
CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25
http://cjtcs.cs.uchicago.edu/

Homomorphism Polynomials complete for
VP*

Arnaud Durand Meena Mahajan Guillaume Malod
Nicolas de Rugy-Altherre Nitin Saurabh

Received February 4, 2015; Revised December 6, 2016, and in final form March 11, 2016; Published March 17,
2016

Abstract: The VP versus VNP question, introduced by Valiant, is probably the most
important open question in algebraic complexity theory. Thanks to completeness results, a
variant of this question, VBP versus VNP, can be succinctly restated as asking whether the
permanent of a generic matrix can be written as a determinant of a matrix of polynomially
bounded size. Strikingly, this restatement does not mention any notion of computational
model. To get a similar restatement for the original and more fundamental question, and
also to better understand the class itself, we need a complete polynomial for VP. Ad hoc
constructions yielding complete polynomials were known, but not natural examples in the
vein of the determinant. We give here several variants of natural complete polynomials for
VP, based on the notion of graph homomorphism polynomials.

Key words and phrases: algebraic complexity, graph homomorphism, polynomials, VP, VNP, complete-
ness

1 Introduction

One of the most important open questions in algebraic complexity theory is to decide whether the classes
VP and VNP are distinct. These classes, first defined by Valiant in [17, 16], are the algebraic analogues
of the Boolean complexity classes P and NP, and separating them is essential for separating P from NP
(at least non-uniformly and assuming the generalised Riemann Hypothesis, over the field C, [3]). Valiant
established that the family of polynomials computing the permanent is complete for VNP under a suitable

*This work was supported by IFCPAR/CEFIPRA Project 4702-1(A).

© 2016 Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-Altherre, and Nitin Saurabh
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/cjtcs.2016.003

http://dx.doi.org/10.4086/cjtcs
http://cjtcs.cs.uchicago.edu/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/cjtcs.2016.003

A. DURAND, M. MAHAJAN, G. MALOD, N. DE RUGY-ALTHERRE, AND N. SAURABH

notion of reduction which can be thought of as a very strong form of polynomial-size reduction. The
leading open question of VP versus VNP is often phrased as the permanent versus the determinant, as
the determinant is complete for VP. However, the hardness of the determinant for VP is under the more
powerful quasi-polynomial-size reductions. Under polynomial reductions, the determinant is complete
for the possibly smaller class VBP. This naturally raises the question of finding polynomials which
are complete for VP under polynomial-size reductions. Ad hoc families of generic polynomials can be
constructed that are VP-complete, but, surprisingly, there are no known natural polynomial families that
are VP-complete. Since complete problems characterise complexity classes, the existence of natural
complete problems lends added legitimacy to the study of a class. It also shows the robustness (of the
definition) of the class by offering an alternative point of view on it that is independent of the choice of a
machine model. The determinant and the permanent make the classes VBP, VNP interesting; analogously,
what characterises VP?

A standard way to obtain a polynomial family complete for VNP is to consider a #P-complete
counting problem and suitably algebraise it so that monomials in the resulting polynomial are in bijection
with the objects to be counted. Analogously, this suggest that to obtain VP-complete families, we should
algebraise counting problems complete for #LogCFL or #SAC1, since the class LogCFL=SAC1 (rather
than P) is the Boolean analogue of VP. To the best of our knowledge, this approach has not yet yielded
VP-complete families. However, we too start with this idea of algebraising a counting problem. The
counting problem we focus on is the well-studied graph homomorphism problem. For graphs G,H,
one wishes to count homomorphisms from G to H, that is, maps from V (G) to V (H) preserving edges.
(Note: there is no constraint regarding preserving non-edges; hence this is significantly dfferent from
isomorphisms.) Such maps are also called H-colourings of G. Typically, H is a fixed graph and G is the
input graph – this gives information about the global structure of G in the form of the partition functions,
whose complexity has been the focus of intense study; see, for instance, [7, 10, 9]. On the other hand, one
may fix G and vary H - this is roughly equivalent to probing the local stucture of H, with applications to
property testing. See [2] for a thorough treatment of the topic. In particular, the weighted versions of this
problem, as described in [2], naturally lend themselves to algebraisation, yielding polynomials instead of
counting functions. We fix both G and H as parameterised by n, and study the complexity of the family
of polynomials so obtained. Since, in this setting, the variables reside on the nodes and edges of H alone,
one can view this too as an instance of fixed G and varying H.

Our results and techniques

In this paper, we provide the first instance of natural families of polynomials that (1) are defined
independently of the circuit definition of VP, and (2) are VP-complete. The families we consider are
families of homomorphism polynomials. Formal definitions appear in Section 2, but here is a brief
description. For graphs G and H, a homomorphism from “source graph” G to “target graph” H is a
map from V (G) to V (H) that preserves edges. If G and H are directed, a directed homomorphism must
preserve directed edges. Additionally, if the vertices of G and H are coloured, a coloured homomorphism
must also preserve colours. Placing distinct variables on the vertices (X variables) and edges (Y variables)
of the target graph H, we can associate with each homomorphism from G to H a monomial built
using these variables. The homomorphism polynomial associated with G and H is the sum of all such
monomials. Various variants can be obtained by (1) summing only over homomorphisms of a certain

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 2

http://dx.doi.org/10.4086/cjtcs

HOMOMORPHISM POLYNOMIALS COMPLETE FOR VP

type H, e.g., directed, coloured, injective,. . . (2) setting non-negative weights α on the vertices of G and
using these weights while defining the monomial associated with a homomorphism. Thus the general
form of a homomorphism polynomial is fG,H,α,H(X ,Y). We show that over fields of characteristic zero,
with respect to constant-depth oracle reductions, the following natural settings, in order of increasing
generality, give rise to VP-complete families (Theorem 4.5):

1. G is a balanced alternately-binary-unary tree with n leaves, with a marker gadget added to the root,
and with edge directions chosen in a specific way; H is the complete directed graph on n6 nodes; α

is 1 everywhere; H is the set of directed homomorphisms.

2. G is an undirected balanced alternately-binary-unary tree with n leaves; H is the complete undi-
rected graph on n6 nodes; α is 1 everywhere; the vertices are coloured with 5 colours in a specific
way; H is the set of coloured homomorphisms.

3. G is a balanced binary tree with n leaves; H is a complete graph on n6 nodes; α is 1 for every right
child in G and 0 elsewhere; H is the set of all homomorphisms from G to H.

There seems to be a trade-off between the ease of describing the source and target graphs and the use
of weights α . The first family above does not use weights (α is 1 everywhere), but G needs a marker
gadget on a naturally defined graph. The second family also does not use weights (α is 1 everywhere), but
the colouring of H is described with reference to previously known universal circuits. The third family
has very natural source and target graphs, but requires non-trivial α . Ideally, we should be able to show
VP-completeness with G and H as in the third family and with trivial weights as in the first two families;
our hardness proofs fall short of this. Note however that the weights we use are 0-1 valued. Such 0-1
weights are commonly used in the literature, see, e.g., [2].

A crucial ingredient in our hardness proofs is the fact that VP circuits can be depth-reduced [18]
and made multiplicatively disjoint [11] so that all parse trees are isomorphic to balanced binary trees.
Another crucial ingredient is that homogeneous components of a polynomial p can be computed in
constant depth and polynomial size with oracle gates for p. The hardness proofs illustrate how the
monomials in the generic VP-complete polynomial can be put in correspondence with a carefully chosen
homogeneous component of the homomorphism polynomial (equivalently, with monomials associated
with homomorphisms and satisfying some degree constraints in certain variables). Extracting the
homogeneous component is what necessitates an oracle-reduction (constant depth suffices) for hardness.
The coloured homomorphism polynomial is however hard even with respect to projections, the stricter
form of polynomial-size reductions which is more common in this setting.

For all the above families, membership in VP is shown in a uniform way by showing that a more
general homomorphism polynomial, where we additionally have a set of variables Z for each pair of nodes
V (G)×V (H), is in VP, and that the above variants can be obtained from this general polynomial through
projections. The generalisation allows us to partition the terms corresponding to H into groups based on
where the root of G is mapped, factorise the sums within each group, and recurse. A crucial ingredient
here is the powerful Baur-Strassen Lemma 2.3 ([1]) which says that for a polynomial p computed by a
size s circuit, p and all its first-order derivatives can be simultaneously computed in size O(s).

We also show that when G is a cycle or a path (instead of a balanced binary tree), the homomorphism
polynomial family is complete for VBP. Depending on whether G is directed or undirected, we get

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 3

http://dx.doi.org/10.4086/cjtcs

A. DURAND, M. MAHAJAN, G. MALOD, N. DE RUGY-ALTHERRE, AND N. SAURABH

completeness under projections or c-reductions. On the other hand, using the generalised version with Z
variables, and letting G,H be complete graphs, we get completeness for VNP.

