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Abstract: By a careful analysis of the proofs of Kopparty in fields of characteristic 2, we
show that the problem of powering in Fpn requires ACC(p) circuits of exponential size (in
n), for any fixed prime p > 2. Similar bounds hold for quadratic residuosity. As a corollary,
we obtain non-trivial bounds for exponential sums that express the correlation between the
quadratic character of Fpn and n-variate polynomials over Fp of degree up to nε for some
0 < ε < 1.

1 Introduction

In this paper, we study the problem of powering in finite fields of odd characteristic. The same problem
was studied recently by Kopparty [3] in fields of characteristic 2. For example, in [3] it is shown that, for
appropriate values of n, finding the cube root of an element of F2n requires exponential size circuits of
bounded depth with AND, OR, and parity gates (so-called ACC(2) or AC(⊕) circuits), and that similar
lower bounds hold for computing cubic residuosity. Here we show, for any odd prime p, that finding the
square root of an element of Fpn (under the promise that one exists) requires exponential size circuits
consisting of AND, OR, and Modp gates (known as ACC(p)-type circuits). This follows easily from the
fact (also proved here) that quadratic residuosity requires exponential size for all n. Similar results hold
for more general powering (e.g. cube roots for all primes p > 3) as well as other residue symbols.
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Perhaps the most intriguing corollaries in [3] are upper bounds for a certain class of character sums.
These bounds, which essentially show that various resdiuosity symbols do not correlate well with low-
degree polynomials, are interesting because they are complete (with the variable of summation running
over the entire field), and hold for polynomials of degree up to nε , for 0 < ε < 1. Classical techniques
(e.g., those based on Weyl differencing and its generalizations; see [1]) for this type of sum can give
bounds this sharp only for degree less than logn. Recently, we received a communication [4] that, prior
to and independently of our work, Kopparty had succeeded in generalizing his original characteristic 2
character sum bounds to arbitrary characteristic. However, he obtained these results directly, without
using lower bounds for ACC(p) circuits. What distinguishes our work from his is that we show that the
entire apparatus of his original proof works for any characteristic, in particular including the ACC(p)
circuit lower bounds.

2 Encoding Field Elements and Fp Approximation of ACC(p) circuits

Our lower bounds rely on encoding field elements as strings of bits. This in turn requires restricting the
set of boolean inputs to a proper subset of all 2m input settings of an ACC(p) circuit with m input bits.
Hence some care must be taken to ensure that the circuits are not handicapped in an unnatural way, so
that under one encoding they would be weak, whereas under another they would be capable of powering.
It is important to point out that our results apply for any reasonable encoding of the field elements. It is
therefore essential to discuss briefly what we mean by “reasonable encoding."

Given that p is constant as m varies, it is intuitively clear that a reasonable encoding should only entail
a fixed (i.e., m-independent) number of boolean inputs. Thus, we define an encoding to be reasonable if it
is a one-to-one function e : Fp→{0,1}r for some r ∈ N independent of m. The circuit would effectively
accept field elements as inputs by breaking the boolean inputs up into blocks of size r (in an arbitrary
way, but using the same r for all m) such that the bits in each block take on values in the image of e. Since
any such function e can be represented by a fixed-degree polynomial over Fp, the constructions below
that produce polynomial representations of circuits work for any encoding, and hence the approximation
results (and subsequent lower bounds) apply to ACC(p) circuits under any encoding scheme.

We return to this issue more formally at the end of this section, where we provide further justification
for the notion of “reasonable encoding." There we demonstrate that, for reasonable encodings, the circuit
sizes in our approximation results (Lemma 2.1 and Corollary 2.2) are polynomially related, and the
degrees of approximating polynomials are determined to within a constant factor. This is sufficient for
our results.

While the subsequent development does not depend in any essential way on the choice of a reasonable
encoding, for concreteness we now describe one such simple encoding scheme, which, the reader may
assume, applies for the rest of the paper. We view the elements of Fp as {0,1, . . . , p−1}, and we define a
function e : Fp→{0,1}p−1 by setting e(x) = 0p−1−x1x for any x ∈ Fp. We can realize the mapping e as a
(p−1)-tuple of polynomials ei : Fp→ Fp, 0≤ i≤ p−2. Simply set ei(x) = (∏i

j=0(x− j))p−1 for 0≤ i≤
p−2. Each ei is a polynomial of degree O((p−1)2) = O(1). Furthermore, in Fp, ei(x) = 1 if i < x and
is 0 otherwise. Hence, regarding 0 and 1 as elements of Fp, e(x) is the bit string ep−2(x)ep−3(x) · · ·e0(x).

Consider any boolean circuit C. Suppose that the number of boolean inputs to C is m, labelled
y1, . . . ,ym. Unless noted otherwise, we will assume throughout that (p− 1)|m, so that we may write
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m = n(p− 1) for some n ∈ N. Arrange the inputs into blocks of size p− 1. Thus the first block is
y1, . . . ,yp−1, and the ith is yi(p−1)+1, . . . ,y(i+1)(p−1), for 1 ≤ i ≤ n. The Fp input block restriction of C
or, for short, the block restriction of C, is the set of inputs of the form ∏

n
i=1(0

ki1p−1−ki), where each
ki ∈ {0, . . . , p−1}. Thus for a particular input setting, in block i, y j = 0 for i(p−1)< j ≤ i(p−1)+ ki

and y j = 1 for i(p−1)+ ki < j ≤ (i+1)(p−1). Note that there are pn input settings of this form, and
that each of the n blocks of p−1 inputs to C can be understood as an element of Fp according to the
encoding scheme given above.

