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Abstract: In this paper we construct quantum algorithms for matrix products over several
algebraic structures called semirings, including the (max,min)-matrix product, the distance
matrix product and the Boolean matrix product. In particular, we obtain the following results.

• We construct a quantum algorithm computing the product of two n×n matrices over
the (max,min) semiring with time complexity O(n2.473). In comparison, the best
known classical algorithm for the same problem, by Duan and Pettie (SODA’09), has
complexity O(n2.687).

• We construct a quantum algorithm computing the ` most significant bits of each entry
of the distance product of two n×n matrices in time O(20.64`n2.46). In comparison, the
best known classical algorithm for the same problem, by Vassilevska and Williams
(STOC’06) and Yuster (SODA’09), has complexity O(2`n2.69).

The above two algorithms are the first quantum algorithms that perform better than the
Õ(n5/2)-time straightforward quantum algorithm based on quantum search for matrix mul-
tiplication over these semirings. We also consider the Boolean semiring, and construct a
quantum algorithm computing the product of two n×n Boolean matrices that outperforms
the best known classical algorithms for sparse matrices.

Key words and phrases: quantum algorithms, matrix multiplication, semirings

1 Introduction

Background. Matrix multiplication over semirings has a multitude of applications in computer science,
and in particular in the area of graph algorithms (e.g., [6, 19, 21, 22, 23, 25]). One example is Boolean
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matrix multiplication, related for instance to the computation of the transitive closure of a graph, where
the product of two n×n Boolean matrices A and B is defined as the n×n Boolean matrix C = A ·B such
that C[i, j] = 1 if and only if there exists a k ∈ {1, . . . ,n} such that A[i,k] = B[k, j] = 1.

More generally, given a set R⊆ Z∪{−∞,∞} and two binary operations ⊕ : R×R→ R and � : R×
R→ R, the structure (R,⊕,�) is a semiring if it behaves like a ring except that there is no requirement
on the existence of an inverse with respect to the operation ⊕. Given two n×n matrices A and B over R,
the matrix product over (R,⊕,�) is the n× n matrix C defined as C[i, j] =

⊕n
k=1 (A[i,k]�B[k, j]) for

any (i, j) ∈ {1, . . . ,n}×{1, . . . ,n}. The Boolean matrix product is simply the matrix product over the
semiring ({0,1},∨,∧). The (max,min)-product and the distance product, which both have applications
to a multitude of tasks in graph theory such as constructing fast algorithms for all-pairs paths problems
(see, e.g., [21]), are the matrix products over the semiring (Z∪{−∞,∞},max,min) and the semiring
(Z∪{∞},min,+), respectively.

Whenever the operation ⊕ is such that a term as
⊕n

k=1 xk can be computed in Õ(
√

n) time using
quantum techniques (e.g., for ⊕= ∨ using Grover’s algorithm [9] or for ⊕= min and ⊕= max using
quantum algorithms for minimum finding [8]) and each operation � can be implemented in polylog(n)
time, the product of two n×n matrices over the semiring (R,⊕,�) can be computed in time Õ(n5/2) on a
quantum computer.1 This is true for instance for the Boolean matrix product, and for both the (max,min)
and distance matrix products.

A fundamental question is whether we can do better than those Õ(n5/2)-time straightforward quantum
algorithms. For the Boolean matrix product, the answer is affirmative since it can be computed classically
in time Õ(nω), where ω < 2.373 is the exponent of square matrix multiplication over a field. However,
Boolean matrix product appears to be an exception, and for most semirings it is not known if matrix
multiplication can be done in Õ(nω)-time. For instance, the best known classical algorithm for the
(max,min)-product, by Duan and Pettie [6], has time complexity Õ(n(3+ω)/2) = O(n2.687) while, for the
distance product, no truly subcubic classical algorithm is even known (without introducing assumptions
on the matrices).

Our results. We construct in this paper the first quantum algorithms with exponent strictly smaller than
5/2 for matrix multiplication over several semirings.

We first obtain the following result for matrix multiplication over the (max,min) semiring.

Theorem 1.1. There exists a quantum algorithm that computes, with high probability, the (max,min)-
product of two n×n matrices in time O(n2.473).

