, a value of b can be chosen sufficiently

large to make the running time less than (1+ ε) ·1.5n for n large enough and consequently for all n.

Recall the language Lk = {ck(w)0i | w]i ∈ L}, where ck(w) is the string obtained from w by padding
it with zeros, if necessary, to a multiple of k bits, and inserting a 1 before every block of k consecutive
bits.

Lemma 2.5. For every k > 0, and every ε > 0, there exists a 1-2T1-DM with alphabet {0,1} that decides
Lk using at most (1+ ε) ·1.5n steps for all n.

Proof. We use a machine M′b which is similar to Mb above, however it uses the first out of every k+1
consecutive tape cells for a mark, in accordance with the definition of Lk. Thus, the “sharp sign” is
represented by a mark of 0. Maintaining the work-tapes in this representation means, for example, that
after the first splitting, we have k+1

k ·
m
2 cells written, rather than m/2; in general we have a factor of

(k+1)/k in the cost of each iteration, but this is also the ratio of |ck(w)| to |w|, so the running time in
terms of the input length remains (1+ ε) ·1.5n as before.

2.2 Lower bound

As for the upper bound, we develop the lower bound proof first for the language L. We obtain a lower
bound that matches our upper bound up to an arbitrary small factor (more precisely, arbitrarily close to
1), but under the assumption that the work-tape alphabet is binary, which is a mismatch with the upper
bound (and also with the input alphabet). Therefore, we later extend the result to the languages Lk, where
the input alphabet as well as the working-tape alphabet used in the upper-bound proof are binary.

The proof uses a sequence of lemmas that characterize the computation of a Turing machine that
decides L, culminating in Corollary 2.14, which gives the lower bound. The main tool for the proof is
an incompressibility argument, that is, an argument based on the Kolmogorov Complexity (also known

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 9

http://dx.doi.org/10.4086/cjtcs

AMIR M. BEN-AMRAM, NIELS H. CHRISTENSEN, AND JAKOB GRUE SIMONSEN

as description complexity) of strings. This tool has been successfully used in many lower-bound proofs
for all kinds of Turing machines and other computational models; for introductory material, as well as a
survey of many applications of Kolmogorov Complexity, the reader is referred to the excellent textbook
of Li and Vitányi [21]. In particular, we use conditional Kolmogorov complexity C(x | y) [21, Section
3.2.6].

Roughly, the Kolmogorov complexity of a string x, denoted C(x), is the length of a minimal string p
such that a universal Turing machine produces x on input p; the conditional Kolmogorov complexity of
string x given string y, C(x | y), is the length of a minimimal string p such that a suitable kind of universal
Turing machine produces x on input ȳp, where ȳ is a self-delimiting encoding of y.

We shall also need the notion of a Kolmogorov-random infinite binary sequence [21, Section 2.5]; the
following two facts are all one needs to know about the latter subject, for our purpose.

1. Random infinite binary sequences exist.

2. Let xω be a random infinite binary sequence. Let x1:n be the n-bit prefix of xω . There is a constant
n0 such that for all n≥ n0, C(x1:n | n)≥ n−2logn, where C(x | y) is the conditional Kolmogorov
complexity of x given y.

For the rest of this analysis, fix a Turing Machine M, more specifically a 1-2T1-DM with work-tape
alphabet {0,1}, that decides L, and a random infinite binary string xω .

While the problem of deciding membership in L is an offline problem (and those are typically more
difficult to prove lower bounds for), the nature of our problem is such that it is “almost online,” as it
consists of data followed by a query on these data; moreover, in order to achieve a processing time below
2n, some non-trivial processing of the data has to occur when the query is not yet known. Just copying
the input to a work-tape and deferring all decisions to when the query is received will not work for going
below 2n, as the reader can surely verify.

We will analyze the computation of M on prefixes xω of arbitrary length, as well as computations
which receive such a prefix of length m followed by a query, that is, a] followed by the representation of
the query position i.

In the sequel, the meaning of writing to a blank cell means writing to a work-tape cell that has never
been written to before (it may be convenient to imagine that such cells contain a special blank symbol,
although to the machine it is indistinguishable from a 0). The end of a work-tape is the first such blank
cell. Recall that our tapes are semi-infinite and the non-blank portion can only grow by writing at their
current end.

For all m > 0, we refer by Step m to the transition where the machine first enters cell m on the input
tape (thus there are two “clocks” that we are using—number of transitions, and number of steps). Define:

P(m) the time used until Step m.

Q(m) the worst-case cost of a query at Step m. This is defined as the worst-case number of transitions
from this point until the end of the computation, if a] appears in cell m.

Hi(m) the distance of head i (∈ {2,3}) from the end of its tape at Step m (the value Hi(m) is 0 if the head
moves to a blank cell together with the input head moving into cell m).

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 10

http://dx.doi.org/10.4086/cjtcs

COMPUTATIONAL MODELS WITH NO LINEAR SPEEDUP

Si(m) the material space on tape i (i = 2,3) at Step m. This is defined as the number of distinct tape cells
c on tape i such that: (a) M has visited c before Step m, and (b) there exists at least one query at
Step m such that c will be visited by M while processing this query.

S(m) is S2(m)+S3(m).

