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Abstract: In this note, we study the relationship between the parity decision tree
complexity of a boolean function f , denoted by D⊕ (f), and the k-party number-in-hand
multiparty communication complexity of the XOR-functions Fk(x1, . . . ,xk) def= f(x1⊕·· ·⊕
xk), denoted by CC(k) (Fk). It is known that CC(k) (Fk)≤ k ·D⊕ (f) because the players
can simulate the parity decision tree that computes f . In this note, we show that

D⊕ (f) =O
(
CC(4) (Fk)5

)
.

Our main tool is a recent result from additive combinatorics due to Sanders [14]. As
CC(k) (Fk) is non-decreasing as k grows, the parity decision tree complexity of f and
the communication complexity of the corresponding k-argument XOR-functions are
polynomially equivalent whenever k ≥ 4.

Remark: After a first version of this paper was finished, we were informed that
Hatami and Lovett had already discovered the same result a few years ago, without
writing it up.

1 Introduction

Communication complexity and the Log-Rank Conjecture for XOR-functions Commu-
nication complexity quantifies the minimum amount of communication needed for computation when
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inputs are distributed among different parties [18, 5]. In the model of two-party communication, Alice
and Bob hold inputs x and y, respectively, and they are supposed to compute the value of a function
F (x,y) using as little communication as possible. One of the central problems in communication
complexity is the Log-Rank Conjecture. This conjecture, proposed by Lovász and Saks in [8], asserts
that the communication complexity of F and logrank(MF ) are polynomially equivalent for any
2-argument total boolean function F , where MF = [F (x,y)]x,y is the communication matrix of F .
Readers may refer to [17] for more discussion on the conjecture. The conjecture is notoriously hard
to attack. It was shown in [11] 30 years ago that logrank(MF ) is a lower bound on the deterministic
communication complexity of F . The state of the art is

CC(2) (F ) =O
(√

rank(MF ) logrank(MF )
)
,

where CC(2) (F ) stands for the two-party deterministic communication complexity of F . It is from a
recent breakthrough due to Lovett [10]. The largest known gap between CC(2) (F ) and logrank(MF )
is CC(2) (F )≥ Ω̃

(
logrank(MF )2

)
due to Göös, Pitassi and Watson [4].

In [21], Zhang and Shi initiated the study of the Log-Rank Conjecture for a special class of
functions called XOR-functions.

Definition 1.1. We say a k-argument function Fk : ({0,1}n)k→{0,1} is an XOR-function if there
exists a function f : {0,1}n→{0,1} such that Fk = f ◦⊕k. Namely, Fk(x1, . . . ,xk) = f(x1⊕ . . .⊕xk)
for any x1, . . . ,xk ∈ {0,1}n, where ⊕ is the bitwise xor.

XOR-functions include many important examples, such as Equality and Hamming distance.
The communication complexity of XOR functions has been studied extensively in the last decade
[20, 6, 12, 7, 17, 19]. A nice feature of XOR-functions is that the rank of the communication matrix
MF is exactly the Fourier sparsity of f .

Fact 1.2. [2] For any boolean function f and the associated XOR-function F2 given in Definition 1.1,
it holds that rank(MF2) = ‖f̂‖0, where ‖f̂‖0 is the Fourier sparsity of f (see Section 2 for the
definition).

Therefore, the Log-Rank Conjecture for XOR-functions is equivalent to the question whether
there exists a protocol computing F with communication logO(1) ‖f̂‖0. However, the Log-Rank
Conjecture is still difficult for this special class of functions. One nice approach proposed in [20] is
to design a parity decision tree (PDT) to compute f . PDTs allow to query the parity of any subset
of input variables. For any k-argument XOR-function F given in Definition 1.1, we can construct
a communication protocol by simulating the PDT for f , with communication k times the PDT
complexity of f . It is therefore sufficient to show that D⊕ (f)≤ logO(1) ‖f̂‖0. Using such an approach,
the Log-Rank Conjecture has been established for several subclasses of XOR-functions [12, 17].

One question regarding this approach is whether D⊕ (f) and CC(2) (F ) are polynomially equiva-
lent. Is it possible to design a protocol for F much more efficient than simulating the parity decision
tree of f?