In comparison, the best known classical algorithm for the (max,min)-product, by Duan and Pettie [6],
has time complexity Õ(n(3+ω)/2) = O(n2.687), as mentioned above. The (max,min)-product has mainly
been studied in the field in fuzzy logic [7] under the name composition of relations and in the context of
computing the all-pairs bottleneck paths of a graph (i.e., computing, for all pairs (s, t) of vertices in a
graph, the maximum flow that can be routed between s and t). More precisely, it is well known (see, e.g.,
[6, 19, 23]) that if the (max,min)-product of two n×n matrices can be computed in time T (n), then the
all-pairs bottleneck paths of a graph with n vertices can be computed in time Õ(T (n)). As an application
of Theorem 1.1, we thus obtain a O(n2.473)-time quantum algorithm computing the all-pairs bottleneck

1In this paper the notation Õ(·) suppresses the no(1) factors.
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paths of a graph of n vertices, while classically the best upper bound for this task is O(n2.687), again
from [6].

In order to prove Theorem 1.1, we construct a quantum algorithm that computes the product of two
n×n matrices over the existence dominance semiring (defined in the next section) in time Õ(n(5+ω)/3)≤
O(n2.458). The dominance product has applications in computational geometry [18] and graph algorithms
[22] and, in comparison, the best known classical algorithm for this product [25] has complexity O(n2.684).
Computing efficiently the existence dominance product is, nevertheless, not enough for our purpose.
We introduce (in Section 3) a new generalization of it that we call the generalized existence dominance
product, and develop both quantum and classical algorithms that compute efficiently this product. This is
the most technical part of this paper.

We also show (in Section 4.2) how these results for the generalized existence dominance product
can be used to construct classical and quantum algorithms computing the ` most significant bits of each
entry of the distance product of two n×n matrices. In the quantum setting, we obtain time complexity
Õ
(
20.640`n(5+ω)/3

)
≤ O(20.640`n2.458). In comparison, prior to the present work, the best known classical

algorithm for the same problem by Vassilevska and Williams [22] had complexity Õ
(
2`n(3+ω)/2

)
≤

O(2`n2.687), with a slight improvement on the exponent of n obtained later by Yuster [25]. We obtain an
improvement for this classical time complexity as well, reducing it to Õ

(
20.960`n(3+ω)/2

)
, which gives a

sublinear dependency on 2`.
These results are, to the best of our knowledge, the first quantum algorithms for matrix multiplication

over semirings other than the Boolean semiring improving over the straightforward Õ(n5/2)-time quantum
algorithm, and the first nontrivial quantum algorithms offering a speedup with respect to the best classical
algorithms for matrix multiplication when no assumptions are made on the sparsity of the matrices
involved (sparse matrix multiplication is discussed below). This shows that, while quantum algorithms
may not be able to outperform the classical Õ(nω)-time algorithm for matrix multiplication of (dense)
matrices over a ring, they can offer a speedup for matrix multiplication over other algebraic structures.

We finally investigate under which conditions quantum algorithms faster than the best known classical
algorithms can be constructed for Boolean matrix multiplication. This question has been recently studied
extensively in the output-sensitive scenario [3, 11, 13, 14], for which quantum algorithms multiplying
two n×n Boolean matrices with query complexity Õ(n

√
λ ) and time complexity Õ(n

√
λ +λ

√
n) were

constructed, where λ denotes the number of non-zero entries in the output matrix. In this work, we focus
on the case where the input matrices are sparse (but not necessarily the output matrix), and evaluate
the performance of quantum algorithms in this scenario. Our result (Theorem 5.1) shows how several
standard combinatorial ideas for sparse Boolean matrix multiplication can be adapted in the quantum
setting, and used to construct quantum algorithms faster than the best known classical algorithms. In
particular, we obtain the following result.

Theorem 1.2 (simplified version – the complete version appears as Theorem 5.2 in Section 5). Let A and
B be two n×n Boolean matrices each containing at most m non-zero entries. There exists a quantum
algorithm that computes, with high probability, the Boolean matrix product A ·B and has time complexity

Õ(n2) if m≤ n1.151,

Õ
(
m0.517n1.406

)
if n1.151 ≤ m≤ nω−1/2,

Õ(nω) if nω−1/2 ≤ m≤ n2.
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Figure 1: The upper bounds of Theorem 1.2 (in solid lines). The horizontal axis represents the logarithm
of m with respect to basis n (i.e., the value logn(m)). The vertical axis represents the logarithm of the
complexity with respect to basis n. The dashed lines represent the upper bounds obtained by [26].