Note that, ex definitione, P(m)≥ m and it is also easy to verify the following inequalities:

Q(m)≥ (1/2)Si(m) for i ∈ {2,3} (2.1)

(argument: (1/2)Si is the radius of head movements necessary to cover the material space on tape i.)

Q(m)≥ Si(m)−Hi(m) for i ∈ {2,3} (2.2)

(argument: Head i has Hi non-blank positions to its right, so even if they are all material, there will be
Si−Hi material positions to its left, which some query must visit)

Q(m)≥ (1/2)S(m)−max(H2(m),H3(m)). (2.3)

(follows from (2.2) and the observation that one of the tapes must contain at least half of the material
space.)

Lemma 2.6 (Sufficiency Lemma). For a certain constant c1, it holds for almost all m that S(m) >
m− c1(logm).

Proof. Intuitively, we claim that S(m) should suffice for storing approximately m bits. More precisely,
we know, by randomness, that the Kolmogorov Complexity of x1:m is at least m−2logm, even given m.
Suppose that for some m, S(m)< m.

If we have the complete configuration of M at Step m, except for the input tape, we can reconstruct
the portion of the input read so far. This can be achieved by simulating M on all inputs on the form x1:m]i
with i = 0,1, . . . ,m−1. In fact, the following information suffices for performing this task:

1. A description of M and its current state—a constant number of bits,

2. The values Si(m) (satisfying S2(m)+S3(m)< m),

3. For each tape, the contents of the Si(m) cells that constitute the material space,

4. The position of each head of M relative to the material section of its tape—this is logm bits.

This proves C(x1:m |m)≤ S(m)+c logm for some constant c. By randomness, C(x1:m |m)≥m−2logm,
so we have S(m)> m− c1 logm for an appropriate constant c1.

In the remainder of the section, we shall repeatedly refer to the constant c1 guaranteed to exist by the
above lemma.

We will sometimes use f (m)>a.e. g(m) as a shorthand for “for almost all m, f (m)> g(m).”

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 11

http://dx.doi.org/10.4086/cjtcs

AMIR M. BEN-AMRAM, NIELS H. CHRISTENSEN, AND JAKOB GRUE SIMONSEN

Lemma 2.7 (Growing Tapes Lemma). Suppose that Q(m) < (1/2)m− c1 logm infinitely often. Then
both functions Si(m) are unbounded.

Proof. Assume to the contrary that the material space on one of the tapes, say Tape 2, does not grow
beyond some constant K. By the Sufficiency Lemma, we get (for almost all m) S3(m)>m−c1(logm)−K,
and hence, by (2.1),

Q(m)>a.e. (1/2)(m− c1(logm)−K) = (1/2)m− (1/2)c1(logm)− (1/2)K >a.e. (1/2)m− c1(logm)

A contradiction to the assumption.

Lemma 2.8 (Growing Distance Lemma). Suppose that Q(m)<a.e. (1/2)m− c1 logm . Then there is no
constant K such that for infinitely many m, H2(m)+H3(m)≤ K.

Proof. Suppose that such a K exists. Then for infinitely many m we have, by (2.3) and the Sufficiency
Lemma, Q(m)> (1/2)S(m)−K > (1/2)(m−c1(logm))−K, which contradicts the lemma’s assumption.

Lemma 2.9 (Crossing Lemma). Suppose that Q(m)< (1/2)m− c1 logm infinitely often. Then there are
infinitely many transitions where the heads are located at the same (or almost the same) distance from
the ends of their tapes (where almost refers to a difference bounded by 1).

Proof. By the Growing Tapes lemma, both tapes’ contents grow infinitely. Thus, there are infinitely many
transitions t(2)1 < t(2)2 < t(2)3 < · · · , where Head 2 is at the end of its tape, and similarly for Head 3. Fix
some i, and let j be the smallest index so that t(3)j > t(2)i . Thus from transition t(2)i to transition t(3)j , Head

3 moved from its position at transition t(2)i to the end of its tape, while Head 2 moved, possibly, away
from the end of its tape. Clearly, at some point between transition t(2)i to transition t(3)j , their distances
from the respective ends must have been equal, or at most 1 apart (if we draw graphs of the distance of
each head from its tape’s end, the graphs will cross).

Definition 2.10. We denote by mt for the number of the first step following transition t, that is,

mt = min{m ∈ N|P(m)> t} .

Lemma 2.11 (Writing Lemma). Suppose that P(m)+Q(m) <a.e. (1.5)m− c1(logm). Then there are
only finitely many transitions where both heads write to a blank cell.

Proof. Assume to the contrary that there are infinitely many transitions where both heads write to a blank
cell. Let t be the index of such a transition. Consider the effect of a query in Step mt . For t large enough,
the Sufficiency Lemma gives S(mt)> mt − c1(logmt), and hence, by (2.3),

Q(mt)> (1/2)(mt − c1(logmt))−max(H2(mt),H3(mt)).