Conjecture 1.3. For any boolean function f : {0,1}n→ {0,1} and the associated XOR-function
F2, there is a constant c such that CC(2) (F2) =O (D⊕ (f)c)

If this holds, then the Log-Rank Conjecture for XOR-functions is equivalent to a question
regarding parity decision trees. Namely, whether D⊕ (f) =O

(
log
(
‖f̂‖0

)c)
for some constant c. In
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this note, we prove a weaker variant of the above conjecture. Given a total boolean function f , we
may also consider the communication complexity of the associated k-argument XOR-function Fk

given in Definition 1.1 in the model of number-in-hand k-party communication, which is denoted
by CC(k) (Fk). It is easy to see that CC(2) (F2)≤ CC(3) (F3)≤ . . . and CC(k) (Fk)≤ k ·D⊕ (f). Our
main result in this note is that CC(k) (Fk) and D⊕ (f) are polynomially equivalent whenever k ≥ 4.

Theorem 1.4. For any boolean function f : {0,1}n→ {0,1}, let F4 be the associated 4-argument
XOR-function given in Definition 1.1. It holds that

D⊕ (f) =O
(
CC(4) (F4)5

)
.

Our Techniques

To show the main theorem, it suffices to construct an efficient PDT for f if the communication
complexity of F is small. We adapt a protocol introduced by Tsang et al. [17]. The main step is
to exhibit a large monochromatic affine subspace for f if the communication complexity of F is
small. To this end, we adapt the quasipolynomial Bogolyubov-Ruzsa lemma [14], which says that
4A def= A+A+A+A contains a large subspace if A⊆ Fn

2 is large.

Related Work

A large body of work has been devoted to the Log-Rank Conjecture for XOR-functions. After
almost a decade of efforts, the conjecture has been established for several classes of XOR-function,
such as symmetric functions [20], monotone functions and linear threshold functions [12], constant
F2-degree functions [17].

A different line of work close to ours is the simulation theorem in [13, 20, 15, 3, 4]. They study
the relationship between the (regular) decision tree complexity of function f and the communication
complexity of f ◦gn where g is a 2-argument function of small size. The simulation theorem asserts
that the optimal protocol for f ◦gn is to simulate the decision tree that computes f if g is a hard
function. Simulation theorems have been established in various cases, when g is bitwise AND or
OR [15], Inner-Product [3], Index Function [13, 4]. Our work gives a new simulation theorem when
g is an XOR function.

After this work was put online, the author was informed that Hatami and Lovett discovered
Theorem 1.4 (using the same idea) a couple years ago without writing it up. Since our work is
independent to theirs, we believe it is worth having a complete proof of the main theorem.

2 Preliminaries
All logarithms in this note are base 2. Given x,y ∈ {0,1}n, we define the inner product x · y def=∑n

i=1xiyi mod 2. For simplicity, we write x+y for x⊕y.
Complexity measures. Given a boolean function f : {0,1}n→{0,1}n, it can be viewed as a

polynomial in F2, and deg2(f) is used to denote its F2-degree.

Definition 2.1. Given a function f : V → F2, where V is an affine subspace of Fn
2 , the parity

certificate complexity of f on x is defined to be

C⊕ (f,x) def= min{codim(H) : H ⊆ V is an affine subspace where f is constant and x ∈H}
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where codim(H) def= dimV − dimH. The minimum parity certificate complexity is defined as
C⊕,min (f) def= minx C⊕ (f,x).

Definition 2.2. Given a boolean function f : {0,1}n→ {0,1}. We view it as a polynomial in F2.
The linear rank of f , denoted rk(f), is the minimum integer r, such that f can be expressed as
f =

∑r
i=1 lifi +f0, where deg2 (li) = 1 for 1≤ i≤ r and deg2(fi)< deg2(f) for 0≤ i≤ r.

Definition 2.3. A parity decision tree (PDT) for a boolean function f : {0,1}n→{0,1} is a tree
with internal nodes associated with a subset S ⊆ [n] and each leaf associated with an answer in
{0,1}. To use a parity decision tree to compute f , we start from the root and follow a path down
to a leaf. At each internal node, we query the parity of the bits with the indices in the associated
set and follow the branch according to the answer to the query. Output the associated answer when
we reach the leaf. The deterministic parity decision tree complexity of f , denoted by D⊕ (f), is the
minimum number of queries needed on a worst-case input by a PDT that computes f correctly.