The main difficulty in the above proofs is that we are dealing with homomorphisms, not isomorphisms.
But this is necessary. For a balanced formula, a “certificate” or proof tree or parse tree is a subtree of
the formula, so counting proof trees amounts to counting isomorphic copies of a typical proof tree in
the formula. With circuits, however, there may be no isomorphic copy of a proof tree within the circuit;
we may have to first unwind the circuit into a formula, incurring a possibly exponential blowup. (While
sub-circuits can be views as “proof sub-circuits”, they do not correspond to the counting problem and
can in fact be much harder; see [12].) Instead, we consider homomorphisms from a proof tree (or from a
proof path, in the case of branching programs). This addresses the blow-up issue, it also makes the upper
bounds easier, but the hardness proofs require more care since there are far more homomorphisms than
proof trees.

Previous related results

As mentioned earlier, very little was previously known about VP-completeness. In [3], Bürgisser showed
that a generic polynomial family constructed recursively while controlling the degree is complete for VP.
(Bürgisser showed something even more general; completeness for relativised VP.) The construction
directly follows a topological sort of a generic VP circuit. In [14] (see also [15]), Raz used the depth-
reduction of [18] to show that a family of “universal circuits” is VP-complete; any VP computation
can be embedded into it by appropriately setting the variables. Both these VP-complete families are
thus directly obtained using the circuit definition / characterization of VP. In [13], Mengel described a
way of associating polynomials with constraint satisfaction programs CSPs, and showed that for CSPs
where all constraints are binary and the underlying constraint graph is a tree, these polynomials are in
VP. Further, for each VP-polynomial, there is such a CSP giving rise to the same polynomial. This
means that for the CSP corresponding to the generic VP polynomial or universal circuit, the associated
polynomial is VP-complete. The unsatisfactory element here is that to describe the complete polynomial,
one again has to fall back to the circuit definition of VP. Similarly, in [4], it is shown that tensor formulas
can be computed in VP and can compute all polynomials in VP. Again, to put our hands on a specific
VP-complete tensor formula, we need to fall back to the circuit characterisation of VP.

For VBP, on the other hand, there are natural known complete problems, most notably the determinant
and iterated matrix multiplication.

A somewhat different homomorphism polynomial was studied in [5]; for a graph H, the monomials
of the polynomial f H

n encode the distinct graphs of size n that are homomorphic to H. The dichotomy
result established there gives completeness for VNP or membership in Valiant’s analogue of AC0; it does
not capture VP.

Finally, as mentioned earlier, a considerable number of works have been done during the last years
on the related subject of counting graph homomorphisms (but mostly in the non uniform settings —
i.e., when the target graph is fixed — see [8]) or counting models of CSP and conjunctive queries with
connections to VP-completeness (see [6]).

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 4

http://dx.doi.org/10.4086/cjtcs

HOMOMORPHISM POLYNOMIALS COMPLETE FOR VP

Organization of this paper

In Section 2, basic definitions and notations and previous results used are stated. In Section 3 we
describe the hardness of various homomorphism polynomials for VP. Membership in VP is established
in Section 4. Completeness for VBP and VNP is discussed in Section 5.

2 Preliminaries and Notation

An arithmetic circuit is a directed acyclic graph with leaves labeled by variables or field elements, internal
nodes (called gates) labeled by one of the field operations + and ×, and designated output gates at which
specific polynomials are computed in the obvious way. If every node has fan-out at most 1 (only one
successor), then the circuit is a formula (the underlying graph is a tree). If at every node labeled ×, the
subcircuits rooted at the children of the node are disjoint, then the circuit is said to be multiplicatively
disjoint. For more details about arithmetic circuits, see for instance [15].

A family of polynomials { fn(x1, . . . ,xt(n))} is p-bounded if fn has degree d(n), and both t(n), d(n)
are nO(1). A p-bounded family { fn} is in VP if a circuit family {Cn} of size s(n) ∈ nO(1) computes it.

Proposition 2.1 ([18, 11]). If { fn} is in VP, then { fn} can be computed by polynomial-size circuits of
depth O(logn) where each × gate has fan-in at most 2. Furthermore, the circuits are multiplicatively
disjoint.

We say that { fn} is a p-projection of {gn} if there is an m(n)∈ nO(1) such that each fn can be obtained
from gm(n) by setting each of the variables in gm(n) to a variable of fn or to a field element.

A constant-depth c-reduction from { fn} to {gn}, denoted f ≤c g, is a polynomial-size constant-
depth circuit family with + and × gates and oracle gates for g, that computes f . (This is akin to
AC0-Turing reductions in the Boolean world.)

A family {Dn} of universal circuits computing a polynomial family {pn} is described in [14, 15].
These circuits are universal in the sense that every polynomial f (X1, . . . ,Xn) of degree d, computed by
a circuit of size s, can be computed by a circuit Ψ such that the underlying graph of Ψ is the same as
the graph of Dm, for m ∈ poly(n,s,d). (In fact, fn can be obtained as a projection of pm.) With minor
modifications to {Dn} (simple padding with dummy gates, followed by the multiplicative disjointness
transformation from [11]), we can show that there is a universal circuit family {Cn} in the normal form
described below:

Definition 2.2 (Normal Form Universal Circuits). A universal circuit {Cn} in normal form is a circuit
with the following structure:

• It is a layered and semi-unbounded circuit, where × gates have fan-in 2, whereas + gates are
unbounded.

• Gates are alternating, namely every child of a × gate is a + gate and vice versa. Without loss of
generality, the root is a × gate.

• All the input gates have fan-out 1 and they are at the same level, i.e., all paths from the root of the
circuit to an input gate have the same length.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 5

http://dx.doi.org/10.4086/cjtcs

A. DURAND, M. MAHAJAN, G. MALOD, N. DE RUGY-ALTHERRE, AND N. SAURABH

• Cn is a multiplicatively disjoint circuit.

• Input gates are labeled by distinct variables. In particular, there are no input gates labeled by a
constant.

• Depth (Cn) = 2k(n) = 2cdlogne; number of variables (x̄) = vn; and size (Cn) = sn, which is
polynomial in n.

• The degree of the polynomial computed by the universal circuit is n.

We will identify the directed graph of the circuit, where each edge e is labeled by a new variable Xe,
by the circuit itself. Let (fCn(x̄))n be the polynomial family computed by the universal circuit family in
normal form.

The Baur-Strassen Lemma says that first-order derivatives can be simultaneously computed efficiently:

Lemma 2.3 ([1]). Let L(p1, p2, . . . , pk) denote the size (number of nodes) of a smallest circuit computing
the polynomials pi at k of its nodes. For any f ∈ F[x̄],

L
(

f ,
∂ f
∂x1

, . . . ,
∂ f
∂xn

)
≤ 3L(f) .

The coefficient of a particular monomial in a polynomial can be extracted as described by the
following lemma. It appears to be folklore, and was pointed out in [3]; a version appears in Lemma 2 of
[5].

Lemma 2.4 (Folklore). Let F be any field of characteristic zero.

1. Let p be a polynomial in F(W̄), with total degree at most D. Let m be any monomial, with k distinct
variables appearing in it. The coefficient of m in p can be computed by a O(k)-depth circuit of size
O(Dk) with oracle gates for p.

2. Let p be a polynomial in F(X̄ ,W̄), with |W̄ |= n and total degree in W̄ at most D. Let pd denote
the component of p of total degree in W̄ exactly d. Then pd can be computed by a constant depth
circuit of size O(Dn) with O(D) oracle gates for p.

We use (u,v) to denote an undirected edge between u and v, and 〈u,v〉 to denote a directed edge from
u to v.

Definition 2.5 (Homomorphisms). Let G = (V (G),E(G)) and H = (V (H),E(H)) be two undirected
graphs. A homomorphism from G to H is a mapping φ : V (G)→V (H) such that the image of an edge is
an edge; i.e., for all (u,v) ∈ E(G), (φ(u),φ(v)) ∈ E(H).

If G,H are directed graphs, then a homomorphism only needs to satisfy for all 〈u,v〉 ∈ E(G), at
least one of 〈φ(u),φ(v)〉,〈φ(v),φ(u)〉 is in E(H). But a directed homomorphism must satisfy for all
〈u,v〉 ∈ E(G), 〈φ(u),φ(v)〉 ∈ E(H).

If cG,cH are functions assigning colours to V (G) and V (H), then a coloured homomorphism must
also satisfy, for all u ∈V (G), cG(u) = cH(φ(u)).