In the obvious way, we now define a version of C, denoted CFp , which behaves exactly like C under
the block restriction, but which takes as input n elements of Fp, denoted x1, . . . ,xn. CFp(x1, . . . ,xn) is
defined as the composition of C(y1, . . . ,ym) with the polynomials e j, such that in block i, we replace the
jth input yi(p−1)+ j to C by ep−1− j(xi). (Note that, although CFp takes bona fide elements of Fp as inputs,
it is not an arithmetic circuit over Fp. It is an ACC(p) circuit “fooled into thinking that it is taking Fp

inputs." The output of CFp is, at this point, still boolean.)
A key element of the proof is to approximate C, via CFp , by a low-degree polynomial t : Fn

p→{0,1},
as in the method of Razborov and Smolensky [6, 7]. Because, under the block-restriction, the distribution
of the inputs is not uniform over {0,1}m, this is most easily done via the well-known technique of
probabilistic polynomials [5]. A probabilistic polynomial q over Fp is a multivariate polynomial with two
disjoint sets of variables: ordinary variables x1, . . . ,xn, and probabilistic variables b1, . . . ,br. To evaluate
q on a bit string x of length n, we choose a b of bits uniformly and at random from {0,1}r and use the
value q(x,b), treating the boolean inputs as elements of Fp. We say that q represents the boolean function
f : {0,1}n→{0,1} with error

Prb∈{0,1}r [ f (x) 6= q(x,b)].

Lemma 2.1. Let C be an ACC(p) circuit of depth d and size pnδ

, where δ < 1/(16d), subject to the
Fp input block restriction. Then there exists a polynomial t : Fn

p→ {0,1} of degree O(n1/4) such that

CFp(x1, . . . ,xn) = t(x1, . . . ,xn) on a fraction 1− p−n1/8d
of the pn input settings.

Proof. Denote the size of C by s = O(pnδ

). Let ε = p−n1/8d
. In [5] it is shown that each AND and OR

gate in C can be represented as a probabilistic polynomial over Fp, of degree O((logs)(log(s/ε))), error
no more than ε/s and with O(log2 s log(s/ε)) probabilistic variables. Use the same probabilistic variables
for all AND and OR gates, and compose the polynomials to obtain polynomial t ′, whose variables are
the block-restricted inputs to C. The Modp gates are implemented by raising to the power p− 1 and
appealing to Fermat’s little theorem, and hence only multiply the degree of t ′ by a constant independent
of n. Thus since the depth is d, the degree of t ′ is O((logs)d)(log(s/ε))d) = O(n2dδ+1/8) = O(n1/4),
and the probability that some AND or OR gate errs is bounded above by s · ε/s = ε = p−n1/8d

. By an
averaging argument, there exists a setting of the probabilistic variables such that the polynomial t ′ agrees
with C on a fraction 1− ε of the block-restricted input settings. Composing t ′ with the O(1)-degree
polynomials ei defined above yields a polynomial t, also of degree O(n1/4), over Fp that agrees with CFp

on a fraction 1− ε of the Fp-valued inputs.

It is quite straightforward to generalize the circuit C to have multiple outputs, and hence via a suitable
block restriction of the outputs, to represent functions from Fn

p→ Fn
p, in which blocks of p−1 boolean

outputs represent field elements. Using a (p−1)-bit unary encoding as in the inputs, the Fp value would
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simply be the sum of the bits in a block, which varies from 0 through p−1. Once again we denote the
multi-output boolean ACC(p) circuit realizing the encoding by C, and the equivalent Fn

p-valued circuit by
CFp . The following is then an immediate corollary of Lemma 2.2.

Corollary 2.2. Let C be an ACC(p) circuit of depth d and size pnδ

, where δ < 1/(16d), subject to
the Fp input and output block restriction. Then there exists an n-tuple of polynomials (t1, . . . , tn),
with ti : Fn

p → Fp for each 1 ≤ i ≤ n, where each ti has degree O(n1/4), such that CFp(x1, . . . ,xn) =

(t1(x1, . . . ,xn), . . . , tn(x1, . . . ,xn)) on a fraction 1− p−n1/8d
of the Fn

p input settings.

We return to the issue mentioned at the beginning of this section regarding encodings. Observe that,
in the statement and proofs of Lemma 2.1 and Corollary 2.2, no explicit reference is made to the particular
encoding. In fact the encoding has no significant effect on the proofs or results, and we formalize this fact
in the following proposition.

Proposition 2.3. For any reasonable encoding, the degrees of the polynomials t and ti constructed in
Lemma 2.1 and Corollary 2.2 differ by at most a constant factor. The sizes of the resulting circuits are
polynomially related.

Proof. The polynomial t that is constructed in Lemma 2.1 is the composition of a degree O(n1/4)
probabilistic polynomial for the boolean circuit C with the encoding polynomials ei. The ei have degree
O(1), and that constant factor is the only way in which the encoding affects the degree. A different
reasonable encoding would only multiply the degree of t by O(1). In Corollary 2.2 the encoding has no
additional affect on the degrees of the polynomials ti, since the Fp-valued outputs are linear functions
(sums) of the boolean outputs. Thus the encoding scheme has no affect on the degrees of the polynomials
in our approximations, outside of constant factors, which are ignored.

Our circuit sizes are all expressed as a function of n, the number of field elements, which equals m/r
for an encoding of block size r. Let the block size of an encoding scheme e be denoted by re. Thus for
the encoding scheme defined in this section, re = p−1. We now show that, for reasonable encodings, the
relevant circuit sizes are polynomially related.

Our lower bounds are all of the form s(n) = pnδ

. Consider any encoding scheme e′ using block size
re′ . Then

s(m/re′) = p(m/re′ )
δ

= p
( m

p−1 )
δ ( p−1

re′
)δ

=
(

p(
m

p−1 )
δ
)( p−1

re′
)δ

= (s(m/(p−1)))
( p−1

re′
)δ

.

For any reasonable encoding re′ ,
p−1
re′

= Θ(1) and hence s(m/re′) = Θ(s(m/(p−1))c) for some constant
c.