The complexity of the algorithm of Theorem 1.2 is the piece-linear function of logn(m) represented in
Figure 1. In comparison, the best known classical algorithm, by Yuster and Zwick [26], has complexity
Õ(n2) if m ≤ n1.151, Õ(m0.697n1.199) if n1.151 ≤ m ≤ n(1+ω)/2, and Õ(nω) if n(1+ω)/2 ≤ m ≤ n2. Our
algorithm performs better when n1.151 < m < nω−1/2. For instance, if m = O(n(1+ω)/2) = O(n1.686...),
then our algorithm has complexity O(n2.277), while the algorithm by [26] has complexity Õ(nω).

Our main quantum tool is rather standard: quantum enumeration, a variant of Grover’s search
algorithm. We use this technique in various ways to improve the combinatorial steps in several classical
approaches [1, 6, 23, 26] that are based on a combination of algebraic steps (computing some matrix
products over a field) and combinatorial steps. Moreover, the speedup obtained by quantum enumeration
enables us to depart from these original approaches and optimize the combinatorial and algebraic steps
in different ways, for instance relying on rectangular matrix multiplication instead of square matrix
multiplication. On the other hand, several subtle but crucial issues appear when trying to apply quantum
enumeration, such as how to store and access information computed during the preprocessing steps,
which induces complications and requires the introduction of new algorithmic ideas. We end up with
algorithms fairly remote from these original approaches, where most steps are tailored for the use of
quantum enumeration. More detailed technical overviews are given at the beginning of Sections 3, 4
and 5.
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2 Preliminaries

Rectangular matrix multiplication over fields. For any k1,k2,k3 > 0, let ω(k1,k2,k3) represent the
minimal value τ such that, over a field, the product of an nk1 × nk2 matrix by an nk2 × nk3 matrix can
be computed with Õ(nτ) arithmetic operations. The value ω(1,1,1) is denoted by ω , and the current
best upper bound on ω is ω < 2.373, see [5, 15, 20, 24]. Other important quantities are the value
α = sup{k |ω(1,k,1) = 2} and the value β = (ω−2)/(1−α). The current best lower bound on α is
α > 0.302, see [12]. The following facts are known, and will be used in this paper. We refer to [4, 10]
for details.

Fact 2.1. ω(1,k,1) = 2 for k ≤ α and ω(1,k,1)≤ 2+β (k−α) for α ≤ k ≤ 1.

Fact 2.2. The following relations hold for any values k1,k2,k3 > 0:

(i) ω(kk1,kk2,kk3) = kω(k1,k2,k3) for any k > 0;

(ii) ω(kπ(1),kπ(2),kπ(3)) = ω(k1,k2,k3) for any permutation π over {1,2,3};

(iii) ω(k1,k2,1+ k3)≤ ω(k1,k2,1)+ k3;

(iv) ω(k1,k2,k3)≥max{k1 + k2,k1 + k3,k2 + k3}.

Matrix products over semirings. We define below two matrix products over semirings considered
in Sections 3 and 4, respectively, additionally to the Boolean product, the (max,min)-product and the
distance product defined in the introduction. These products were also used in [6, 22, 23].

Definition 2.3. Let A be an n×n matrix with entries in Z∪{∞} and B be an n×n matrix with entries
in Z∪{−∞}. The existence dominance product of A and B, denoted A∗B, is the n×n Boolean matrix
C such that C[i, j] = 1 if and only if there exists some k ∈ {1, . . . ,n} such that A[i,k] ≤ B[k, j]. The
product A 2 B is the n×n matrix C such that C[i, j] = −∞ if A[i,k] > B[k, j] for all k ∈ {1, . . . ,n}, and
C[i, j] = maxk{A[i,k] |A[i,k]≤ B[k, j]} otherwise.

As mentioned for instance in [6, 23], computing the (max,min)-product reduces to computing
the product 2. Indeed, if C denotes the (max,min)-product of two matrices A and B, then for any
(i, j) ∈ {1, . . . ,n}×{1, . . . ,n} we can write C[i, j] = max

{
(A2B)[i, j],(BT 2AT )[ j, i]

}
, where AT and

BT denote the transposes of A and B, respectively. Matrix products over the semirings (min,max),
(min,≤) and (max,≥) studied, for instance, in [21], similarly reduce to computing the product 2.