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 6

http://dx.doi.org/10.4086/cjtcs

HOMOMORPHISM POLYNOMIALS COMPLETE FOR VP

Definition 2.6 (Homomorphism polynomials (see, e.g., [2])). Let G and H be undirected graphs; the
definitions for the directed case are analogous. Consider the set of variables X ∪Y where X = {Xu|u ∈
V (H)} and Y = {Yuv|(u,v) ∈ E(H)}. Let α : V (G) 7→ N be a labeling of vertices of G by non-negative
integers. For each homomorphism φ from G to H we associate the monomial

mon(φ),

(
∏

u∈V (G)

Xα(u)
φ(u)

)(
∏

(u,v)∈E(G)

Yφ(u),φ(v)

)

Let H be a set of homomorphisms from G to H. The homomorphism polynomial fG,H,α,H is defined as
follows:

fG,H,α,H(X ,Y) = ∑
φ∈H

mon(φ) = ∑
φ∈H

(
∏

u∈V (G)

Xα(u)
φ(u)

)(
∏

(u,v)∈E(G)

Yφ(u),φ(v)

)

Some sets of homomorphisms we consider are InjDirHom: injective directed homomorphisms,
InjHom: injective homomorphisms, DirHom: directed homomorphisms, ColHom: coloured homomor-
phisms, Hom: all homomorphisms.

Definition 2.7 (Parse trees (see, e.g., [11])). The set of parse trees of a circuit C is defined by induction
on its size:

• If C is of size 1, it has only one parse tree, itself.

• If the output gate of C is a × gate whose children are the gates α and β , the parse trees of C are
obtained by taking a parse tree of Cα , a parse tree of a disjoint copy of Cβ and the edges from α

and β to the output gate.

• If the output of C is a + gate, the parse trees of C are obtained by taking a parse tree of a subcircuit
rooted at one of the children and the edge from the (chosen) child to the output gate.

Each parse tree T is associated with a monomial by computing the product of the values of the input
gates. We denote this value by mon(T).

Lemma 2.8 ([11]). If C is a circuit computing a polynomial f , then f (x̄) = ∑T mon(T), where the sum
is over the set of parse trees, T, of C.

Proposition 2.9 ([11]). A circuit C is multiplicatively disjoint if and only if any parse tree of C is a
subgraph of C. Furthermore, a subgraph T of C is a parse tree if the following conditions are met:

• T contains the output gate of C.

• If α is a multiplication gate in T having gates β and γ as children in C, then the edges 〈β ,α〉 and
〈γ,α〉 also appear in T .

• If α is an addition gate in T , it has only one child in T .

• Only edges and gates obtained in this way belong to T .

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 7

http://dx.doi.org/10.4086/cjtcs

A. DURAND, M. MAHAJAN, G. MALOD, N. DE RUGY-ALTHERRE, AND N. SAURABH

3 Lower Bounds: VP-hardness

Here we study the question of whether all families of polynomials in VP can be computed by homo-
morphism polynomials. Instantiating G, H and α to our liking we obtain a variety of homomorphism
polynomials that are VP-hard. We describe them in increasing order of generalisation.

Definition 3.1. Let ATk be a directed balanced alternately-binary-unary tree with k leaves. Vertices on an
odd layer have exactly two incoming edges whereas vertices on an even layer have exactly one incoming
edge. The first layer has only one vertex called root, and the edges are directed from leaves towards the
root.

Lemma 3.2. The parse trees of Cn, the universal circuit in normal form, are subgraphs of Cn and are
isomorphic to ATn.

This observation suggests a way to capture monomial computations of the universal circuit via
homomorphisms from ATk into Cn. All proof trees are isomomorphic to each other and hence have the
same homomorphisms into any target graph.

Injective Directed Homomorphism

Proposition 3.3. Consider the homomorphism polynomial where

• G := ATm.

• H is the directed graph corresponding to the universal circuit in normal form Cm.

• H := set of injective directed homomorphisms from G to H.

• α is 1 everywhere.

Then, the family (fATm,H,α,InjDirHom(X̄ ,Ȳ))m, where m ∈ N, is VP-hard for projections.

We want to express the universal polynomial through a projection. The idea is to show that elements
in InjDirHom are in bijection with parse trees of Cm, and compute the same monomials.

Proof. We claim (fCn(x̄))n ≤p (fATm,H,α,InjDirHom(X̄ ,Ȳ))m. To prove our claim it suffices to show that
fCm(x̄)≤ fATm,H,α,InjDirHom(X̄ ,Ȳ). Let m = 2k(n).

The Ȳ variables are all set to 1. The X̄ variables that correspond to input gates of Cm are set to
corresponding values (in x̄) of the input gates, otherwise they are set to 1.

By Lemma 2.8 and the definition of fATm,H,α,InjDirHom, it suffices to show that ∑φ∈H mon(φ) =
∑T mon(T), where T is a parse tree of Cm.

Let us consider an injective directed homomorphism φ such that φ(AT2k(n)) is a parse tree of Cm. It is
easy to observe that mon(φ) = mon(φ(AT2k(n))). Therefore, to complete the proof, it suffices to show that
the set I of images of injective directed homomorphisms from AT2k(n) to Cm is equal to the set of parse
trees of Cm.

Since the homomorphisms are injective and respect direction each element of the set I is isomorphic
to AT2k(n) . Hence, by Lemma 3.2, the set of parse trees of Cm are contained in I.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 8

http://dx.doi.org/10.4086/cjtcs

HOMOMORPHISM POLYNOMIALS COMPLETE FOR VP

We now show that every element of the set I is a parse tree of Cm. Let φ ∈ InjDirHom and r be the
root of AT2k(n) . Let ` be a leaf of Cm in φ(AT2k(n)). As φ respects direction, there is a path in φ(AT2k(n))
of length 2k(n) from ` to φ(r). But the only gate in Cm at a distance 2k(n) from a leaf is the root of Cm.
Therefore the root of AT2k(n) must be mapped to the root of Cm. Similarly, we can argue that the i-th layer
of AT2k(n) must be mapped to the i-th layer of Cm. Hence, by Proposition 2.9, every element of the set I is
a parse tree of Cm.

Remark 3.4. The hardness proof above will work even if H is the complete directed graph on poly(m)
nodes. In the projection, we can set the Ȳ variables to values in {0,1} such that the edges with variables
set to 1 together form the underlying graph of Cn.

If we follow the proof of the previous proposition and look at the image of a given homomorphism in
layers, we notice that “direction”-respecting homomorphisms basically ensured that we never fold back
(in the image). In particular, the mapping respect layers. Furthermore “injectivity” helped ensure that
vertices within a layer are mapped distinctly. This raises an intriguing question: can we eliminate either
assumption (direction or injectivity) and still prove VP-hardness? We answer this question positively,
albeit under a stronger notion of reduction.

Injective Homomorphisms

Let ATu
k be defined as the alternately-binary-unary tree ATk, but with no directions on edges.

Proposition 3.5. Consider the homomorphism polynomial where

• G := ATu
m.

• H is a complete graph (undirected) on poly(m), say m6, nodes.

• H := set of injective homomorphisms from G to H.

• α is 1 everywhere.

Then, the family (fATu
m,H,α,InjHom(X̄ ,Ȳ))m is VP-hard for constant-depth c-reductions.

Again, we want to express the universal polynomial. To enforce directedness of the injective
homomorphisms, we assign a special variable on the edges emerging from the root, and a special variable
on edges reaching the leaves. The proof idea is to show that coefficient of certain monomial in f extracts
exactly the contribution of injective directed homomorphisms, and this, by Proposition 3.3, is the universal
polynomial. The desired coefficient can be extracted by a constant-depth c-reduction. We now give the
proof in detail.

Proof. Let m = 2k. The choice of poly(m), in defining H, is such that sn ≤ poly(m). Ȳ variables take
values in {0,1,r, `} such that the ones set to non-zero together form the undirected underlying graph of
Cn. Y variables corresponding to edges adjacent to the root of Cn are set to ‘r’. Y variables corresponding
to edges adjacent to an input gate in Cn are set to ‘`’. X̄ variables (of H) that correspond to input gates in
Cn are set to corresponding values (in x̄) of the input gates, otherwise they are set to 1.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 9

http://dx.doi.org/10.4086/cjtcs

A. DURAND, M. MAHAJAN, G. MALOD, N. DE RUGY-ALTHERRE, AND N. SAURABH

Let I be the set of images of injective homomorphisms from ATu
m to Cn. By Lemma 3.2, we know

that the set of parse trees of Cn is contained in I. Let φ ∈H be such that φ(ATu
m) is a parse tree of Cn.

Observe that in this case mon(φ) has degree 2k in ` and 2 in r. We now claim that if mon(φ) has degree
2k in ` and 2 in r, then the image of φ is a parse tree.

Since φ is injective, only degree 1 vertices of ATu
m can be mapped to a leaf in Cn. Thus, due to the

degree of ` in mon(φ), the 2k leaves of ATu
m must be mapped to different input gates in Cn. Also the

degree constraint on r and injectivity together suggest that two edges adjacent to the root in Cn are in
the image of φ . Hence there must be a vertex in ATu

m that is mapped to the root in Cn. Let us call this
vertex v. Note that the shortest distance between two vertices in ATu

m is at least as large as the shortest
distance between their homomorphic image in Cn. Hence v is a vertex of ATu

m such that every leaf in ATu
m

is at least a distance of 2k from v. But this is true of only one vertex in ATu
m, and that is the root of ATu

m.
Therefore the image of an injective homomorphism such that its monomial has degree 2k in ` and 2 in r is
a parse tree of Cn.