Note that reasonable encodings are not only sufficient but also necessary for the sizes to be polynomi-
ally related: By the proof above, if the two sizes p(m/re′ )

δ

and p(m/(p−1))δ

are polynomially related, then
e′ is a reasonable encoding scheme. An analogous assertion applies to the degrees of the approximating
polynomials. We take this as further justification of our interpretation of e as a reasonable encoding.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 10, pages 1–16 4

http://dx.doi.org/10.4086/cjtcs


CIRCUIT COMPLEXITY OF POWERING IN FIELDS OF ODD CHARACTERISTIC

3 Versatility of Powering

3.1 Pseudorandomness

We define the mod-p weight wtFp( j) of j ∈ Zpn−1 to be the sum of the digits in the radix p expansion of
j. Thus wtFp( j) generalizes the Hamming weight of j to an odd prime radix. We then set

Md = { j : 0≤ j < pn−1,wtFp( j)≤ d}.

For technical reasons we view Md as a subset of Zpn−1 rather than Zpn .
Note that (p−1)n/2 is close to half the maximum base-p weight of an element of Zpn−1. (It is not

exactly half, because we exclude the radix p representation of pn−1, which would be the only element
of weight (p−1)n.) If α ∈ Zpn−1, each of M(p−1)n/2 and α +M(p−1)n/2 contain approximately half the
elements of Zpn−1: The set of integers j with weight strictly less than (p−1)n/2 has one more element
than the set of j with weight strictly greater than (p−1)n/2, and those with weight exactly (p−1)n/2
form a vanishingly small fraction of the total as n increases.

In the case of p = 2, a key technical result of Kopparty’s study of the complexity of powering
concerned the behavior of α ∈ Z2n−1 with respect to the set Mn/2 (i.e., the set of elements of Z2n−1 of
Hamming weight at most n/2). In particular, for certain choices of α , the set of translates Mn/2+α of the
elements of Mn/2, and Mn/2 itself, cannot have a very large intersection. The same phenomenon applies
to odd primes p.

The next theorem formalizes this. It shows that if α ∈ Zpn−1 is chosen properly, then r and r+α,
where r is a randomly chosen integer in Zpn−1, behave like a pair of independent random choices from
Zpn−1. As a result, the overlap between M(p−1)n/2 and M(p−1)n/2+α cannot be very large; more precisely,
M(p−1)n/2∪ (α +M(p−1)n/2) contains significantly more than half the elements of Zpn−1.

Theorem 3.1. (Pseudorandomness of Periodic α) Let D = {0,1, . . . , p−1}. Let t, t ′ be constants. Let
σ0 ∈ Dt be a string of digits base p, with σ0 6= 0t ,(p−1)t , and σ ′ ∈ Dt ′ .

Let σ ∈Dn be a string of base p digits of the form σ ′σ `
0 , with n = t ′+`t. Let α ∈Zpn−1 be the integer

whose base p representation is σ .
Then there exists ε > 0 such that for all sufficiently large n, depending only on σ0,σ

′, we have,

|Mn(p−1)/2∪ (α +Mn(p−1)/2)| ≥ (
1
2
+ ε)pn.

The proof of this theorem is essentially identical to that of the base 2 version in [3]. All changes are
due to the fact that we are working in base p rather than base 2. However, given the centrality of this
theorem to our main results, a sketch of the proof (closely following the one given in [3]) is included in
Appendix A.

3.2 Versatility

We use the pseudorandomness result of the preceding subsection to show that powering is “versatile,"
in the sense that when the powering function is available, computing any function in Fpn effectively
reduces to evaluating multivariate polynomials of “low" (in this case, ≤ n(p−1)/2) degree over Fp, or in
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a space of “low" (in this case, ≤ (1/2−ε)pn) dimension. Our treatment departs from Kopparty’s in some
technical details. In particular, in the statement of Theorem 3.6 below, the upper bound on the dimension
of V is smaller by 2, which eliminates the need for an extra case in the proof. This is achieved simply by
restricting the domain to F∗pn rather than Fpn , but this in turn entails some subtleties, and we therefore
provide more detail on this result.

Let p be prime, n > 0, and let Fpn be the field with pn elements. This is an n-dimensional vector space
over Fp, and thus there is an Fp-linear isomorphism η between Fpn and Fn

p. The argument works for any
such η (there is one point at which this is not obvious, and there we explain why it works nonetheless).
We remove the zero vector from both these representations of the vector space, and thus deal with F∗pn ,
the group of units of the field, and with the set which we denote, by an abuse of notation, (Fn

p)
∗, the set of

nonzero n-tuples of elements from Fp.
We make a few observations about functions whose domains are these sets.

Lemma 3.2. Every function
f : F∗pn → Fpn

has a unique representation as a univariate polynomial

pn−2

∑
j=0

a jx j,

where a j ∈ Fpn for each j.

Proof. This is simply Lagrange interpolation, which gives a unique polynomial of degree strictly less
than pn−1 when pn−1 function values are specified.

We denote by degFpn ( f ) the degree of this unique polynomial representation.
Because of the isomorphism η each such function f can also be viewed as a function η ◦ f ◦η−1 :

(Fn
p)
∗→ Fn

p, which we still write as,
f : (Fn

p)
∗→ Fn

p.

Lemma 3.3. With respect to this representation, every function has a unique representation as an n-tuple

(q1(y1, . . . ,yn), . . . ,qn(y1, . . . ,yn))

of multivariate polynomials over Fp, where each monomial has the form

ye1
1 · · ·y

en
n ,

with 0≤ ei < p for all i, and ei < p−1 for at least one i.