Recall that P(mt) is the number of transitions until Step mt ; these can be divided into three sections:
(1) The transitions until Step mt −1 (surely at least mt −1 of these); (2) The transitions from Step mt −1
to Transition t (maybe 0 of these); (3) The transitions from Transition t until Step mt . Note that at

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 12

http://dx.doi.org/10.4086/cjtcs

COMPUTATIONAL MODELS WITH NO LINEAR SPEEDUP

transition t, both heads wrote a blank cell, while when Step mt is reached, they are positioned Hi(mt)
cells away from the respective end of tape. Hence, we deduce that

P(mt)≥ mt −1+max(H2(mt),H3(mt))

Summing the last two equations,

P(mt)+Q(mt)> (1/2)(mt − c1(logmt))+mt −1≥ (1.5)mt − c1(logmt), (2.4)

and there will be infinitely many such mt , in contradiction to the lemma’s assumption.

A transition in which one or both of the heads write into a blank tape cell will be called a neograph.

Corollary 2.12. Suppose that P(m)+Q(m) <a.e. (1.5)m− c1(logm). Then there is a constant K such
that for all t, the number of neographs during the first t transitions is at least mt − c1(logmt)−K.

Proof. This is an easy corollary of the Writing Lemma and the Sufficiency Lemma; K accounts for
the finite number of transitions that write two blank cells at once, as well as for the finite number of
transitions in which S(m) falls below the lower bound m− c1(logm).

Lemma 2.13. For infinitely many values of m, P(m)+Q(m)≥ 1.5m−2c1 logm.

Proof. Assume, in contradiction, that P(m)+Q(m)< (1.5)m−2c1 logm for almost all m. Then Lem-
mas 2.6–2.11 and Corollary 2.12 apply. Let t be any of the transition numbers established by the Crossing
Lemma. For convenience, assume that H2(mt)≤ H3(mt). Let D be the distance of Head 3 to the end of
its tape at transition t (the other one is at distance D−1, D or D+1).

By Corollary 2.12, there is a constant K such that the number of neographs up to transition t is at
least mt−c1(logmt)−K. After the last neograph before t, the head that did the writing had to move away
about D positions from the end; hence we have

t ≥ mt − c1(logmt)−K +D.

By definition, at Step mt , Head 3 is H3(mt) positions away from the end of its tape; hence between
transition t and the reading of the next (mt’s) input, it moves a distance of |H3(mt)−D|. Thus

P(mt)≥ t + |H3(mt)−D| ≥ mt − c1(logmt)−K +H3(mt) .

Since

Q(mt)≥ (1/2)S(mt)−max(H2(mt),H3(mt))

> (1/2)(mt − c1(logmt))−H3(mt),

we get

P(mt)+Q(mt)> 1.5(mt − c1(logmt))−K

which contradicts the initial assumption.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 13

http://dx.doi.org/10.4086/cjtcs

AMIR M. BEN-AMRAM, NIELS H. CHRISTENSEN, AND JAKOB GRUE SIMONSEN

Corollary 2.14. For every ε > 0, any 1-2T1-DM with work-tape alphabet {0,1} deciding L must use at
least (1− ε) ·1.5n steps for infinitely many values of n.

Proof. Choose k sufficiently large that (2c1 logk)/1.5k≤ ε . Then, for all n≥ k, we have (1−ε) ·1.5n≤
1.5n−2c1 logn, so by Lemma 2.13, the running time of the machine M is bounded below by (1−ε) ·1.5n
for infinitely many values of n.

We have found it somewhat unnatural to restrict the work-tape alphabet to an alphabet smaller than the
input alphabet which is {0,1,]}. Therefore, we also prove a result for the language Lk, whose definition
disposes of the] symbol. Recall that Lk = {ck(w)0i | w]i ∈ L}, where ck(w) is the string obtained from w
by padding it with zeros, if necessary, to a multiple of k bits, and inserting a 1 before every block of k
consecutive bits.

Lemma 2.15. For every ε > 0, there is a k such that any 1-2T1-DM with alphabet {0,1} deciding Lk
must use at least (1− ε) ·1.5n steps for infinitely many values of n.

Proof. We use the same argument, considering input taken out of xω and formatted into blocks of k bits
delimited by marker bits. Let m denote the length of the prefix of xω . It is convenient to concentrate on
prefixes of length divisible by k, so they constitute a whole number of blocks and their encoding is of length
(1+1/k)m exactly. This has no effect on the claims made up to Lemma 2.11. Here, the argument leading
to Eq. (2.4) has to be amended: the “previous step” is not Step m−1, but Step m− k, so the number of
input-head movements up to that step is (1+1/k)(m−k). The claim P(m)≥m−1+max(H2(m),H3(m))
changes into P(m)≥ (1+1/k)(m− k)+max(H2(m),H3(m)) and Eq. (2.4) changes to

P(m)+Q(m)> (1/2)(m− c1(logm))+(1+1/k)(m− k)≥a.e. (1.5+1/k)m− c1(logm). (2.5)

Therefore, the statement of Lemma 2.11 is now the following:

Lemma 2.16 (Writing Lemma, amended). Suppose that P(m)+Q(m)< (1.5+1/k)m− c1(logm) for
almost all m. Then it is also true in almost all transitions, that when one of the heads writes to a blank
cell, the other does not.

This change propagates to the sequel, so that Lemma 2.13 changes to:

P(m)+Q(m)≥a.e. (1.5+1/k)m−2c1 logm .

Expressed in terms of the input length length n = (1+ 1/k)m, our lower bound becomes (after some
calculation) (1.5−1/(2k+2))n−2c1(logn). We deduce Lemma 2.15 by choosing k ≥ 1/(2ε).