Now to compute the universal polynomial we do an interpolation over the oracle polynomial to extract
the coefficient of `2k

r2, as described in Lemma 2.4.

Directed Homomorphisms

Consider the directed alternately-binary-unary-tree ATk. For every vertex in an odd layer there are
two incoming edges. Flip the direction of the right edge for every such vertex. Note that the edges
coming into the unary vertices at even layers are unchanged. Also connect a path t1→ t2→ ··· → ts
to the root by adding an edge 〈ts,root〉. The vertices t1, . . . , ts are new vertices. Denote this modified
alternately-binary-unary-tree by ATd

k,s.

Theorem 3.6. Consider the homomorphism polynomial where

• G := ATd
m,s for sufficiently large s in poly(m), say s = m7.

• H is a complete directed graph on poly(m), say m6, nodes.

• H := set of directed homomorphisms from G to H.

• α is 1 everywhere.

Then, the family (fATd
m,s,H,α,DirHom(X̄ ,Ȳ))m is VP-hard for constant-depth c-reductions.

Proof. As before, to compute the universal polynomial we assign special variables on the edges of the
graph. The idea is to show that homomorphism monomials with certain degrees in special variables are
in bijection with parse trees of Cm (and compute the same corresponding monomials). We use the length
of the tail, the degree constraints and multiplicative disjointness of Cm to establish a required bijection.
We fill in the details now.

Let us set m := 2k(n) and s := 2sn. The choice of poly(m) is such that 3sn ≤ poly(m). Ȳ variables take
values in {0,1, t,r, `} such that the ones set to non-zero together form the undirected underlying graph of
Cn with a path v1→ v2→ ··· → v2sn → root, attached to the root of Cn. Y〈v1,v2〉 is set to t. Y〈v2sn ,root〉 is set
to r. Y variables corresponding to edges adjacent to an input gate in Cn are set to ‘`’. X̄ variables (of H)

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 10

http://dx.doi.org/10.4086/cjtcs

HOMOMORPHISM POLYNOMIALS COMPLETE FOR VP

that correspond to input gates in Cn are set to corresponding values (in x̄) of the input gates, otherwise
they are set to 1.

Let φ ∈H be such that φ(ATd
m,s) is a parse tree of Cn. Observe that in this case mon(φ) has degree

2k(n) in `, 1 in r and 1 in t. We claim that if mon(φ) has degree 2k(n) in `, 1 in r and 1 in t, then the image
of φ is a parse tree of Cn. First, note that any directed homomorphism from ATd

m,s to Cn with degree 1 in
r and 1 in t is well rooted, that is, root of ATd

m,s is mapped to the root of Cn and the path of length 2sn in
ATd

m,s is mapped isomorphically to a path of length 2sn in Cn. Since it also has degree 2k(n) in `, it must
be the case that 2k(n) leaves of ATd

m,s (except t1) are mapped to the leaves of Cn. Hence layers of ATd
m,s

must be mapped to the corresponding layer in Cn. Now to prove that the image of φ is a parse tree, it
suffices to show that φ is injective on each layer of ATd

m,s.
φ is injective on the first layer since it has only one vertex, the root. Inductively suppose φ is injective

until the (i−1)-th layer. Now assume that there are two vertices α and β on the i-th layer of ATd
m,s which

are mapped to the same gate on the i-th layer. We argue that this violates the multiplicative disjointness
of Cn. First notice that two children of a binary vertex γ of ATd

m,s must be mapped to two distinct vertices,
since the edges connecting them have different orientations and there are no 2-cycles in Cn. Let α ′ and
β ′ be parents of α and β respectively. From the aforementioned observation it follows that α ′ must be
different from β ′. Let us consider the smallest common ancestor of φ(α ′) and φ(β ′) in φ(ATd

m,s). This
must be a × gate, and hence we get a contradiction to the multiplicative disjointness of Cn. Now to
compute the universal polynomial, as before, we use Lemma 2.4 to extract the coefficient of `2k(n)

rt.

Coloured Homomorphisms

In all the above hardness proofs we restricted the set of homomorphisms to be direction-respecting,
or injective, or both. Here we show another restriction, called colour-respecting, that gives a VP-hard
polynomial. Recall that a homomorphism from a coloured graph to another coloured graph is colour-
respecting if it preserves the colour class of vertices.

Consider the following colouring of ATu
k with colours brown, left, right, white and green. The root

of ATu
k is coloured brown, leaves are coloured green. For every gate on an even layer, if it is the left

(resp. right) child of its parent then colour it left (resp. right). Every gate on an odd layer, except the root,
is coloured white. Denote this coloured alternately-binary-unary-tree as ATc

k.
We define a circuit to be properly coloured if the root is coloured brown, leaves are coloured green,

all multiplication gates but the root are coloured white and all addition gates are coloured left or right
depending on whether they are left or right child respectively.

We obtain a properly coloured circuit from the universal circuit Cn as follows. For all addition gates in
Cn we make two coloured copies, one coloured left and the other coloured right. We add edge connections
as follows: for a multiplication gate we add an incoming edge to it from the left (resp. right) coloured
copy of the left (resp. right) child, and for an addition gate the coloured gates are connected as the original
gate in the circuit Cn.

We say that an undirected complete graph H on M nodes is properly coloured if, for all sn ≤M/2,
there is an embedding of the graph that underlies an sn-sized properly coloured universal circuit, into H.

Theorem 3.7. Consider the homomorphism polynomial where

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 11

http://dx.doi.org/10.4086/cjtcs

A. DURAND, M. MAHAJAN, G. MALOD, N. DE RUGY-ALTHERRE, AND N. SAURABH

• G := ATc
m.

• H is a properly coloured complete graph (undirected) on poly(m), say m6, nodes.

• H := set of coloured homomorphisms from G to H.

• α is 1 everywhere.

Then, the family (fATc
m,H,α,ColHom(X̄ ,Ȳ))m, where m ∈ N, is VP-hard for projections.

Proof. Let us set m := 2k(n). The choice of poly(m) is such that 2sn ≤ poly(m). The Ȳ variables are set
to {0,1} such that the ones set to 1 together form the underlying graph of properly coloured universal
circuit Cn. The X̄ variables that correspond to input gates of Cn are set to corresponding values (in x̄) of
the input gates (irrespective of their colour), otherwise they are set to 1.

Let us consider a coloured homomorphism φ such that φ(ATc
2k(n)) is a parse tree of the properly

coloured Cn. It is easy to observe that mon(φ) = mon(φ(ATc
2k(n))). Therefore, to complete the proof it

suffices to show that the set I of images of coloured homomorphisms from ATc
2k(n) to Cn is equal to the set

of parse trees of Cn.
By Lemma 3.2, we know that the set of parse trees of Cn is contained in I.
We now show that every element of the set I is a parse tree of Cn. Since φ is colour-respecting it

maps the root to the root and leaves to leaves. Hence, φ also respects layers, that is, i-th layer of ATc
m is

mapped to i-th layer of Cn. Therefore, it suffices to show that φ is injective on each layer. This follows
from a similar argument as in Theorem 3.6.

The generic homomorphism polynomial gives us immense freedom in the choice of G, target graph
H, weights α and the set of homomorphisms H. Until now we used several modified graphs along with
different restrictions on H to capture computations in the universal circuit. The question here is: can we
get rid of restrictions on the set of homomorphisms? We provide a positive answer, using instead weights
on the vertices of the source graph.

Homomorphism with weights

For k a power of 2, let Tk denote a complete (perfect) binary tree with k leaves.

Theorem 3.8. Consider the homomorphism polynomial where

• G := Tm.

• H is a complete graph (undirected) on poly(m), say m6, nodes.

• H := set of all homomorphisms from G to H.

• Define α such that,

α(u) =


0 u = root
1 if u is the right child of it’s parent
0 otherwise

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 12

http://dx.doi.org/10.4086/cjtcs

HOMOMORPHISM POLYNOMIALS COMPLETE FOR VP

Then, the family (fTm,H,α,Hom(X̄ ,Ȳ))m, where m ∈ N, is VP-hard for constant-depth c-reductions.

Since the proof is long with several case analysis, we would like to discuss the proof outline before
presenting the proof.

Note that the source graphs are complete binary trees. Therefore, we first need to compact parse trees
and get rid of the unary nodes (corresponding to + gates). We construct from the universal circuit Cn a
graph Jn that allows us to get rid of the alternating binary-unary parse tree structure while maintaining the
property that the compacted “parse trees” are subgraphs of Jn. The graph Jn has two copies gL and gR of
each × gate and input gate of Cn. It also has two children attached to each leaf node. The edges of Jn

essentially shortcut the + edges of Cn.
As before, we use Y variables to pick out Jn from H. We assign special variables w on edges from

the root to a node gR, and z on edges going from a non-root non-input node u to some right copy node
gR. For an input node g in the “left sub-graph” of Jn, the new left and right edges are assigned c` and x
respectively, where x is the corresponding input label of g in Cn, and the node at the end of the x edge is
assigned a special variable y. In the right sub-graph, variable cr is used.