Proof. Without the restriction to nonzero domain elements and the absence of the term of maximal degree,
this fact is well known. We need to see how to obtain the modification stated here. Let a1, . . . ,an ∈ Fp.
The polynomial

n

∏
i=1

((yi−ai)
p−1−1)
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is 0 at every point of Fn
p except (a1, · · · ,an), at which it has value (−1)n. Thus every function from Fn

p
into Fp can be written as a linear combination of monomials in which the degree of each yi is strictly
less than p. As the set of such functions is a pn-dimensional vector space over Fp, and there are pn such
monomials (counting the degree 0 monomial 1), the set of these monomials is linearly independent over
Fp.

We call the monomials other than yp−1
1 · · ·yp−1

n submaximal. We claim that the set of submaxi-
mal monomials is still linearly independent when considered as functions with domain (Fn

p)
∗. If not,

there would be a nontrivial linear combination of these that is identically zero on (Fn
p)
∗. The resulting

polynomial r has degree strictly less than (p− 1) · n. We have r(0, . . . ,0) = c, for some c ∈ Fp, and
r(a1, . . . ,an) = 0 elsewhere. Now consider the polynomial

s(y1, . . . ,yn) = (−1)nc ·
n

∏
i=1

(yp−1
i −1).

We have s(a1, . . . ,an) = r(a1, . . . ,an) for all a1, . . . ,an ∈ Fp, but the two polynomials have different
degrees. This contradicts linear independence of the complete set of pn monomials, and thus establishes
linear independence of the submaximal monomials with domain restricted to (Fn

p)
∗. As the set of functions

from (Fn
p)
∗ into Fp is a space of dimension pn−1, the submaximal monomials form a basis for this space,

which gives the desired conclusion.

Given such a multivariate polynomial representation (q1, . . . ,qn) of f , we define the Fp-degree of f
as,

degFp
( f ) = max

i
deg(qi).

This appears to depend upon the isomorphism η : Fpn → Fn
p. But note that if we have two such isomor-

phisms, they can be composed to form a linear automorphism of Fn
p. When we translate the polynomial

representation of a function via such an automorphism, we merely introduce a linear change of variables,
and thus the degree is not affected.

There is a tight connection between these two different interpretations of the degree of a function.
Let 0≤ i < pn−1. Observe that the maximum possible weight wtFp(i) is (p−1)n−1, since we exclude
i = pn−1. The minimum nonzero weight is 1, attained only when i is an integer power of p. The proof
of the following can be found in Kopparty’s thesis [2].

Theorem 3.4. Let 0 ≤ d ≤ n(p− 1), and let f : F∗pn → Fpn . Then degFp
( f ) ≤ d if and only if the

univariate Fpn representation of f is a linear combination of monomials xi with wtFp(i)≤ d.

Observe that a univariate polynomial f over Fpn of low Fp-degree can have a degree that is quite
high. For example, the monomial xpn−1

has Fp-degree wtFp(pn−1) = 1. However, low Fp-degree, which
corresponds to a sparse univariate polynomial over Fpn , is sufficient for our purposes.

From Corollary 2.2, the following is immediate.

Corollary 3.5. Let C be an ACC(p) circuit of depth d and size pnδ

, where δ < 1/(16d), subject to the Fp

input and output block restriction. Then there exists a univariate polynomial t : Fpn → Fpn of Fp-degree
O(n1/4) such that CFp(x) = t(x) on a fraction 1− p−n1/8d

of the Fpn input settings.
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Hence the circuit lower bounds we are interested in reduce to establishing the computational limita-
tions of low Fp-degree (i.e., O(n1/4)) polynomials.

Now we adapt the result of [3] that the powering function Λ : x 7→ xα on F∗pn is versatile for suitable
α. Roughly speaking, this means that any function from F∗pn into Fpn can be expressed in terms of Λ in
an “easy way."

Theorem 3.6. (Versatility of Powering) Let 0 < ε < 1/2, and α ∈ Zpn−1 be such that,

|Mn(p−1)/2∪ (α +Mn(p−1)/2)| ≥ (
1
2
+ ε)pn.

Let Λ : Fpn → Fpn be defined by Λ(x) = xα .
Then there exists an Fpn-linear space V of functions from F∗pn to Fpn such that the following holds.

Let f : F∗pn → Fpn . Then there are univariate polynomials g,h,e : Fpn → Fpn such that,

• degFp
(g),degFp

(h)≤ (p−1)n/2,

• dim(V )≤
(1

2 − ε
)
· pn,

• for every x ∈ F∗pn ,
f (x) = g(x)+Λ(x) ·h(x)+ e(x), (3.1)

where e ∈V.

Proof. It is enough to specify a V such that for each i < pn−1, there exist polynomials g and h of the
required degrees for which Eq. (3.1) holds with f (x) = xi. We obtain the stated result by summing over
all the relevant monomials xi, using the univariate polynomial representation of f .

We let V be the subspace spanned by the monomials

{xi : i /∈M(p−1)n/2∪ (α +M(p−1)n/2)}

Observe that

dim(V ) = pn−1−|M(p−1)n/2∪ (α +M(p−1)n/2|

≤ pn−
(1

2
+ ε
)
· pn

=
(1

2
− ε
)
· pn.

If xi is one of these monomials, then we have xi = h+ g ·Λ+ e, where h and g are identically zero,
and e(x) = xi. If i ∈ M(p−1)n/2, then we have xi = g+ h ·Λ+ e, by taking h and e to be identically
zero and g(x) = xi. The bound on the Fp-degree of g follows from Theorem 3.4. The final case is if
i ∈ α +M(p−1)n/2, in which case we have i = (α + j) mod (pn−1) for some j ∈M(p−1)n/2. We set g and
e to be identically 0 and h(x) = x j. Again by Theorem 3.4, we get degFp

h≤ (p−1)n/2. Note that for all
nonzero x,

xi = x(α+ j) mod (pn−1) = xα+ j = g(x)+h(x) ·Λ(x)+ e(x).
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Let us see why we can remove the reduction modulo pn−1 in the above sequence of equations. Either
α + j = (α + j) mod (pn − 1), in which case there is nothing to prove, or α + j = pn − 1 + (α +
j) mod (pn−1), in which case

xα+ j = x(α+ j) mod (pn−1) · xpn−1 = xα+ j,

because xpn−1 = 1 for all nonzero x ∈ Fpn .