Definition 2.4. In the model of number-in-hand multiparty communication, there are k players
{P1, . . . ,Pk} and a k-argument function F : ({0,1}n)k → {0,1}. Player Pi is given an n-bit input
xi ∈ {0,1}n for each i ∈ [k]. The communication is in the blackboard model. Namely, every message
sent by a player is written on a blackboard visible to all players. The communication complexity of
f in this model, denoted by CC(k) (F ), is the least number of bits needed to be communicated to
compute f correctly.

One way to design a protocol for the k-argument XOR-function Fk = f ◦⊕k is to simulate a
parity decision tree that computes f .

Fact 2.5. Let f : {0,1}n→{0,1} be a boolean function and Fk = f ◦⊕k given in Definition 1.1. It
holds that CC(k) (F )≤ k ·D⊕ (f).

Fourier analysis. For any real-valued function f : {0,1}n → R, the Fourier coefficients are
defined as f̂ (s) def= 1

2n

∑
x f(x)χs(x) for s ∈ {0,1}n, where χs(x) def= (−1)s·x. The function f can be

decomposed as f =
∑

s f̂(s)χs.The Fourier sparsity ‖f̂‖0 is the number of nonzero Fourier coefficients
of f .

Fact 2.6. For all f : {0,1}n→{0,1}, it holds that deg2 (f)≤ log‖f̂‖0.

Let V ⊆ Fn
2 be an affine subspace and f : V → F2 be a boolean function. A complexity measure

m(f) of f is downward non-increasing if m(f ′)≤m(f) for any subfunction f ′ obtained by restricting
f to an affine subspace of V . For instance, deg2(·) is downward non-increasing.

Fact 2.7. [17] If rk(·)≤m(·) for some downward non-increasing complexity measure m, then it
holds that D⊕ (f)≤m(f) · logdeg2 (f). Combining with Fact 2.6, we have D⊕ (f)≤m(f) · log‖f̂‖0.

Fact 2.8. [17] For all non-constant f : Fn
2 → F2, it holds that rk(f)≤ C⊕,min (f) .

Additive combinatorics. Given two sets A,B ⊆ Fn
2 and an element x ∈ Fn

2 , A+B
def=

{a+ b : a ∈A,b ∈B} and x+A
def= {x+a : a ∈A}. For any integer t, tA def= A+ . . .+A where the

summation includes A for t times. Studying the structure of tA for small constant t is one of the
central topics in additive combinatorics. Readers may refer to the excellent textbook [16]. The
following is the famous quasi-polynomial Bogolyubov-Ruzsa lemma due to Sanders [14]. It asserts
that 4A contains a large subspace if A⊆ Fn

2 is large. Readers may refer to the nice exposition [9] by
Lovett.
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Fact 2.9. [14, 1] Let A⊆ Fn
2 be a subset of size |A|= α2n. Then there exists a subspace V of Fn

2
satisfying V ⊆ 4A and

codim(V ) =O
(
log4

(
α−1

))
.

3 Main Result
Lemma 3.1. Let 1≤ c≤ n, A1,A2,A3,A4 ⊆ Fn

2 be subsets of size at least 2n−c. Then there exists
an affine subspace V ⊆A1 +A2 +A3 +A4 of Fn

2 such that

codim(V ) =O
(
c4
)
.

Proof. The lemma is trivial if c≥ n1/4. We assume that c < n1/4. As |A1 +A2| ≤ 2n, there exists
an element a ∈ Fn

2 such that a= a1 +a2 for at least 2n−2c pairs (a1,a2) ∈ A1×A2. Then we have
|A1 ∩ (A2 +a) | ≥ 2n−2c. For the same reason, there exists an element a′ ∈ Fn

2 such that |A3 ∩
(A4 +a′) | ≥ 2n−2c. Note that |(A1∩ (A2 +a))+(A3∩ (A4 +a′)) | ≤ 2n. Thus there exists an element
a′′ ∈ Fn

2 such that a′′ = a3 +a4 for at least 2n−4c pairs (a3,a4) ∈ (A1∩ (A2 +a))× (A3∩ (A4 +a′)).
Set

A=A1∩ (A2 +a)∩
((
A3∩

(
A4 +a′

))
+a′′

)
=A1∩ (A2 +a)∩

(
A3 +a′′

)
∩
(
A4 +a′+a′′

)
.