We show that homomorphisms whose monomials have degree 1 in w, 2k−2 in z, 2k−1 each in c` and
cr, and 2k in y are in bijection with compacted parse trees in Jn. The argument proceeds in stages: first
show that the homomorphism is well-rooted (using the degree constraint on w, c`, cr and the 0-1 weights
in G), then show that it preserves layers (does not fold back) (using the degree constraint on c`, cr and y),
then show that it is injective within layers (using the degree constraint in z and the 0-1 weights in G).

Proof. Before starting the proof, we set up some notation.
We obtain a sequence of graphs (Jn) from the undirected graphs underlying (Cn). To make the

presentation clearer, we first construct an intermediate graph J′n as follows. Retain the multiplica-
tion and input gates of Cn. Let us make two copies of each. For each retained gate, g, in Cn; let
gL and gR be the two copies of g in J′n (see Figure 1). We now define the edge connections in
J′n. Assume g is a × gate retained in J′n. Let α and β be two + gates feeding into g in Cn. Let
{α1, . . . ,αi} and {β1, . . . ,β j} be the gates feeding into α and β , respectively. Assume without loss
of generality that α and β feed into g from left and right, respectively. Now we add the following
sets of edges to J′n: {(α1L,gL), . . . ,(αiL,gL)}, {(β1R,gL), . . . ,(β jR,gL)}, {(α1L,gR), . . . ,(αiL,gR)} and
{(β1R,gR), . . . ,(β jR,gR)}. We now would like to keep a single copy of Cn in these sets of edges. So we
remove the vertex rootR and we remove the remaining spurious edges in following way. If we assume
that all edges are directed from root towards leaves, then we keep only edges induced by the vertices
reachable from rootL in this directed graph.

We now transform J′n as follows to get Jn (see Figure 1): for each gate g′ in J′n which corresponds to
an input gate in Cn, we add two new distinct vertices and connect them to g′. Note that there are two type
of vertices in Jn; one that corresponds to a gate in Cn and others are degree 1 vertices hanging from gates
that correspond to input gates in Cn.

Observation 3.9. There is a one-to-one correspondence between parse trees of Cn and subgraph of Jn

that are rooted at rootL and isomorphic to T2k(n)+1 .

Let us set m := 2k(n)+1. The choice of poly(m) is such that 4sn ≤ poly(m). The Ȳ variables are set to
{0,1,w,z,c`,cr, x̄} such that the ones set to non-zero together form the graph Jn. The X̄ variables take

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 13

http://dx.doi.org/10.4086/cjtcs

A. DURAND, M. MAHAJAN, G. MALOD, N. DE RUGY-ALTHERRE, AND N. SAURABH

g1L g1R g2R g3L g4L g4Rg3Rg2L

g5L

g5R

g7R

g8L

g9R g10R

g6L

rootL

0

1

1

z

0
1

1

1 1

0 0

z

0 0

0
1 1

1 1

1

1

z

z

0

1
1

w
w

B

A

depth = k+1

c` xi

0 y

c` x j

0 y

cr xk

0 y

cr xl

0 y

Figure 1: Graph Jn with vertex and edge labels

values in {0,1,y}. The ones corresponding to the left copies of gates in Cn are set to 0, whereas to the
right copies are set to 1. X̄ variables for degree 1 vertices hanging from input gates are set to 0 or ‘y’
depending on whether they are left or right child, respectively.

For every edge (rootL,gR), we set Y(rootL,gR) := w. For all u ∈V (Jn), except rootL, and degree of u not
equal to 1, if the edge (u,gR) exist then we set Y(u,gR) := z.

Let v be a gate, in Jn, corresponding to an input gate g in Cn and v lies in A part (see Figure 1). Let v1
and v2 be the left and right leaf attached to v, then we set Yvv1 := c` and Yvv2 := the x̄-label of g in Cn.

For v a gate, in Jn, corresponding to an input gate g in Cn and lying in B part (see Figure 1), let v1
and v2 be the left and right leaf attached to v. Then we set Yvv1 := cr and Yvv2 := the x̄-label of g in Cn.

All other remaining edge variables that are not set to 0, are set to 1.
By Observation 3.9 we easily deduce that for each parse tree p-T of Cn there exist a homomorphism

φ from T2k(n)+1 to Jn such that mon(φ) is equal to mon(p-T)×wz(2
k−2)c2(k−1)

` c2(k−1)

r y2k
, where k = k(n).

We claim that for a homomorphism φ , if mon(φ) has degree 1 in w, (2k−2) in z, 2k−1 in c`, 2k−1 in
cr and 2k in y, then the homomorphic image φ(T2k(n)+1) is isomorphic to T2k(n)+1 rooted at rootL.

We will prove the claim in two parts. First we prove that if any node other than the root of T2k(n)+1

is mapped to rootL then the corresponding monomial do not have right degree in w, c` or cr. We then
consider the case where the root of the complete binary tree is the only node mapped to rootL under φ ,
and we argue that if φ has the required degrees then it must be a complete binary tree with 2k(n)+1 leaves

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 14

http://dx.doi.org/10.4086/cjtcs

HOMOMORPHISM POLYNOMIALS COMPLETE FOR VP

rooted at rootL.

Case 1: φ−1(rootL) = /0. Clearly mon(φ) has degree zero in w.

Case 2: φ−1(rootL) contains a degree 3 vertex, say v. Let v1 and v2 be the left and right child of v,
respectively. Let v3 be the parent of v in Tm. Note that v must be labeled 0 for the monomial to survive.
Also, at least one of the vi’s is labeled 1.

Case 2a: Suppose two of the vi’s are labeled 1. Hence for the mon(φ) to survive these vi’s must be
mapped to the right of rootL. But then mon(φ) has degree at least 2 in w.

Case 2b: Exactly one of the vi is labeled 1. It must be the right child v2, for the monomial to survive
it should be mapped to the right of rootL. Now if v1 or v3 is also mapped to the right of rootL, mon(φ)
will have degree at least 2 in w. Otherwise, both v1 and v3 are mapped to the left of rootL. Since v1 is
an internal vertex of Tm, the subtree rooted at v2 and v1 has depth at most k−1 in Tm. In the first case
mon(φ) does not have sufficient degree in c` , whereas in the second case it does not have sufficient
degree in cr.

Case 3: φ−1(rootL) contains the root of Tm and at least one degree 1 vertex, say v. Also, no degree 3
vertices are mapped to rootL. As before, the left child of the root of Tm is mapped to the left of rootL and
the right child is mapped to the right of rootL, else either the monomial evaluates to zero or has degree at
least 2 in w.

Case 3a: For some leaf node v mapped to rootL, its neighbour is mapped to the right of rootL. In this
case if the monomial is not zero, we will have at least degree 2 in w.

Case 3b: For all leaf node v mapped to rootL, their neighbour is mapped to the left of rootL. But now
mon(φ) will not have sufficient degree in c`.

Case 4: φ−1(rootL) contains only degree 1 vertices. But then the homomorphic image is confined
only to the left side or right side of rootL. Hence the monomial will not have sufficient degree in either cr

or c`.

Therefore, we have shown that to get the appropriate degrees as claimed, φ−1(rootL) must only
contain the root of Tm. Now to complete the proof we will show that if mon(φ) has correct degrees in
w,z,c`, cr and y, then φ is injective and preserves left-right labelling of nodes of Tm. Note that for the
monomial to survive and have degree 1 in w, it must be the case that the right child of the root of Tm is
mapped to the right of rootL and the left child is mapped to the left of rootL.

We claim that the homomorphism φ can not ‘fold back’ layers, that is, map a descendant to the node
where its ancestor is mapped. This is because otherwise the monomial will not have sufficient degree in
either c`, cr, or y (if folding happens at depth k+1).

We also claim that the homomorphism φ can not ‘squish’ a layer, that is, map two siblings to the
same node. If the two are mapped to a vertex labeled 0, the monomial evaluates to zero. In the other case,
they are mapped to a vertex labeled 1 but then the two siblings together, either contribute degree 2 in z or
miss out at least degree 1 in c’s which cannot be compensated further if the monomial is non-zero.

Therefore we have shown that homomorphisms that are injective, whose image is isomorphic to Tm

and rooted at rootL, and which preserve left-right labels are in one-to-one correspondence with parse
trees of Cn.

As before, to compute the universal polynomial we do an interpolation over the oracle polynomial
(Lemma 2.4) to extract the coefficient of wz(2

k−2)c2(k−1)

` c2(k−1)

r y2k
.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 15

http://dx.doi.org/10.4086/cjtcs

A. DURAND, M. MAHAJAN, G. MALOD, N. DE RUGY-ALTHERRE, AND N. SAURABH

4 Upper Bounds: membership in VP

In this section we will show that most of the variants of the homomorphism polynomial considered
in the previous section are also computable by polynomial size arithmetic circuits. That is, the homo-
morphism polynomials are VP-Complete. For sake of clarity we describe the membership of a generic
homomorphism polynomial in VP in detail. Then we explain how to obtain various instantiations via
projections.