Note now that Theorem 3.1 gives a class of powers α that satisfy the requirement for |Mn(p−1)/2∪
(α +Mn(p−1)/2)| in the hypothesis of the above theorem. For these values of α , the versatility of xα yields
hardness results as described in the next two sections.

4 Hardness of Quadratic Residuosity and Powering

Let q > 1. Given an input x ∈ Fpn we would like to determine if there exists y ∈ Fpn such that x = yq. This
is the qth power residuosity problem. In [3] it is shown that computing cubic residuosity (and indeed qth

residuosity for any odd q) is hard in the characteristic 2 setting. Here we show that in the characteristic p
setting, quadratic residuosity is hard. We also find that qth residuosity is hard for any q relatively prime
to p. We denote the quadratic character in Fpn by χ(x) = xα where α = (pn−1)/2. Then χ(x) = 1 if
and only if x is a quadratic residue in Fpn . The base p expansion of α consists of n digits, each equal to
(p−1)/2, so α has period 1.

To illustrate how to generalize Kopparty’s proof in this setting, we directly prove a weaker version of
the hardness of quadratic residuosity. The exact analog of this is not present in [3] (a proof is outlined in
section 2.2 of the paper), but is an easy corollary of stronger results (in particular, Theorem 3 of [3]).
The essence of this proof is the Razborov/Smolensky dimensionality argument, coupled with the Fn

p–Fpn

polynomial correspondence.

Theorem 4.1. Let C be an ACC(p) circuit of depth d, under the Fp block restriction, such that CFp

computes a function from Fpn → Fpn , let α = (pn−1)/2, and let χ(x) = xα be the quadratic character
in Fpn . Then if the size of C is at most pnδ

where δ < 1/(16d), for sufficiently large n, we have:

Pr
x∈Fpn

[CFp(x) = χ(x)]≤ 1− ε,

where ε < 1.

Proof. By Corollary 3.5, there exists a polynomial t : Fpn → Fpn of degree O(n1/4) such that on a fraction
1− p−n1/8d

of all inputs, t(x) =CFp(x). Let S = {x ∈ Fpn |t(x) =CFp(x)} denote the set of inputs on which

there is agreement. Thus |S| ≥ (1− p−n1/8d
)pn. Let A denote the set of inputs for which the circuit agrees

with quadratic residuosity, i.e., CFp(x) = χ(x).
In order to invoke Theorem 3.6, we must show that α has the requisite properties given in Theorem 3.1.

As explained above, the base p representation of α = (pn−1)/2 just consists of n repetitions of the digit
(p− 1)/2, i.e., it has period 1. Thus, in the notation of Theorem 3.1, we have t = 1, σ0 = (p− 1)/2
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(which equals neither 0 nor p− 1), t ′ = 0 and σ ′ = λ (where λ denotes the empty string), and ` = n.
Thus Theorem 3.1 applies, for some ε ′ > 0 the inequality |Mn(p−1)/2 ∪ (α +Mn(p−1)/2)| ≥ (1

2 + ε ′)pn

holds, so we can apply Theorem 3.6. That is, for any function f : F∗pn → Fpn , we may write f (x) =
g(x)+χ(x) ·h(x)+ e(x), where degFp

(g),degFp
(h)≤ n(p−1)/2 and e ∈V where dim(V )≤ (1

2 − ε ′)pn.
Now consider the functions f |S∩A restricted to S∩A. If x ∈ S∩A, we know t(x) = χ(x), so that

we may write f |S∩A(x) = g(x)+ t(x)h(x)+ e(x). Note that degFp
(t ·h)≤ n(p−1)/2+O(n1/4). Given

the upper bound on the dimension of V , we can then place an upper bound on the dimension of the
space of functions over S∩A. The polynomials of the form g+ t · h are spanned by monomials of
degree up to n(p−1)/2+O(n1/4), and thus this space has dimension at most (1

2 +O(n1/4/
√

n))pn =

(1
2 +O(1/n1/4))pn. Including the dimension of V , the space of functions spanned by polynomials of the

form g(x)+ t(x)h(x)+ e(x) has dimension (1+O(n−1/4)− ε ′)pn.
On the other hand, the space of functions f |S∩A contains all functions on the set S∩A, and thus has

dimension |S∩A|. Thus |S∩A| ≤ (1+O(n−1/4)− ε ′)pn.

Since |S| ≥ (1− p−n1/8d
)pn, we conclude that |S| ≤ pn−n1/8d

. This implies that |A| ≤ |S∩A|+ |S| ≤
(1+O(n−1/4)+ p−n1/8d − ε ′)pn ≤ (1− ε ′/2)pn for sufficiently large n. Taking ε = ε ′/2 and noting that
|A|= pn Prx∈Fpn [CFp(x) = χ(x)] proves the theorem.

With minor modifications, this can be generalized to account for any power that has the appropriate
pseudorandomness properties. We omit the proof, as it follows closely the argument given above and is
essentially the same as the analog given in Kopparty’s paper (Theorem 1 in [3]).

Theorem 4.2. Let C be an ACC(p) circuit of depth d, under the Fp block restriction, such that CFp

computes a function from Fpn → Fpn .
Let a,b,q ∈ Z be constants, where q > 1 is relatively prime to p, and 0 < |a|, |b|< q. Let n be such

that α = (apn +b)/q is an integer.
Let Λ(x) = xα . If the size of C is at most pnδ

where δ < 1/(16d), then we have:

Pr
x∈Fpn

[CFp(x) = Λ(x)]≤ 1− ε,

for sufficiently large n, where ε < 1 depends only on q.