2.3 Changing the work-tape alphabet

We can generalize our result to an alphabet Γ of more than 2 letters in a simple way: the input w becomes
now any word over Γ. The language LΓ consists of words w]si where s is a single symbol, i is a binary
number as before, and]si is in LΓ if and only if the ith symbol of w (modulo a power of two, as before) is
an s. The language LΓ

k is obtained using the same encoding as for Lk. It is quite obvious that the algorithm
that furnishes our upper bound still works, and the lower bound proofs do too, by considering xω to be a
random infinite string over Γ.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 14

http://dx.doi.org/10.4086/cjtcs

COMPUTATIONAL MODELS WITH NO LINEAR SPEEDUP

3 Linear speedup fails for models with efficient self-interpreters

We now introduce a general class of models of computation characterized by having highly efficient
self-interpretation and demonstrate that this too defies general linear speedup.

3.1 Preliminaries

We base our definitions on the standard Blum complexity measures [4, 40], with one subtlety: we want to
consider machine models that may employ a variety of data representations (integers, strings, trees. . .).
Defining suitable notions of computability (let alone complexity) that will be consistent across a variety of
data representations is a subtle endeavour; see [17, 5, 7]; our choice in this paper is to explicitly state just
the assumptions that are important to our purpose, and avoid any further discussion of their ramifications,
and also to simplify notation and definitions as much as we can.

Definition 3.1. A data representation is an infinite, countable domain D, endowed with an embedding of
N= {0,1,2, . . .} in D. The elements of D that represent, in this way, elements of N are called numerals.
By int(x) we denote the number corresponding to numeral x. To simplify notation, we may use this
embedding tacitly, identifying a number with its numeral; so we use, e.g., 0 for the numeral representing
zero.

We further assume:

• A size function | · | : D−→ N.

• A tupling function τ : D∗ −→ D. The value τ(x1, . . . ,xn) may also be written simply as (x1, . . . ,xn).
We assume that |(x1, . . . ,xn)|= O(|x1|+ · · ·+ |xn|).

Definition 3.2. A programming system consists of a data representation D and an indexed set {φi}i∈N of
partial functions φi : D−→ D; the indices i are called programs and the functions {φi}, computable (in
this system). We introduce the typing notation φi : D→ N to assert that the value of φi(x) (for any x such
that it is defined) is a numeral.

Definition 3.3. A model of computation with a complexity measure is a pair ({φi},{Φi}) where {φi} is a
programming system and for all i ∈ N, Φi : D−→ N satisfies dom(Φi) = dom(φi) (i. e., the functions are
defined for the same inputs).

According to Blum [4], an (abstract) complexity measure has to satisfy the additional assumption
that the predicate λ i,x,b : Φi(x) = b is decidable. We do not directly use this assumption, but our
Assumption 1 below implies it (in reasonable computational models, including admissible enumerations
of the recursive functions as defined in [34]).

Definition 3.4. A function T : N −→ N is said to be ({φi},{Φi})-constructible if there is some j ∈ N
such that φ j : D−→ N, ∀x : int(φ j(x)) = T (|x|) and Φ j(x) ∈ O(λx.T (|x|)).

When the programming model {φi} and the complexity measure {Φi} are given in the context, we
will simply refer to ({φi},{Φi})-constructible functions as constructible.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 15

http://dx.doi.org/10.4086/cjtcs

AMIR M. BEN-AMRAM, NIELS H. CHRISTENSEN, AND JAKOB GRUE SIMONSEN

3.2 Models with program-independent interpretation overhead

We now move on to a new definition. We are interested in models of computation with efficient step-by-step
interpretation. By “efficient” we mean that the interpretation overhead should be a program-independent
constant. Step-by-step interpretation is the kind of program interpretation that runs in lockstep with the
interpreted program (the normal way to write an interpreter). In our context, the important consequence of
step-by-step interpretation is that the interpreter can be equipped with a clock that can shut computation
down after resource usage has reached a certain threshold.

We say that such a model of computation is “PICSTI” because it has Program-Independent Constant-
overhead STep-by-step Interpretation. More precisely, we introduce four assumptions, of which the first
one is the essential, while the rest are of a more technical nature.

Assumption 1 (Efficient interpretation). There exists a program U such that

∀t ∈ N∀x ∈ N∀y ∈ D : φU(t,x,y) =

0 when Φx(y)> t

φx(y) otherwise
,

∃a,b > 0 : ΦU ≤ a+b(t + |x|+ |y|)

Intuitively, the program U is a self-interpreter (also known as a Universal program) that runs program
x on y, shutting down the computation when the resource usage reaches t, in which case 0 is returned.
If the simulation of running x on y halts with a result before the threshold is reached, U returns that
result. The complexity of U is then assumed to be linear in the amount of resources, t, and the size of
the interpreted program and its input. Intuitively, the constant b bounds the interpretation overhead of U
(roughtly the time to simulate one step of program x).