We define a set of new variables Z̄ := {Zu,a | u ∈ V (G) and a ∈ V (H)}. Let us generalise the
homomorphism polynomial fG,H,α,H as follows:

fG,H,H(Z̄,Ȳ) = ∑
φ∈H

(
∏

u∈V (G)

Zu,φ(u)

)(
∏

(u,v)∈E(G)

Yφ(u),φ(v)

)
.

Note that for a 0-1 valued α , we can easily obtain fG,H,α,H from our generic homomorphism polynomial
fG,H,H via substitution of Z̄ variables, setting Zu,a to Xα(u)

a . (If α can take any non-negative values, then
we can still do the above substitution. We will need subcircuits computing appropriate powers of the X̄
variables. The resulting circuit will still be poly-sized and hence in VP, provided the powers are not too
large.)

Theorem 4.1. The family of homomorphism polynomials (fm) = fGm,Hm,Hom(Z̄,Ȳ) where

• Gm is Tm, the complete balanced binary tree with m = 2k leaves,

• Hm is Kn, complete graph on n = poly(m) nodes,

is in VP.

Proof. The idea is to group the homomorphisms based on where they send the root of Gm and its children,
and to recursively compute sub-polynomials within each group. The sub-polynomials in a specific group
will have a specific set of variables in all their monomials. Thus the group can be identified by suitably
combining partial derivatives of the recursively constructed sub-polynomials. (Note: this is why we
consider the generalised polynomial with Z̄ instead of X̄ and α . If for some u, α(u) = 0, then we cannot
use partial derivatives to force sending u to a specific vertex of H.) The partial derivatives themselves can
be computed efficiently using Lemma 2.3.

We show by induction on m that f = fm can be computed in size S(m,n) = O(m3n3). In the base case
when m = 1, f = ∑a∈V (H) Zu,a, and the trivial circuit is of size n.

For m≥ 2, let r,r1,r2 denote the root of T = Gm and its two children. Then T is the disjoint union of
the node r, the edges (r,r1) and (r,r2), and the two trees T1 and T2 rooted at r1,r2 respectively. Note that
a homomorphism can be decomposed on these subtrees and vice versa. i.e.,

{φ ∈Hom | φ : T → H}=
{

a◦φ1 ◦φ2 |
a ∈ V (H), φi : Ti → H, φi ∈ Hom, and
(φ1 (r1) ,a) ,(φ2 (r2) ,a) ∈ E(H)

}
CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 16

http://dx.doi.org/10.4086/cjtcs

HOMOMORPHISM POLYNOMIALS COMPLETE FOR VP

This allows us to construct the polynomial recursively.

f = ∑
φ :T→H

mon(φ) = ∑
h∈V (H)

φ1:T1→H∈Hom
φ2:T2→H∈Hom

(φ1(r1),h),(φ2(r2),h)∈E(H)

mon(h◦φ1 ◦φ2)

= ∑
h,h1,h2∈V (H)

(h,h1),(h,h2)∈E(H)

∑
φ1:T1→H
φ1(r1)=h1

∑
φ2:T2→H
φ1(r2)=h2

Zr,hYh,h1Yh,h2mon(φ1)mon(φ2)

= ∑
h,h1,h2∈V (H)

(h,h1),(h,h2)∈E(H)

Zr,hYh,h1Yh,h2

 ∑
φ1:T1→H
φ1(r1)=h1

mon(φ1)


 ∑

φ2:T2→H
φ1(r2)=h2

mon(φ2)


= ∑

h,h1,h2∈V (H)
(h,h1),(h,h2)∈E(H)

Zr,hYh,h1Yh,h2

(
Zr1,h1

∂ fT1,H,Hom

∂Zr1,h1

)(
Zr2,h2

∂ fT2,H,Hom

∂Zv2,h2

)

By induction, we have two circuits of size S(m
2 ,n) each, computing fT1,H,Hom and fT2,H,Hom respec-

tively. Using Lemma 2.3, we have a circuit of size 6S(m
2 ,n) computing both these sub-polynomials and

all their derivatives. Thus we can construct f in size 6S(m
2 ,n)+O(n3), giving the result.

Remark 4.2. In the above theorem and proof, if Gm is ATu
m instead of Tm, essentially the same construc-

tion works. The grouping of homomorphisms should be based on the images of the root and its children
and grandchildren as well. Specifically, let r′1,r

′
2 be the children of r, and let ri be the unique child of r′i in

ATu
m. Let Ti denote the subtree rooted at ri. Homomorphisms from ATu

m to H can be expressed as follows:

{φ ∈Hom | φ : ATu
m→ H}=

a◦a1 ◦a2 ◦φ1 ◦φ2 |
a ∈V (H); φi : Ti→ H;
φi ∈Hom; (a,a1),(a,a2) ∈ E(H);
(φ1 (r1) ,a1)(φ2 (r2) ,a2) ∈ E(H)


Note that there is no requirement that a1,a2 be distinct. Now f can be written as

f = ∑
a,a1,a2,h1,h2∈V (H)
(a,a1),(a1,h1)∈E(H)
(a,a2),(a2,h2)∈E(H)

∑
φ1:T1→H
φ1(r1)=h1

∑
φ2:T2→H
φ1(r2)=h2

Zr,aZr′1,a1Zr′2,a2Ya,a1Ya,a2Yr′1,a1Yr′2,a2mon(φ1)mon(φ2)

and the recursion proceeds as before.
If Gm and Hm have directions, again everything goes through the same way.
If we want to consider a restricted set H of homomorphisms DirHom or ColHom instead of all of

Hom, again the same construction works. All we need is that H can be decomposed into independent
parts with a local stitching-together operator. That is, whether φ belongs to H can be verified locally
edge-by-edge and/or vertex-by-vertex, so that this can be built into the decomposition and the recursive
construction.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 17

http://dx.doi.org/10.4086/cjtcs

A. DURAND, M. MAHAJAN, G. MALOD, N. DE RUGY-ALTHERRE, AND N. SAURABH

From Theorem 4.1, the discussion preceding it and the remark following it, we have:

Corollary 4.3. The polynomial families from Proposition 3.3, Theorems 3.6, 3.7, and 3.8 are all in VP.

Remark 4.4. It is not clear how to get a similar upper bound for InjDirHom when the target graph is the
complete directed graph (remark following Proposition 3.3), or for the family from Proposition 3.5. We
need a way of enforcing that the recursive construction above respects injectivity. This is not a problem
for Proposition 3.3, though, because there the target graph is the graph underlying a multiplicatively
disjoint circuit. Injectivity at the root and its children and grandchildren can be checked locally; the
recursion beyond that does not fold back because the homomorphisms are direction-preserving. The
construction may not work if the target graph is the complete directed graph.

From Corollary 4.3, Proposition 3.3, and Theorems 3.6, 3.7 and 3.8, we obtain our main result:

Theorem 4.5. 1. The polynomial families from Proposition 3.3 and Theorem 3.7 are complete for
VP with respect to p-projections.

2. The polynomial families from Theorems 3.6 and 3.8 are complete for VP with respect to constant-
depth c-reductions.

5 Characterizing other complexity classes

We complement our result of VP-completeness by showing that appropriate modification of G can lead to
VBP-complete and VNP-complete polynomial families.

VBP Completeness

VBP is the class of polynomials computed by polynomial-sized algebraic branching programs. These
are layered directed graphs, with edges labeled by field constants or variables, and with a designated
source node s and target node t. For any path ρ in G, the monomial mon(ρ) is the product of the labels
of all edges in ρ . For two nodes u,v, the polynomial puv sums mon(ρ) for all paths ρ from u to v. The
branching program computes the polynomial pst .

A well-known polynomial family complete for VBP is the determinant of a generic matrix. A generic
complete polynomial for VBP is the polynomial computed by an ABP with (1) a source node s, m−1
layers of m nodes each, and a target node t, (2) complete bipartite graphs between layers, and (3) distinct
variables x̄ on all edges. This is also the iterated matrix multiplication polynomial IMM. It is easy to see
that st paths play the same role here as parse trees did in the multiplicatively disjoint circuits.

Theorem 5.1. Consider the homomorphism polynomial where

• G is a simple path on m+1 nodes, (u1,u2, . . . ,um+1).

• H is a complete graph (undirected) on m2 nodes.

• H := set of all homomorphisms from G to H.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 18

http://dx.doi.org/10.4086/cjtcs

HOMOMORPHISM POLYNOMIALS COMPLETE FOR VP

• Define α such that,

α(u) =
{

1 u = u1 or u = um+1
0 otherwise

Then, the family (fG,H,α,Hom(X̄ ,Ȳ))m, where m ∈ N, is complete for VBP under c-reductions.