We next observe that the hardness of quadratic residuosity implies that finding square roots is hard, in
the sense that given an x ∈ Fpn with the promise that x has a square root, exponential size ACC(p) circuits
are required to find that square root. Indeed, it is impossible for the circuit to output a square root (if it
exists) for an appreciable fraction of the elements that have one. Analogous corollaries follow easily, in
the same way, from Kopparty’s result regarding cube (and higher) roots when not all field elements have
such roots.

Corollary 4.3. Let C be an ACC(p) circuit, under the Fp block restriction, such that CFp computes a

function from Fpn → Fpn , and let χ be the quadratic character. Then if the size of C is at most pnδ

where
δ < 1/(16d), for sufficiently large n, we have:

Pr
x∈Fpn

[CFp(x) = x1/2|χ(x) = 1]≤ 1− ε,
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where ε < 1.

Proof. Using the same ε as in Theorem 4.1, suppose Prx∈Fpn [CFp(x) = x1/2|χ(x) = 1]> 1−ε . From CFp

construct a new circuit C′Fp
which operates as follows: If x is 0, output 0. Otherwise, take the output of

CFp and square it. If it is equal to x, output 1, otherwise −1. Thus, for any x, if CFp outputs the square
root of x (which implies such a root exists), then C′Fp

(x) = 1 = χ(x). On the other hand, for any x such
that χ(x) =−1, CFp will fail to output a square root, and hence C′Fp

(x) =−1 = χ(x). That is, C′Fp
= χ(x)

for all x such that χ(x) 6= 1 and hence Prx[C′Fp
(x) =−1∧χ(x) =−1] = Prx[χ(x) =−1]. Now there are

precisely (pn− 1)/2 values of x such that χ(x) = 1 (respectively, χ(x) = −1), and hence Prx[χ(x) =
1] = Prx[χ(x) =−1] = 1

2(1− p−n). Thus the inequality Prx∈Fpn [CFp(x) = x1/2|χ(x) = 1]> 1− ε implies
Prx∈Fpn [CFp(x) = x1/2∧χ(x) = 1]> (1− ε)/2+O(p−n). Hence,

Prx [C′Fp
(x) = χ(x)]

= Pr
x
[C′Fp

(x) =−1∧χ(x) =−1]+Pr
x
[C′Fp

(x) = 1∧χ(x) = 1]+O(p−n)

=
1
2
+Pr

x
[C′Fp

(x) = 1∧χ(x) = 1]+O(p−n)

>
1
2
+(1− ε)/2+O(p−n)

= 1− ε/2+O(p−n).

This contradicts Theorem 4.1.

5 Stronger Bounds and Character Sums

We note here that Kopparty’s proofs that self-reductions amplify the probabilities extend to characteristic
p. The essential ingredients (approximation of the circuits by polynomials, and the fact that a fixed
number of elements of Fpn can be multiplied in ACC(p)) have either been established in this paper or are
known.

The following theorems are analogs of Theorems 2 and 3 in [3], respectively. The second generalizes
Theorem 4.1 by both considering qth-residuosity as well as showing sharper bounds on approximability.

Theorem 5.1. Let q > 1 be odd (and constant), and choose n such that q and pn−1 are relatively prime.
Let α be the inverse of q in Zpn−1, and define the map Λ : Fpn → Fpn to be Λ(x) = xα . Let C be an ACC(p)

block-restricted circuit of depth d and size pnδ

where δ < 1/16d. Then for sufficiently large n we have,

Pr
x∈Fpn

[C(x) = Λ(x)]≤ 2−nε

,

for some ε < 1 that depends on q and d.

Theorem 5.2. Let q > 1 be an odd prime, and n sufficiently large that q|(pn−1).
Let Λ : Fpn → Fpn be the qth residue symbol in Fpn , i.e., Λ(x) = x(pn−1)/q.
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If C is an ACC(p) block-restricted circuit of depth d and size pnδ

where δ < 1/(16d) then,

Pr
x∈Fpn

[C(x) = Λ(x)]≤ 1
q
+O(n−ε),

where ε < 1 depends only on q and d.

Finally, we note that, as in [3], this leads to interesting bounds on character sums. Since the proof has
some minor technical differences, we provide some detail for the quadratic character. Generalization to
other multiplicative characters is straightforward.

Theorem 5.3. There exists an ε > 0 such that the following holds. Let t be a polynomial in n variables
over Fp of degree ≤ nε . Let η : Fpn → Fn

p be an Fp-linear isomorphism, χ : Fpn → C the quadratic
character, and ω = e2πi/p a primitive complex pth root of unity. Then:∣∣∣∣∣ 1

pn ∑
x∈Fpn

χ(x)ω t(η(x))

∣∣∣∣∣≤ n−ε .

Proof. Denote

σ =
1
pn ∑

x∈Fpn

χ(x)ω t(η(x)).