Quantum algorithms for matrix multiplication. We assume that a quantum algorithm can access any
entry of the input matrix in a random access way, similarly to the standard model used in [3, 11, 13, 14] for
Boolean matrix multiplication. More precisely, let A and B be two n×n matrices, for any positive integer
n (the model presented below can be generalized to deal with rectangular matrices in a straightforward
way). We suppose that these matrices can be accessed directly by a quantum algorithm: We have an
oracle OA that, for any i, j ∈ {1, . . . ,n}, and any z ∈ {0,1}∗, maps the state |i〉| j〉|0〉|z〉 to |i〉| j〉|A[i, j]〉|z〉.
We have a similar oracle OB for B. Since we are interested in time complexity, we will count all the
computational steps of the algorithm and assign a cost of one for each call to OA or OB, which corresponds
to the cases where quantum access to the inputs A and B can be done at unit cost, for example in a
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random access model working in quantum superposition. We say that a quantum algorithm for matrix
multiplication computes the product of A and B with high probability if, when given access to oracles
OA and OB corresponding to A and B, the algorithm outputs with probability at least 2/3 all the entries
of the product of A and B. The complexity of several algorithms in this paper will be stated using an
upper bound λ on the number of non-zero or non-infinite entries in the product of A and B. The same
complexity, up to a logarithmic factor, can actually be obtained even if no nontrivial upper bound is
known a priori, see [13, 14].

We will use variants of Grover’s search algorithm, as described for instance in [2], to find elements
satisfying some conditions inside a search space of size N. Concretely, suppose that a Boolean function
f : {1, . . . ,N}→ {0,1} is given and that we want to find a solution, i.e., an element x ∈ {1, . . . ,n} such
that f (x) = 1. Consider the quantum search procedure (called safe Grover search in [17]) obtained by
repeating Grover’s standard search a logarithmic number of times, and checking if a solution has been
found. This quantum procedure outputs one solution with probability at least 1−1/poly(N) if a solution
exists, and always rejects if no solution exists. Its time complexity is Õ(

√
N/max(1, t))), where t denotes

the number of solutions, if the function f can be evaluated in Õ(1) time. By repeating this procedure and
striking out solutions as soon as they are found, one can find all the solutions with probability at least
1−1/poly(N) using Õ

(√
N/t +

√
N/(t−1)+ · · ·+

√
N/1

)
= Õ(

√
N(t +1)) computational steps. We

call this procedure quantum enumeration.

3 Existence Dominance Matrix Multiplication

In this section we present a quantum algorithm that computes the existence dominance product of two
matrices A and B. The underlying idea of our algorithm is similar to the idea in the best classical algorithm
for the same problem by Duan and Pettie [6]: use a search step to find some of the entries of A ∗B,
and rely on classical algebraic algorithms to find the other entries. We naturally use quantum search to
implement the first part, and perform careful modifications of their approach to improve the complexity
in the quantum setting, taking advantage of the features of quantum enumeration. There are two notable
differences: The first one is that the algebraic part of our quantum algorithms uses rectangular matrix
multiplication, while [6] uses square matrix multiplication. The second and crucial difference is that, for
applications in later sections, we give a quantum algorithm that can handle a new (and more general)
version of the existence dominance product, defined on set of matrices, which we call the generalized
existence dominance product and define below.

Definition 3.1. Let u,v be two positive integers, and S be the set S = {1, . . . ,u}×{1, . . . ,v}. Let ≺ be
the lexicographic order over S∪{(0,0)} (i.e., (i, j) ≺ (i′, j′) if and only if i < i′ or (i = i′ and j < j′)).
Consider u matrices A(1), . . . ,A(u), each of size n×n with entries in Z∪{∞}, and v matrices B(1), . . . ,B(v),
each of size n× n with entries in Z∪ {−∞}. For each (i, j) ∈ {1, . . . ,n}× {1, . . . ,n} define the set
Si j ⊆ S∪{(0,0)} as follows:

Si j = {(x,y) ∈ S |A(x) ∗B(y)[i, j] = 1}∪{(0,0)}.

The generalized existence dominance product of these matrices is the n× n matrix C with entries in
S∪{(0,0)} defined as follows: for all (i, j) ∈ {1, . . . ,n}×{1, . . . ,n} the entry C[i, j] is the maximum
element in Si j, where the maximum refers to the lexicographic order.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 6

http://dx.doi.org/10.4086/cjtcs


QUANTUM ALGORITHMS FOR MATRIX PRODUCTS OVER SEMIRINGS

Note that the case u = v = 1 corresponds to the standard existence dominance product, since C[i, j] =
(1,1) if A(1) ∗B(1)[i, j] = 1 and C[i, j] = (0,0) if A(1) ∗B(1)[i, j] = 0.