Proof. Hardness: We show how IMM can be computed from this polynomial. Set the Ȳ variables to
0 or to variables from x̄ so that H looks like the undirected graph underlying the generic ABP. Set the
X variables to 0, except at the nodes S,T corresponding to s, t. Note that in the resulting graph H ′, the
shortest path between S and T has exactly m edges. Though there are no directions, the bijection between
{S,T} and {s, t} is established by the setting of the Ȳ variables.

For every st path ρ in the ABP, there is a homomorphism φ from G to H such that mon(φ) =
Xsmon(ρ)XT . Conversely, for any homomorphism φ from G to H, if mon(φ) contains XSXT , then φ must
map G to a proper path between S,T . So mon(φ)/XSXT is in fact mon(ρ) for some st path ρ . Hence the
homogeneous component of fG,H,α,Hom of degree 1 in XS and degree 1 in XT is exactly the generic IMM
polynomial.

Membership: We show that more generally, for G,H,H as defined and for any 0-1 valued α ,
the polynomial can be computed in VBP. For any non-negative n,m, let qn,m denote the generalised
homomorphism polynomial fPn,Km,Hom(Z̄,Ȳ) as defined in Section 4. (The polynomial in the Theorem
statement, fPm,Km2 ,α,Hom, is obtained from qm,m2 by setting Zu,a to Xα(u)

a .) Let us see the construction of
an ABP computing qn,m. We describe it in detail for q2,m; it generalizes in a straightforward way to all
n. Let P2 = 〈u,v,w〉 be a path of length 2, with edges (u,v) and (v,w). We will demonstrate the ABP
construction by reducing the polynomial computation to an iterated matrix multiplication instance. We
need the following easily-verifiable fact.

Fact 5.2. Graph homomorphisms from a path of length ‘n’ to any graph H are in one-to-one correspon-
dence with walks of length exactly ‘n’ in graph H.

We claim that q2,m equals the following matrix product,


1
1
...
1


T 

Zu,1Y1,1 Zu,1Y1,2 · · · Zu,1Y1,m
Zu,2Y2,1 Zu,2Y2,2 · · · Zu,2Y2,m

...
...

. . .
...

Zu,mYm,1 Zu,mYm,2 · · · Zu,mYm,m




Zv,1Y1,1 Zv,1Y1,2 · · · Zv,1Y1,m
Zv,2Y2,1 Zv,2Y2,2 · · · Zv,2Y2,m

...
...

. . .
...

Zv,mYm,1 Zv,mYm,2 · · · Zv,mYm,m




Zw,1
Zw,2

...
Zw,m


A typical entry in the final polynomial is Zu,iYi, j×Zv, jYj,k×Zw,k. The initial row vector is only used

for summation over i. So let us focus on the adjacency matrix of Km, where each entry is multiplied with
a suitable Z variable. Intuitively, the first matrix picks a vertex i in Km to match u, and then also picks
an edge (i, j) from i to map the edge (u,v) in the path. The second matrix then picks the Z variable for
v, j, and chooses an edge (j,k) to map (v,w). The last column vector just picks the Z variable for w,k, as
there are no more edges left.

We now proceed to provide variants of path homomorphism polynomial that are complete for VBP
under projections. Unfortunately, this strong completeness result comes with a caveat. The graphs

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 19

http://dx.doi.org/10.4086/cjtcs

A. DURAND, M. MAHAJAN, G. MALOD, N. DE RUGY-ALTHERRE, AND N. SAURABH

underlying the homomorphism polynomials are now directed graphs. But we believe that the restriction
is not a severe one (compare it with Theorem 3.6).

Theorem 5.3. Consider the homomorphism polynomial where

• G is a simple directed path on m+1 nodes, 〈u1,u2, . . . ,um+1〉.

• H is a complete directed graph on m(m+1) nodes.

• H := set of all directed homomorphisms from G to H.

• α is 1 everywhere.

Then, the family (fG,H,α,DirHom(X̄ ,Ȳ))m, where m ∈ N, is complete for VBP under projections.

Proof. Hardness: We show how IMM can be computed from this polynomial. Set the Ȳ variables to
0 or to variables from x̄ so that H looks like the layered directed acyclic graph underlying the generic
ABP. Set the X variables to 1. Note that in the resulting graph H ′, the shortest path between S and T has
exactly m edges.

For every st path ρ in the ABP, there is a homomorphism φ from G to H such that mon(φ) = mon(ρ).
Conversely, for any homomorphism φ from G to H, φ must map G to a proper path between S,T . This
follows from the directed version of Fact 5.2 and acyclicity of H ′ (which forces that paths of length m in
H ′ exist only between S and T). So mon(φ) is in fact mon(ρ) for some st path ρ . Hence the polynomial
fG,H,α,DirHom is exactly the generic IMM polynomial.

Membership: It is exactly the same as the membership proof of Theorem 5.1, and the correctness
follows from the directed version of Fact 5.2.

Theorem 5.4. Consider the homomorphism polynomial where

• G is a simple directed cycle on m nodes, 〈u1,u2, . . . ,um,u1〉.

• H is a complete directed graph on m nodes.

• H := set of all directed homomorphisms from G to H.

• α is 1 everywhere.

Then, the family (fG,H,α,DirHom(X̄ ,Ȳ))m, where m ∈ N, is complete for VBP under projections.

Before proceeding with the proof, we note down two facts that are needed in the proof.

Fact 5.5. Directed graph homomorphisms from a directed cycle of length ‘m’ to a directed graph H are
in one-to-one correspondence with directed closed walks of length exactly ‘m’ in H.

Consider the families of polynomials (Fm) and (Gm) defined by Fm = Tr(Am) and Gm = Tr(A1 ·
A2 · · ·Am), where Tr is the trace, and A or Ai are generic m×m matrices with m2 variables.

Proposition 5.6 ([11]). The families (Fm) and (Gm) are VBP-complete over any field.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 20

http://dx.doi.org/10.4086/cjtcs

HOMOMORPHISM POLYNOMIALS COMPLETE FOR VP

Proof of Theorem 5.4. Hardness: We show how Fm = Tr(Am) can be computed by this polynomial. Let
H be a complete directed graph on m nodes such that Y variables are given by the matrix A and X variables
are all set to 1. Now using Fact 5.5 it follows easily that fG,H,α,DirHom is exactly Tr(Am).

Membership: We show that more generally, for G,H,H as defined and for any 0-1 valued α ,
the polynomial can be computed in VBP. For any non-negative n,m, let qn,m denote the generalised
homomorphism polynomial fDCn,DKm,DirHom(Z̄,Ȳ) as defined in Section 4. (The polynomial in the
Theorem statement, fDCm,DKm,α,DirHom, is obtained from qm,m by setting Zu,a to Xa.)

Let us see the construction of an ABP computing qn,m. We will demonstrate the ABP construction
by reducing the polynomial computation to the trace computation of an iterated matrix multiplication
instance. Consider the following iterated matrix multiplication instance.

W =


Zu1,1Y1,1 Zu1,1Y1,2 · · · Zu1,1Y1,m
Zu1,2Y2,1 Zu1,2Y2,2 · · · Zu1,2Y2,m

...
...

. . .
...

Zu1,mYm,1 Zu1,mYm,2 · · · Zu1,mYm,m

 · · · · · ·


Zun,1Y1,1 Zun,1Y1,2 · · · Zun,1Y1,m
Zun,2Y2,1 Zun,2Y2,2 · · · Zun,2Y2,m

...
...

. . .
...

Zun,mYm,1 Zun,mYm,2 · · · Zun,mYm,m


︸ ︷︷ ︸

n matrices

We claim that the trace of the resulting matrix, Tr(W), is qn,m. Assuming the claim, the construction
of an algebraic branching program computing it follows easily from Proposition 5.6.

To verify the claim, it suffices to show that both the polynomials have same set of monomials. We
first argue that monomials in the polynomial qn,m appears in Tr(W). Each monomial corresponds to
a directed homomorphism from cycle of length n to the graph. But by Fact 5.5, every homomorphic
image corresponds to a closed walk of length n starting at the vertex where u1 is mapped. Say u1 is
mapped to a vertex j in the graph, then this monomial also contribute to Wj, j. For the other direction,
note that monomials of Tr(W) is uniquely identifiable by a closed walk of length n and a vertex on the
walk designated as the start/end vertex. From this it is easy to recover a unique directed homomorphism
for 〈u1,u2, . . . ,un,u1〉.

VNP Completeness

Theorem 5.7. Consider the homomorphism polynomial where

• G is the complete graph (undirected) on m nodes.

• H is the complete graph (undirected) on m nodes.

• H := set of all homomorphisms from G to H.

• All Ȳ variables are set to 1.

Then, the family (fG,H,Hom(Z̄))m, where m ∈ N, is complete for VNP under p-projections.