Our goal, then, is to show that |σ | ≤ n−ε . Define ρ = σ

|σ | , so that ρσ = |σ |. (Note in passing that |ρ|2 = 1,
so ρ is a point on the unit circle.) Multiplying the above equation by ρ , we obtain,

|σ |= 1
pn ∑

x∈Fpn

ρχ(x)ω t(η(x)),

and, taking the real part of both sides (and making use of the linearity of the operator ℜ(z) = the real part
of z),

|σ |= 1
pn ∑

x∈Fpn

χ(x)ℜ(ρω
t(η(x))),

We now construct an ACC(p) circuit C(x,r), under the block restriction, with n(p−1) boolean inputs,
and random bits r. C(x,r) is designed to model a distribution related to |σ |. By composing C(x,r) with
the encoding polynomials ei introduced earlier, at the same time we are constructing a corresponding
CFp(x,r) with Fp-valued inputs, and the same random bits r. CFp works as follows:

• Compute the polynomial t. This requires some justification. First note that t ∈ Fp[X1, . . . ,Xn] has
total degree nε , and hence at most

(n+nε

nε

)
= 2nε1 monomials, with ε1 < 1. ( The constant ε1, and all

the ε’s used in this proof, are arbitrarily close to ε for sufficiently large n.) We claim that t can
be computed by a CFp-circuit of size 2nε2 , ε2 < 1. To see this, first consider the computation of a
single monomial of t, say ∏i∈S xdi

i , where the exponents di ∈ Fp, and by hypothesis, ∑i∈S di ≤ nε .
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The function that takes xi,di 7→ xdi
i is a function from Fp×Fp→ Fp. In terms of the bit encodings,

this takes {0,1}(p−1)×{0,1}(p−1)→{0,1}(p−1), and any such function can be realized by an NC0

circuit of size O(1). Similarly, the function that maps di,xi|i ∈ S 7→∏i∈S xdi
i , encoded in terms of

bits, maps nε(p−1) bits to (p−1) bits. This function can be implemented by an AC0 circuit of
size 2nε3 ,ε3 < 1. Given the value of a monomial, the value of a term, i.e., the product of the value of
the monomial and its corresponding coefficient in t, can again be realized in NC0. Finally, we sum
the values of the terms by sending them to a set of appropriately modified Modp gates, to obtain
the p−1 bits of the answer t(η(x)). Since the number of monomials, as explained above, is 2nε1 ,
the size of the circuit that computes t is 2nε1+nε3 = 2nε ′

for some ε ′ < 1. (Note that the presence of
Modp gates in ACC(p) is only needed at the very last stage when we sum the terms.)

• Consider the function u(b, i) = 1
2(1+(−1)bℜ(ρω i)) that maps F2×Fp→ R. We take n bits of

all 2p values of u(b, i) to a precision of 2−n as 2pn bits of advice for the circuit. Then, using the
circuit constructed above and comparing t(η(x)) to i for each i ∈ Fp, we compute u(b, t(η(x)). We
then compare this value to r as follows. If r < u(0, t(η(x)), output 1. Otherwise, output −1. Since
u(0, t(η(x)))+u(1, t(η(x))) = 1, the value (−1)b is output with probability u(b, t(η(x))).

Thus Prr[C(x,r) = (−1)b] = u(b, t(η(x))). Since, for any x ∈ F∗pn , χ(x) ∈ {1,−1}, we find that,

Pr
r
[C(x,r) = χ(x)] =

1
2
(1+χ(x)ℜ(ρω

t(η(x))).

This is true for any x ∈ F∗pn . Hence, by a standard averaging argument, there exists some setting of the
random variables r = r0 such that,

Pr
x
[C(x,r0) = χ(x)]≥ 1

2
(1+

1
pn ∑

x∈Fn
p

χ(x)ℜ(ρω
t(η(x))) =

1
2
(1+ |σ |). (5.1)

To prove the theorem, suppose that |σ |> n−ε . Then Eq. (5.1) implies that,

Pr
x
[C(x,r0) = χ(x)]>

1
2
(1+n−ε).

This contradicts Theorem 5.2 for sufficiently small ε . Hence |σ | ≤ n−ε , which proves the theorem.
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A Appendix: Proof of Theorem 3.1

In this section we prove the theorem:
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Theorem 3.1 (Pseudorandomness of Periodic α) Let D = {0,1, . . . , p− 1}. Let t, t ′ be constants. Let
σ0 ∈ Dt be a string of digits base p, with σ0 6= 0t ,(p−1)t , and σ ′ ∈ Dt ′ .

Let σ ∈ Dn be a string of base p digits of the form σ ′σ `
0 , with n = t ′+ `t. Let α ∈ Zpn−1 be the

integer whose base p representation is σ .
Then there exists ε > 0 such that for all sufficiently large n, depending only on σ0,σ

′, we have,

|Mn(p−1)/2∪ (α +Mn(p−1)/2)| ≥ (
1
2
+ ε)pn.

Proof. The proof, in almost all details, is identical to the one given in [3]. All differences amount to
the fact that we are working in base p rather than binary; we will state explicitly where this happens.
The idea is this: We must show that, if we add α to a random integer R of base-p weight < n(p−1)/2,
then it is moderately unlikely that the sum S = R+α also has weight < n(p−1)/2. By hypothesis, the
integer α ∈ Zpn−1 has a base p representation σ of period t (except for the leftmost t ′ digits; hence there
are ` = bn/tc periods σ0, and one string σ ′ left over in the t ′ most significant digits of α). Write R as
R′R`−1R`−2 . . .R0 and similarly S as S′S`−1S`−2 . . .S0. While the Ri are of course pairwise independent,
because of carries that arise in adding α to R, the pairs (Ri,Si) are not independent. Nevertheless, we find
that if we condition on the carries, they are independent, and this suffices for the result.

As in [3], we first analyze the distributions R`−1R`−2 . . .R0 and S`−1S`−2 . . .S0, and include the
significant digits R′,S′ later.

Explicitly, we model the process of adding R and α to obtain S, with the following Markov chain.
The state space is {(x,b)|x ∈ Dt ,b ∈ {0,1}}. The transition rule is that, if we are in state (xi,bi), and
adding xi +σ0 + bi yields the carry bit bi+1, then we go into the state (xi+1,bi+1), where xi+1 ∈ Dt is
chosen at random. Begin the chain at (x0,b0) = (x,0), with x ∈ Dt chosen at random, and run it for `
steps to obtain the sequence (x0,b0),(x1,b1), . . . ,(x`−1,b`−1). Now for each 0≤ i≤ `−1, let yi be the
sum in Dt of xi, σ0 and bi (omitting the carry bit). Then the pair (x`−1x`−2 . . .x0,y`−1y`−2 . . .y0) has the
same distribution as (R`−1R`−2 . . .R0,S`−1S`−2 . . .S0).