Proposition 3.2. Let A(1), . . . ,A(u) be u matrices of size n×n with entries in Z∪{∞}, and B(1), . . . ,B(v)

be v matrices of size n×n with entries in Z∪{−∞}. Let m1 ∈ {1, . . . ,n2u} denote the total number of
finite entries in the matrices A(1), . . . ,A(u), and m2 ∈ {1, . . . ,n2v} denote the total number of finite entries
in the matrices B(1), . . . ,B(v). For any parameter t ∈ {1, . . . ,m1}, there exists a quantum algorithm that
computes, with high probability, their generalized existence dominance product in time

Õ
(√

m1m2n
t

+

√
m1m2uv

tn
+nω(1+logn u,1+logn t,1+logn v)

)
.

Proof. Let L be the list of all finite entries in A(1), . . . ,A(u) sorted in increasing order (if the finite entries
of these matrices are not distinct then some elements will appear more than once in the list). Decompose L
into t successive parts L1, . . . ,Lt , each containing at most dm1/te entries. For each x ∈ {1, . . . ,u} and each
r ∈ {1, . . . , t} we construct two n×n matrices A(x)

r , Ā(x)
r as follows: for all (i, j) ∈ {1, . . . ,n}×{1, . . . ,n},

A(x)
r [i, j] =

{
A(x)[i, j] if A(x)[i, j] ∈ Lr,

∞ otherwise,

Ā(x)
r [i, j] =

{
1 if A(x)[i, j] ∈ Lr,
0 otherwise.

Similarly, for each y ∈ {1, . . . ,v} and each r ∈ {1, . . . , t} we construct two n× n matrices B(y)
r , B̄(y)

r as
follows: for all (i, j) ∈ {1, . . . ,n}×{1, . . . ,n},

B(y)
r [i, j] =

{
B(y)[i, j] if minLr ≤ B(y)[i, j]< maxLr,
−∞ otherwise,

B̄(y)
r [i, j] =

{
1 if B(y)[i, j]≥maxLr,
0 otherwise.

The cost of this (classical) preprocessing step is O(n2t(u+ v)) time.
It is easy to see that, for each x ∈ {1, . . . ,u} and y ∈ {1, . . . ,v}, the following equality holds (where

the operators + and ∑ refer to the entry-wise OR):

A(x) ∗B(y) =
t

∑
r=1

(
Ā(x)

r · B̄(y)
r

)
+

t

∑
r=1

(
A(x)

r ∗B(y)
r

)
. (3.1)

Indeed, the second term compares entries that are in a same part Lr, while the first term takes into
consideration entries in distinct parts. Define two n×n matrices C1 and C2 with entries in S∪{(0,0)} as
follows: for all (i, j) ∈ {1, . . . ,n}×{1, . . . ,n},

C1[i, j] =max

{
{(0,0)}∪{(x,y) ∈ S |

t

∑
r=1

Ā(x)
r · B̄(y)

r [i, j] = 1}

}
, (3.2)

C2[i, j] =max

{
{(0,0)}∪{(x,y) ∈ S |

t

∑
r=1

A(x)
r ∗B(y)

r [i, j] = 1}

}
. (3.3)
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From Equation (3.1), the generalized existence dominance product C satisfies

C[i, j] = max{C1[i, j],C2[i, j]}

for all (i, j) ∈ {1, . . . ,n}×{1, . . . ,n}. The matrix C can then be computed in time O(n2) from C1 and C2.
The matrix C1 can clearly be computed in time O(n2uv) if all the terms ∑r Ā(x)

r · B̄(y)
r are known. We

can obtain all these uv terms by computing the following Boolean product of an nu×nt matrix by an
nt×nv matrix (both matrices can be constructed in time Õ(n2t(u+ v))). Ā(1)

1 · · · Ā(1)
t

...
...

Ā(u)
1 · · · Ā(u)

t

 ·
 B̄(1)

1 · · · · · · B̄(v)
1

...
...