Assumption 2 (Diagonalization). For every i ∈ N there is a program not(i) ∈ N such that

∀x ∈ domφi : φnot(i)(x) 6= φi(x)

∀x ∈ domφi : φnot(i)(x) ∈ {0,1}
Φnot(i) ∈ O(Φi +1)

Assumption 3 (Efficient tupling). For every i1, . . . , ik ∈ N there is a program tuple(i1, . . . , ik) ∈ N that
applies all of i1, . . . , ik ∈ N to its input (sequentially or in parallel) and creates a tuple of the outputs
without using significant overhead. More precisely:

∀x : φtuple(i1,...,ik)(x) = (φi1(x), . . . ,φik(x))

Φtuple(i1,...,ik) ∈ O(Φi1 + · · ·+Φik +λx.|x|)

As an example of the Assumption 3, consider two programs i and i′. A typical implementation of
tuple(i, i′) applied to input x would simply

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 16

http://dx.doi.org/10.4086/cjtcs

COMPUTATIONAL MODELS WITH NO LINEAR SPEEDUP

• Apply program i to a copy of input x, obtaining the value φi(x), which is then stored.

• Apply program i′ to a copy of input x, obtaining the value φi′(x), which is also stored.

• Construct and output the tuple (φi(x),φi′(x)).

Assumption 4 (Composition 3). For every i, j ∈ N there is a h(i, j) ∈ N such that

φh(i, j) = φi ◦φ j

Φh(i, j) ∈ O(Φi ◦φ j +Φ j)

3.3 Remarks on concrete computation models

3.3.1 Models which are PICSTI under the unit-cost time measure

There are several different computational models in the literature satisfying the above assumptions. For
example, Unit-cost RAMs and Jones’ programming languages I and F [17] are all PICSTI with the
associated time measures. Mogensen proved that pure, untyped lambda calculus under several different
cost models is PICSTI if β -reduction is restricted to reduction to weak head normal form under call-by-
name, call-by-value, or call-by-need strategies [24]; Mogensen also showed that the existence of efficient
self-interpreters is highly sensitive to the cost model used. As remarked in [2], the Storage Modification
Machine introduced by Schönhage [39], when its alphabet is fixed, has an efficient self-interpreter under
the time measure—in our terminology, it is PICSTI.

The input and output of I and F programs in [17] are binary trees, and in lambda calculus the input
and output are similarly binary trees in the form of lambda terms. The other models are defined with
string input and output.

To justify our claims, it is easy to see that each model satisfies Assumptions 2, 3 and 4. To see that
Assumption 1 is also satisfied, note that all of these have a universal machine (“interpreter”) with constant-
time overhead that is independent of the program being interpreted, and, moreover, the interpreters all
simulate one step of the interpreted program at a time, so that on its completion, the interpreter has the
interpreted program’s output stored in memory. Using such an interpreter, we can construct a program
that, on input t,x,y:

1. Stores the threshold t in a counter.

2. Using the interpreter, simulates one step of x applied to y at the time, decrementing the counter for
each step simulated.

3. At each step, if the counter has reached 0, the program outputs 0 and halts.

4. If no steps remain to be simulated, the result φx(y) would be in memory and the program is able to
output that.

3Definition 12, [1], weakened.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 17

http://dx.doi.org/10.4086/cjtcs

AMIR M. BEN-AMRAM, NIELS H. CHRISTENSEN, AND JAKOB GRUE SIMONSEN

In each of the models mentioned above these required operations are contant-time: storing the value of a
numeral in a counter, decrementing a counter, checking for equality to 0, and concatenating 0 to a string
(to completely justify it, the form of numerals has to be specified; for our purposes, several common
choices, such as unary and binary representations, are all suitable).

3.3.2 Turing-machine space

For a Turing machine with k ≥ 1 work tapes, write Si(n) for the maximum number of distinct space cells
scanned on tape i, 1≤ i≤ k in computation with input of size n. There are two standard definitions of the
space complexity S(n) of such a Turing machine, namely S∑(n) = ∑

k
i=1 Si(n) and Smax(n) = maxk

i=1 Si(n).
It is immediate that Smax(n)≤ S∑(n)≤ k ·Smax(n), whence S∑ and Smax are asymptotically equivalent for
the class of multi-tape Turing machines.

The following folklore result is easily proved.

Proposition 3.5. The class of Turing-machines with an unlimited number of work tapes and alphabet
{0,1}, with the space complexity measure S∑, is PICSTI.

As above, the main issue is the efficiency of a universal machine, which has to be a machine with a
fixed number k of work tapes that can simulate a machine with k′ > k work tapes. Here the measurement
of space usage by S∑ is crucial, as under Smax we do have a linear speedup phenomenon (so, according
to our proof below, it cannot be PICSTI). In fact, for any given machine M with Smax(n)> 2n, we can
reduce Smax by half by doubling the number of work tapes. The symbols of each original work tape are
distributed among two tapes of the new machine in an even-odd manner, so that it is easy to keep track of
where the current symbol is.

3.4 Linear speedup fails for PICSTI models

We now proceed to show that, for any PICSTI model, there are constant-factor hierarchies, i. e., linear
speedup fails in a strong sense. The proof generalizes similar results for concrete models [16, 2, 3] recast
in an abstract setting.

Theorem 3.6. Consider a model ({φi},{Φi}) satisfying Assumptions 1, 2, 3, and 4 and an id ∈ N for
which φid = λx.x. For any constructible function f : N −→ N with ∀x : f (|x|) > |x| ∧ f (|x|) > Φid(x),
there is a 0-1-valued function which is computable using resources O(f (| · |)), but is not computable
using resources at most f (| · |).