We have |A| ≥ 2n−4c > 0 since c < n1/4. Thus there exists a subspace V ⊆ 4A of codimension
codim(V ) = O

(
c4) by Fact 2.9. Note that 4A ⊆ A1 +A2 +A3 +A4 +a+a′. The affine subspace

V +a+a′ serves the purpose.

We define a downward non-increasing measure M (·) whose 4-th power is an upper bound on
rk(·).

Definition 3.2. Given a function f : V → F2, where V is an affine subspace of Fn
2 and t def= dim(V ),

let L : Ft
2→ Fn

2 be an affine map satisfying L
(
Ft

2
)

= V . Set F4 :
(
Ft

2
)4→ F2 by F4 (x1,x2,x3,x4) def=

f (L(x1 +x2 +x3 +x4)) . The complexity of f is defined to be M(f) def= CC(4) (F4) .

Note that the affine map is invertible. The complexity M(f) does not depend on the choice of the
affine map.

Lemma 3.3. M (·) is downward non-increasing.

Proof. Let f : Fn
2 → F2 be a boolean function and V ⊆ Fn

2 be an affine subspace. It suffices to
show that M (f) ≥M (f |V ). Let F and F ′ be the 4-argument functions given by Definition 3.2
corresponding to f and f |V , respectively. Assume that L(z) def= Az+ b is the corresponding affine
map in Definition 3.2. Given input (x1,x2,x3,x4) ∈

(
Ft

2
)4, where t = dimV , player P1 computes

x′1 = A1x1 + b and players Pi computes x′i = Axi for i = 2,3,4. Note that L(x1 +x2 +x3 +x4) =
Ax1 +Ax2 +Ax3 +Ax4 + b. We have F ′4 (x1,x2,x3,x4) = f (x′1 +x′2 +x′3 +x′4) = F4 (x′1,x′2,x′3,x′4).
The players simulate the protocol that computes F4 on input (x′1,x′2,x′3,x′4) and get F ′4 (x1,x2,x3,x4).
Thus M (f |V ) = CC(4) (F ′4)≤ CC(4) (F4) =M (f).

Lemma 3.4. For any f : V → F2, where V is an affine subspace of Fn
2 , it holds that C⊕,min (f) =

O
(
M (f)4

)
. Combining with Fact 2.8, we have rk(f) =O

(
M (f)4

)
.
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Proof. We assume w.l.o.g. that V = Fn
2 . Let F4 (x1,x2,x3,x4) def= f (x1 +x2 +x3 +x4). Let

c
def= CC(4) (F4). The optimal protocol partitions the domain into at most 2c monochromatic

hyperrectangles. Thus there exists a monochromatic hyperrectangle A1×A2×A3×A4 satisfying
|A1×A2×A3×A4| ≥ 24n−c. Hence |Ai| ≥ 2n−c for 1≤ i≤ 4. Using Lemma 3.1, there exists an affine
subspace V ⊆A1 +A2 +A3 +A4 satisfying codim(V ) =O

(
c4). It implies that C⊕,min (f) =O

(
c4).

The result follows.

Combining Fact 2.7, Lemma 3.3 and Lemma 3.4, we have

D⊕ (f)≤O
(
M(f)4 · log‖f̂‖0

)
.

By Definition 3.2, M (f)≤ CC(4) (F4). Note that log‖f̂‖0 = logrk(MF2)≤ CC(2) (F2)≤ CC(4) (F4)
where the equality is by Fact 1.2. The main theorem follows.

Open Problems

Here we list two open problems related to the Log-Rank Conjecture for XOR-functions.

1. The most interesting work along this line is to show that the PDT complexity of f and the
communication complexity of the corresponding 2-argument XOR-function F2 are polynomially
equivalent.

2. Can we extend Theorem 1.4 to the randomized communication complexity?
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