We analyze the distribution of the sequence b0, . . . ,b`−1. This is a 2-state Markov chain determined
by the stochastic matrix,

P =

[
pt−α0

pt
α0
pt

pt−α0−1
pt

α0+1
pt

]
(A.1)

where the matrix element Pbb′ (b,b′ ∈ {0,1}) is the probability that we go from carry bit b to carry bit
b′. The stationary distribution as determined by πP = π can be written explicitly as π(0) = 1− α0

pt−1 ,
π(1) = α0

pt−1 . Let πbb′ = Pbb′π(b) be the probability that before a transition the carry is b and after it is b′.
Given any b ∈ {0,1}, we expect that close to π(b)` of the bi’s will be b, and hence (with high

probability) that about πbb′` transitions will be from b to b′. More precisely, fix b,b′ and let zi denote
the random variable which takes on the value 1 if bibi+1 = bb′ and 0 otherwise. Let Z = ∑

`
i=1 zi be the

number of i such that bibi+1 = bb′. The mean of each zi is πbb′ , and hence Z is a random variable with
expectation πbb′`. Then by the Chernoff bound, for any constant c,

Pr
[
πbb′`−

√
`(log`)c)< Z < πbb′`+

√
`(log`)c)

]
> 1− `−ω(1). (A.2)

We now condition the xi on the carries b0, . . . ,b`−1. First note that each xi is only dependent on bi and
bi+1 (and thus the xi’s are independent given the b0, . . . ,b`−1). In particular, xi can be drawn randomly
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from Dt , under the condition that adding bi, xi and σ0 produce the carry bi+1. In other words, defining the
distribution,

Ubb′ = {x ∈ Dt | adding b,x, and σ0 produces carry bit b′},

then, conditioned on b0, . . . ,b`−1, xi is drawn uniformly at random from Ubibi+1 . As before, the distribution
yi is obtained from xi by summing bi,xi and σ0 (omitting the carry bit).

Let ηbb′ denote the distribution of the pair (wtFp(x),wtFp(y)) where x is drawn at random from Ubb′

and y = x+σ0 + b (omitting the carry). Let Wx and Wy denote wtFp(x`−1 . . .x0) and wtFp(y`−1 . . .y0),
respectively, where, for each i, xi is drawn from Ubibi+1 (and yi = b+σ0 + xi accordingly). Then we can
write

(Wx,Wy) =
`−1

∑
i=0

(wtFp(xi),wtFp(yi)) =
`−1

∑
i=0

ηi,

where each random variable ηi = (wtFp(xi),wtFp(yi)) is drawn from one of the four distributions ηbb′ ,
namely ηbi,bi+1 . Given b0, . . . ,b`−1, the ηi are independent, and by Eq. (A.2), for any choice of b,b′,
with high probability, close to πbb′` of the ηi are drawn from ηbb′ , and are independent and identically
distributed.

Hence, by the 2-dimensional central limit theorem, for each choice of b,b′, for large ` these πbb′`
variables are distributed according to a Gaussian with covariance matrix appropriate to ηbb′ . Call this
covariance matrix COV(ηbb′). The pair (Wx,Wy) = ∑

`−1
i=0 ηi is thus the sum of four normally distributed

pairs of variables, one for each choice of b,b′. The unconditioned means of Wx and Wy are both `t(p−1)/2
(since each are random strings over Dt`). Hence, by the additive property of the 2d normal distribution,
(Wx,Wy) is normally distributed, and hence 1√

`
(Wx− `t(p−1)/2,Wy− `t(p−1)/2) has mean (0,0) and

is drawn from a normal distribution with covariance matrix ∑b,b′ COV(ηbb′).
After one more observation, we are able to exploit some general properties of the normal distribution.
We observe that Wx and Wy are not perfectly correlated. This is true because there are strings x′,x′′

of the same base-p weight which, when added to σ0, yield strings of different base-p weight. We can
see this as follows. Because σ0 6= 0t ,(p−1)t , there is some digit of σ0 that = d where 0 < d < p−1.
Let x′ have its corresponding digit = p−d−1 and all other digits = 0, and x′′ have its corresponding
digit = p− d and all other digits = 0. Then σ0 + x′ has no carry while σ0 + x′′ does. Consequently,
wtFp(σ0 + x′) = wtFp(σ0)+ p−1, but wtFp(σ0 + x′′)≤ wtFp(σ0) (the digit p−d subtracts d and adds at
most 1 to the weight via a carry).

As a consequence, defining Vx =Wx− `t(p−1)/2 and Vy =Wy− `t(p−1)/2, we find that Pr[Vx <
0∧Vy < 0]< 1/2. Indeed, since Pr[Vx < 0∧Vy < 0] is bounded away from 1/2, by the continuity of the
probability density, there exists an ε such that Pr[Vx < ε ∧Vy < ε]< 1/2− ε . Hence,

Pr[Wx < `t(p−1)/2+ ε
√
`∧Wy < `t(p−1)/2+ ε

√
`]< 1/2− ε. (A.3)

Finally, we take the significant digits R′ and S′ into account, and the final carry bit c. The key point is that
R′ and S′ both have length t ′, a constant, and the effect of these digits is negligible, as is also true of the
effect of propagating c. Then by Eq. (A.3), we conclude,

Pr[WR < n(p−1)/2∧WS < n(p−1)/2] = Pr[R ∈Mn(p−1)/2∧S ∈Mn(p−1)/2]<
1
2
− ε0,
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for some ε0 > 0, which implies |Mn(p−1)/2∪ (Mn(p−1)/2 +α)|> (1
2 + ε)pn, for some ε > 0.
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