Proof. As f is constructible, there is an F ∈ N with int(φF(x)) = f (|x|) and ΦF ∈ O(λx. f (|x|)). Recall
that U is our three-parameter universal program, the first parameter being the resource limit after which
interpretation is shut down. Recall also that h implements functional composition. Define d ∈ N by

d = not(h(U, tuple(F, id, id))))

Intuitively the program d creates a tuple with 3 copies of its input, applies F to the first copy, then applies
U to the updated 3-tuple, and finally “negates” the result from U .

The 0-1-valued function in the Theorem is φd .

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 18

http://dx.doi.org/10.4086/cjtcs

COMPUTATIONAL MODELS WITH NO LINEAR SPEEDUP

We know that this function can be computed (by d) using resources

Φd ∈ O(Φh(U,tuple(F,id,id)))) By definition of d and Assumption 2

⊆ O(ΦU ◦φtuple(F,id,id)+Φtuple(F,id,id)) By Assumption 4

⊂ O(int◦φF +λx.|x|+Φtuple(F,id,id)) By Assumption 1 and semantics of tuple

= O(int◦φF +Φtuple(F,id,id)) By the assumptions on F and id

⊆ O(int◦φF +ΦF +Φid +Φid +λx.|x|) By Assumption 3

= O(int◦φF +ΦF) By the assumptions on id and f

= O(λx. f (|x|)) By definition of F

It remains to prove that φd cannot be computed with resources less than f . Assume then, for the sake of
contradiction, the existence of a program l with φl = φd but for which Φl(x)≤ f (|x|) for all x. It follows
that Φl(l)≤ f (|l|) which means

φl(l) = φU(f (|l|), l, l) By Assumption 1

6= φd(l) By the definition of d

= φl(l) By the assumption on l

which is a contradiction.

Thus, the linear speedup theorem fails for reasonably growing, constructible functions. The contra-
positive of Theorem 3.6 is itself worth noting: If a model of computation does have linear speedup, it is
not PICSTI. Thus, for the particular case of Turing machines and time complexity, we have:

Corollary 3.7. Let {φi} be any of the machine classes below, and let {Φi} be its usual time resource
measure. Then ({φi},{Φi}) is not PICSTI (hence, the class does not have an efficient interpreter satisfying
Assumption 1).

• The class of Turing machines with fixed number of tapes, but unlimited alphabet size.

• The class of Turing machines with unlimited number of tapes, but fixed alphabet size.

• The class of Turing machines with unlimited number of tapes and alphabet size.

Proof. Combine Theorem 3.6 with the speedup theorem for these classes (e. g., [27, Thm. 2.2]); note that
Assumptions 2–4 are satisfied by these models.

Another contrast is with Fürer’s classic result [9], which shows that we can decrease the asymptotic
program-dependent overhead of self-interpretation in multitape Turing machines to a very slow-growing
function. Corollary 3.7 shows that the overhead cannot be bounded by a (program-independent) constant.
This can be interpreted as follows: If the given machine class does have a linear speed up, it cannot have
an efficient universal machine.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 19

http://dx.doi.org/10.4086/cjtcs

AMIR M. BEN-AMRAM, NIELS H. CHRISTENSEN, AND JAKOB GRUE SIMONSEN

4 Conclusion and open problems

We have proved that the linear speedup theorem does not hold for Turing machine time without increasing
alphabet size or number of tapes. In addition, we have defined a class, PICSTI, of models of computation
in which linear speedup does not hold and demonstrated how several existing models are elements of this
class.

We leave the reader with the following open problems (on some of which we dare to pose conjectures).

1. Our result for Turing machines (Theorem 2.1) can perhaps be strengthened. For example, the lower
bound assumed a one-way input tape. We conjecture that the lower bound also holds for machines
where the input tape is two-way.

2. A more important weakness of Theorem 2.1 is that it only gives one particular counter-example
to speedup, with a rather low time complexity. Theoretically, it might still be possible that linear
speedup holds for machines whose time complexity is higher. We conjecture that this is not the
case, and that there are problems with arbitrarily high time complexity that cannot be sped up.

3. We find it interesting that Theorem 2.1 does leave a gap between the upper and lower bounds, even
though the gap can be made arbitrarily small. Moreover, by careful inspection of our upper bound,
the reader would be able to see that a machine implementing our algorithm can always be improved
by a very small constant factor (using additional states).

We pose the following (somewhat vague) conjecture: every decision problem A whose complexity
on a multi-tape Turing machine is within certain limits (for example, higher than 1.5n ?) has this
form of weak linear speedup, that is, for every k-tape machine deciding it in worst-case time (space)
f (n) there is an ε > 0 and a k-tape machine M′, of the same alphabet, that decides A in time (space)
bounded above by f (n)/(1+ ε).

Observe that this conjecture is at odds with neither the results of the present paper, nor the previous
open problems: ε is dependent on the machine M, hence may become smaller the faster M is. Thus,
linear speedup may still fail to hold even if the conjecture holds.

4. As noted in Section 3.3.1, the Storage Modification Machine of Schönhage [39], with a fixed
alphabet, is PICSTI under the time measure, hence has no linear speedup. Given the result of
Hühne [13] it seems reasonable that even if the alphabet were not fixed, there would still be no
speedup. But this problem is, to our best knowledge, still open.