Proof. We show that computing the family of permanent polynomials is equivalent to computing this
family. The variables Ȳ certify that the functions φ considered in the sum are homomorphisms. This
property stays true if we set all Ȳ variables to 1.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 21

http://dx.doi.org/10.4086/cjtcs

A. DURAND, M. MAHAJAN, G. MALOD, N. DE RUGY-ALTHERRE, AND N. SAURABH

Since G and H are complete graphs without self-loops, a map φ : [m]→ [m] fails to be a homomor-
phism exactly when it is not injective. Thus

fG,H,Hom(1̄, Z̄) = ∑
φ :[m]→[m];φ∈Hom

(
∏

i∈[m]

Zi,φ(i)

)

= ∑
φ :[m]→[m];φ injective

(
∏

i∈[m]

Zi,φ(i)

)

= ∑
φ∈Sm

(
∏

i∈[m]

Zi,φ(i)

)
= perm(Z̄)

Thus fG,H,Hom is exactly the perm polynomial, and hence is complete for VNP.

6 Conclusion

We have shown that several natural homomorphism polynomials are complete for the algebraic complexity
class VP. Our results are summarised below.

Complexity G H H polynomial reduction
type

VP-complete

ATm CmO(1) InjDirHom α = 1 p-projections
ATd

m DKmO(1) DirHom α = 1 O(1)-depth c-reductions
ATc

m coloured KmO(1) ColHom α = 1 p-projections
Tu

m KmO(1) Hom 0-1 valued O(1)-depth c-reductions

VBP-complete
Pathm KmO(1) Hom 0-1 valued O(1)-depth c-reductions

DPathm DKmO(1) DirHom α = 1 p-projections
DCyclem DKm DirHom α = 1 p-projections

VNP-complete Km Km Hom generalised p-projections
(Z̄ variables)

It would be interesting to show all the hardness results with respect to p-projections. It would also
be very interesting to obtain completeness while allowing all homomorphisms on simple graphs and
eliminating vertex weights. Another question is extending the completeness results of this paper to fields
of characteristic other than zero.

Perhaps more importantly, it would be nice to get still more examples of natural VP-complete prob-
lems, preferably from different areas. The completeness of determinant or iterated matrix multiplication
for VBP underlies the importance of linear algebra as a source of “efficient” computations. Finding
natural VP-complete polynomials in some sense means finding computational techniques which are
(believed to be) stronger than linear algebra.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 22

http://dx.doi.org/10.4086/cjtcs

HOMOMORPHISM POLYNOMIALS COMPLETE FOR VP

References

[1] WALTER BAUR AND VOLKER STRASSEN: The complexity of partial derivatives. Theoretical
Computer Science, 22(3):317 – 330, 1983. [doi:http://dx.doi.org/10.1016/0304-3975(83)90110-X]
3, 6

[2] CHRISTIAN BORGS, JENNIFER CHAYES, LÁSZLÓ LOVÁSZ, VERA T. SÓS, AND KATALIN

VESZTERGOMBI: Counting graph homomorphisms. In Topics in Discrete Mathematics, volume 26
of Algorithms and Combinatorics, pp. 315–371. Springer Berlin Heidelberg, 2006. 2, 3, 7

[3] P. BÜRGISSER: Completeness and Reduction in Algebraic Complexity Theory. Volume 7 of
Algorithms and Computation in Mathematics. Springer, 2000. 1, 4, 6

[4] FLORENT CAPELLI, ARNAUD DURAND, AND STEFAN MENGEL: The arithmetic complexity of
tensor contractions. In Symposium on Theoretical Aspects of Computer Science STACS, volume 20
of LIPIcs, pp. 365–376, 2013. 4

[5] NICOLAS DE RUGY-ALTHERRE: A dichotomy theorem for homomorphism polynomials. In
Mathematical Foundations of Computer Science 2012, volume 7464 of LNCS, pp. 308–322. Springer
Berlin Heidelberg, 2012. [doi:10.1007/978-3-642-32589-2_29] 4, 6

[6] ARNAUD DURAND AND STEFAN MENGEL: The complexity of weighted counting for acyclic
conjunctive queries. J. Comput. Syst. Sci., 80(1):277–296, 2014. [doi:10.1016/j.jcss.2013.08.001] 4

[7] MARTIN E. DYER AND CATHERINE S. GREENHILL: The complexity of counting graph homomor-
phisms. Random Structures and Algorithms, 17(3-4):260–289, 2000. 2

[8] MARTIN E. DYER AND DAVID RICHERBY: An effective dichotomy for the counting constraint
satisfaction problem. SIAM J. Comput., 42(3):1245–1274, 2013. [doi:10.1137/100811258] 4

[9] DELIA GARIJO, ANDREW GOODALL, PATRICE OSSONA DE MENDEZ, AND JARIK NEŠETŘIL:
Graph polynomials by counting graph homomorphisms. Paper presented at the Workshop on New Di-
rections for the Tutte Polynomial: Extensions, Interrelations, and Applications, 11th-14th July 2015,
Royal Holloway Univ., London, 2015. http://tutte2015.ma.rhul.ac.uk/files/2015/02/Goodall.pdf. 2

[10] MARTIN GROHE AND MARC THURLEY: Counting homomorphisms and partition functions. In
Model Theoretic methods in Finite Combinatorics, volume 558 of Contemporary Mathematics.
American Mathematical Society, 2011. See also CoRR, abs/1104.0185. 2

[11] GUILLAUME MALOD AND NATACHA PORTIER: Characterizing Valiant’s algebraic complexity
classes. Journal of Complexity, 24(1):16–38, 2008. 3, 5, 7, 20

[12] PIERRE MCKENZIE, HERIBERT VOLLMER, AND KLAUS W. WAGNER: Arithmetic circuits and
polynomial replacement systems. SIAM J. Comput., 33(6):1513–1531, 2004. 4

[13] STEFAN MENGEL: Characterizing arithmetic circuit classes by constraint satisfaction problems.
In Automata, Languages and Programming, volume 6755 of LNCS, pp. 700–711. Springer Berlin
Heidelberg, 2011. [doi:10.1007/978-3-642-22006-7_59] 4

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 23

http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(83)90110-X
http://dx.doi.org/10.1007/978-3-642-32589-2{_}29
http://dx.doi.org/10.1016/j.jcss.2013.08.001
http://dx.doi.org/10.1137/100811258
http://dx.doi.org/10.1007/978-3-642-22006-7{_}59
http://dx.doi.org/10.4086/cjtcs

A. DURAND, M. MAHAJAN, G. MALOD, N. DE RUGY-ALTHERRE, AND N. SAURABH

[14] RAN RAZ: Elusive functions and lower bounds for arithmetic circuits. Theory of Computing,
6:135–177, 2010. 4, 5

[15] AMIR SHPILKA AND AMIR YEHUDAYOFF: Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.
4, 5

[16] L. G. VALIANT: Reducibility by algebraic projections. In Logic and Algorithmic: International
Symposium in honour of Ernst Specker, volume 30, pp. 365–380. Monograph. de l’Enseign. Math.,
1982. 1

[17] LESLIE G. VALIANT: Completeness classes in algebra. In Symposium on Theory of Computing
STOC, pp. 249–261, 1979. 1

[18] LESLIE G. VALIANT, SVEN SKYUM, S. BERKOWITZ, AND CHARLES RACKOFF: Fast parallel
computation of polynomials using few processors. SIAM Journal on Computing, 12(4):641–644,
1983. 3, 4, 5

AUTHORS

Arnaud Durand
Univ Paris Diderot, Sorbonne Paris Cité,
IMJ-PRG, UMR 7586 CNRS, Sorbonne Université,
UPMC Univ Paris 06, F-75013, Paris, France.
durand math univ-paris-diderot fr
http://www.logique.jussieu.fr/~durand/

Guillaume Malod
Univ Paris Diderot, Sorbonne Paris Cité,
IMJ-PRG, UMR 7586 CNRS, Sorbonne Université,
UPMC Univ Paris 06, F-75013, Paris, France.
malod math univ-paris-diderot fr

Meena Mahajan
The Institute of Mathematical Sciences,
Chennai 600113, India
meena imsc res in
http://www.imsc.res.in/~meena

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 24

http://www.logique.jussieu.fr/~durand/
http://www.imsc.res.in/~meena
http://dx.doi.org/10.4086/cjtcs

HOMOMORPHISM POLYNOMIALS COMPLETE FOR VP

Nicolas de Rugy-Altherre
Univ Paris Diderot, Sorbonne Paris Cité,
IMJ-PRG, UMR 7586 CNRS, Sorbonne Université,
UPMC Univ Paris 06, F-75013, Paris, France.
nderugy math univ-paris-diderot fr
http://www.logique.jussieu.fr/~nderugy/

Nitin Saurabh
The Institute of Mathematical Sciences,
Chennai 600113, India
nitin imsc res in
http://www.imsc.res.in/~nitin

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2016, Article 03, pages 1–25 25

http://www.logique.jussieu.fr/~nderugy/
http://www.imsc.res.in/~nitin
http://dx.doi.org/10.4086/cjtcs

	Introduction
	Preliminaries and Notation
	Lower Bounds: VP-hardness
	Upper Bounds: membership in VP
	Characterizing other complexity classes
	Conclusion
	References