5. Finally, we pose a question regarding a version of the linear speedup problem for random access
machines. Some of the algorithms literature considers unit-cost RAMs of a finite word length w
that is related to the input size n, for example w = Θ(logn) is a common choice. In order to avoid
difficulties with, e.g., composing algorithms, a more specific expression for w, like w = 2logn, is
not used. Question: Is it true that for every program p recognizing a language (say of binary strings)
in time t(n) using word length w = Θ(f (n)) there is a program q using word length Θ(f (n))
(but possibly larger than used by p) and running in cn+(1/2)t(n) time (for some constant c)?
Intuitively, this question has to do with whether every program can be sped up using hardware with
increased bit-parallelism—an issue quite related to the practice of computer systems.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 20

http://dx.doi.org/10.4086/cjtcs

COMPUTATIONAL MODELS WITH NO LINEAR SPEEDUP

Acknowledgments

The authors wish to thank Neil D. Jones, Andreas Milton Maniotis, Hunter Monroe, Holger Petersen
and Simon Yoffe for useful comments that have helped us improve this paper. We also wish to thank
Janos Simon and the anonymous referees for their insightful and thorough comments. Part of this work
was done while Amir Ben-Amram was visiting The Department of Computer Science, University of
Copenhagen (DIKU).

References

[1] A. Asperti. The intensional content of Rice’s theorem. In Proceedings of the 35th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’08), pages 113–119. The
ACM Press, 2008. 17

[2] A. Ben-Amram and N. Jones. Computational complexity via programming languages: Constant
factors do matter. Acta Informatica, 37(2):83–120, 2000. 5, 17, 18

[3] A. Blass and Y. Gurevich. The linear time hierarchy for abstract state machines and RAMs. Journal
of Universal Computer Science, 3(4):247–278, 1997. 5, 18

[4] M. Blum. A machine-independent theory of the complexity of recursive functions. Journal of the
Association for Computing Machinery, 14(2):332–336, 1967. 3, 15

[5] U. Boker and N. Dershowitz. The influence of domain interpretations on computational models.
Applied Mathematics and Computation, 215(4):1323 – 1339, 2009. 15

[6] S. A. Cook and S. O. Aanderaa. On the minimum computation time of functions. Transactions of
the American Mathematical Society, 142:291–314, 1969. 4

[7] N. Dershowitz and E. Falkovich. Honest universality. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 370(1971):3340–3348, 2012. 15

[8] P. C. Fischer, A. R. Meyer, and A. L. Rosenberg. Counter machines and counter languages. Theory
of Computing Systems, 2:265–283, 1968. 3, 4

[9] M. Fürer. The tight deterministic time hierarchy. In Proceedings of the 14th ACM Symposium on
the Theory of Computing (STOC ’82), pages 8–16. The ACM Press, 1982. 19

[10] V. Geffert. A speed-up theorem without tape compression. Theoretical Computer Science, 118(1):49–
65, 1993. 5

[11] J. Hartmanis and R. Stearns. On the computational complexity of algorithms. Transactions of the
American Mathematical Society, 117:285–306, 1965. 2

[12] F. Hennie. One-tape, off-line Turing machine computations. Information and Control, 8(5):553–578,
1965. 5

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 21

http://dx.doi.org/10.4086/cjtcs

AMIR M. BEN-AMRAM, NIELS H. CHRISTENSEN, AND JAKOB GRUE SIMONSEN

[13] M. Hühne. Linear speed-up does not hold for Turing machines with tree storages. Information
Processing Letters, 47:313–318, 1993. 4, 20

[14] O. H. Ibarra and S. K. Sahni. Hierarchies of turing machines with restricted tape alphabet size.
Journal of Computer and System Sciences, 11(1):56–67, Aug. 1975. 4

[15] T. Jiang, J. I. Seiferas, and P. M. B. Vitányi. Two heads are better than two tapes. Journal of the
ACM, 44(2):237–256, Mar. 1997. note erratum in JACM 44:4. 3

[16] N. Jones. Constant time factors do matter. In Proceedings of the 25th Annual ACM Symposium on
Theory of Computing, pages 602–611, 1993. 5, 18

[17] N. Jones. Computability and Complexity from a Programming Perspective. The MIT Press, 1997.
2, 15, 17

[18] K.-I. Ko and D.-Z. Du. Theory of Computational Complexity. Wiley-Interscience Series in Discrete
Mathematics and Optimization. John Wiley and Sons, Inc., New York, 2000. 2

[19] K. Kobayashi. On the structure of one-tape nondeterministic Turing machine time hierarchy.
Theoretical Computer Science, 40(2-3):175–193, 1985. 5

[20] L. A. Levin. Computational complexity of functions. Theoretical Computer Science, 157(2):267–
271, May 1996. 4

[21] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications. Graduate
Texts in Computer Science. Springer-Verlag, 1997. 10

[22] J. Mazoyer and N. Reimen. A linear speed-up theorem for cellular automata. Theoretical Computer
Science, 101:59–98, 1992. 3

[23] A. R. Meyer and P. C. Fischer. Computational speed-up by effective operators. Journal of Symbolic
Logic, 37(1):55–68, 1972. 3

[24] T. Æ. Mogensen. Linear-time self-interpretation of the pure lambda calculus. Higher-Order and
Symbolic Computation, 13(3):217–237, 2000. 17

[25] H. Monroe. Are there natural problems with speedup? Bulletin of the European Association for
Theoretical Computer Science, 94:212–220, 2008. 3

[26] H. Monroe. Speedup for natural problems and noncomputability. Theoretical Computer Science,
412(4-5):478–481, 2011. 3

[27] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. 2, 6, 19

[28] R. Paturi, J. I. Seiferas, J. Simon, and R. E. Newman-Wolfe. Milking the Aanderaa argument.
Information and Computation, 88(1):88–104, Sept. 1990. 3

[29] W. J. Paul. On heads versus tapes. Theoretical Computer Science, 28(1–2):1–12, Jan. 1984. 3

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 22

http://dx.doi.org/10.4086/cjtcs

COMPUTATIONAL MODELS WITH NO LINEAR SPEEDUP

[30] W. J. Paul, J. I. Seiferas, and J. Simon. An information-theoretic approach to time bounds for on-line
computation. Journal of Computer and System Sciences, 23(2):108 – 126, 1981. 3

[31] H. Petersen. Bounded counter languages. In DCFS 2012, Descriptional Complexity of Formal
Systems, Braga, Portugal, Lecture Notes in Computer Science. Springer, 2012. 4, 5

[32] K. Regan. Linear speed-up, information vicinity, and finite-state machines. In Proceedings of the
IFIP 13th World Computer Congress, volume 1, pages 609–614, 1994. 4

[33] K. W. Regan. Linear time and memory-efficient computation. SIAM Journal on Computing,
25(1):133–168, Feb. 1996. 3

[34] H. Rogers Jr. Theory of Recursive Functions and Effective Computability. The MIT Press, paperback
edition, 1987. 15

[35] E. Rose. Linear-time hierarchies for a functional language machine model. Science of Computer
Programming, 32(1–3):109–143, 1998. 5

[36] S. S̆akuov. Linear acceleration of the operating time of single-tape Turing machines. Soviet math.
Dokl., 17(5):1407–1409, 1976. 3

[37] S. S̆akuov. Fast Turing computations and their linear speedup. Soviet Math. Dokl., 18(5), 1977. 3

[38] C. Schnorr and G. Stumpf. A characterization of complexity sequences. Zeitschrift für mathematis-
che Logik und Grundlagen der Mathematik, 21:47–56, 1975. 3

[39] A. Schönhage. Storage modification machines. SIAM J. Comput., 9:492–508, 1980. 17, 20

[40] J. Seiferas. Machine-independent complexity theory. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume A, pages 163–186. Elsevier, 1990. 15

[41] J. I. Seiferas. Relating refined space complexity classes. Journal of Computer and Systems Sciences,
14:100–129, 1977. 4

[42] J. I. Seiferas. Techniques for separating space complexity classes. Journal of Computer and Systems
Sciences, 14:73–99, 1977. 4

[43] J. I. Seiferas and A. R. Meyer. Characterization of realizable space complexities. Annals of Pure
and Applied Logic, 73(2):171–190, 1995. 4

[44] M. Sipser. Introduction to the Theory of Computation. Thomson Course Technology, 2nd edition,
2006. 2

[45] R. Stearns, J. Hartmanis, and P. Lewis. Hierarchies of memory limited computations. In IEEE
Conference Record on Switching Circuit Theory and Logical Design, pages 179–190, 1965. 4

[46] I. Sudborough and A. Zalcberg. On families of languages defined by time-bounded random access
machines. SIAM Journal of Computing, 5(2):217–230, 1976. 4

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 23

http://dx.doi.org/10.4086/cjtcs

AMIR M. BEN-AMRAM, NIELS H. CHRISTENSEN, AND JAKOB GRUE SIMONSEN

[47] S. Žák. A Turing machine time hierarchy (note). Theoretical Computer Science, 26(3):327–333,
1983. 4

[48] K. Wagner and G. Wechsung. Computational Complexity. Mathematics and its Applications. D.
Reidel Publishing Company, 1986. 2, 6

AUTHORS

Niels Christensen, Issuu (www.issuu.com)
mrnc diku dk

Jakob Grue Simonsen, Department of Computer Science, University of Copenhagen (DIKU)
simonsen diku dk
http://www.diku.dk/~simonsen

Amir M. Ben-Amram, School of Computer Science, Academic College of Tel-Aviv Yafo
amirben mta ac il
http://www2.mta.ac.il/~amirben

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2012, Article 07, pages 1–24 24

www.issuu.com
http://www.diku.dk/~simonsen
http://www2.mta.ac.il/~amirben
http://dx.doi.org/10.4086/cjtcs

	Introduction
	Related work

	Linear speedup fails for multi-tape Turing machines without tape compression
	Upper bound
	Lower bound
	Changing the work-tape alphabet

	Linear speedup fails for models with efficient self-interpreters
	Preliminaries
	Models with program-independent interpretation overhead
	Remarks on concrete computation models
	Models which are PICSTI under the unit-cost time measure
	Turing-machine space

	Linear speedup fails for PICSTI models

	Conclusion and open problems