B̄(1)
t · · · · · · B̄(v)

t


The cost of this matrix multiplication is Õ

(
nω(1+logn u,1+logn t,1+logn v)

)
. From item (iv) of Fact 2.2, we

conclude that the matrix C1 can be computed in time

Õ
(

n2uv+n2t(u+ v)+nω(1+logn u,1+logn t,1+logn v)
)
= Õ

(
nω(1+logn u,1+logn t,1+logn v)

)
.

We now explain how to compute the matrix C2. Intuitively, the main difficulty is that Equation
(3.3) cannot be used directly since we do not know how to compute the dominance product ∗ efficiently.
Lemma 3.3 below shows that it is possible to replace this dominance product by a Boolean product if we
replace the matrices A(x)

r and B(y)
r by some Boolean matrices Â(x)

r and B̂(y)
r (compare Equation (3.3) with

Equation (3.4) below). This lemma further shows that the latter matrices can be computed efficiently by a
quantum algorithm (based on quantum search). Actually, for technical reasons we additionally need to
replace the term {(0,0)} in Equation (3.3) by the term {D[i, j]} in Equation (3.4), where D is a matrix
that can also be computed efficiently using a quantum algorithm. While this lemma is the main technical
part of the proof of this proposition, for readability its proof is postponed until Section 6.

Lemma 3.3. There exists a quantum algorithm that, with high probability, outputs

• tu Boolean matrices Â(x)
r , each of size n×2n, for all x ∈ {1, . . . ,u} and r ∈ {1, . . . , t},

• tv Boolean matrices B̂(y)
r , each of size 2n×n, for all y ∈ {1, . . . ,v} and r ∈ {1, . . . , t},

• a matrix D of size n×n with entries in S∪{(0,0)}= ({1, . . . ,u}×{1, . . . ,v})∪{(0,0)},

such that

C2[i, j] = max

{
{D[i, j]}∪{(x,y) ∈ S |

t

∑
r=1

Â(x)
r · B̂(y)

r [i, j] = 1}

}
(3.4)

for all (i, j) ∈ {1, . . . ,n}×{1, . . . ,n}. The time complexity of this quantum algorithm is

Õ
(

n2t(u+ v)+
√

m1m2n
t

+

√
m1m2uv

tn

)
.
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After applying the quantum algorithm of Lemma 3.3, we can obtain the matrix C2, similarly to the
computation of C1, if we know all the terms ∑r Â(x)

r · B̂(y)
r . We obtain all these uv terms by computing the

following Boolean product of an nu×nt matrix by an nt×nv matrix. Â(1)
1 · · · Â(1)

t
...

...
Â(u)

1 · · · Â(u)
t

 ·
 B̂(1)

1 · · · · · · B̂(v)
1

...
...

B̂(1)
t · · · · · · B̂(v)

t


The cost of this matrix multiplication is Õ

(
nω(1+logn u,1+logn t,1+logn v)

)
. The total cost of computing the

matrix C2 is thus

Õ
(

n2t(u+ v)+
√

m1m2n
t

+

√
m1m2uv

tn
+nω(1+logn u,1+logn t,1+logn v)

)
,

which is the desired bound since the term n2t(u+ v) is negligible here by item (iv) of Fact 2.2.

We can give a classical version of this result, whose proof can be found in Section 6, that will be used
to prove Theorem 4.3 in Section 4.2.

Proposition 3.4. There exists a classical algorithm that computes the generalized existence dominance
product in time Õ

(m1m2
tn +nω(1+logn u,1+logn t,1+logn v)

)
, for any parameter t ∈ {1, . . . ,m1}.

We now consider the case u = v = 1 corresponding to the standard existence dominance product. By
optimizing the choice of the parameter t in Proposition 3.2, we obtain the following theorem.

Theorem 3.5. Let A be an n×n matrix with entries in Z∪{∞} containing at most m1 non-(∞) entries,
and B be an n×n matrix with entries in Z∪{−∞} containing at most m2 non-(−∞) entries. There exists
a quantum algorithm that computes, with high probability, the existence dominance product of A and B in
time Õ(

√
m1m2n1−µ), where µ is the solution of the equation µ +2ω(1,1+µ,1) = 1+ logn(m1m2). In

particular, this time complexity is upper bounded by Õ
(
(m1m2)

1/3n(ω+1)/3
)
.

Proof. The complexity of the algorithm of Proposition 3.2 is minimized for t = nµ , where µ is the
solution of the equation µ +2ω(1,1+µ,1) = 1+ logn(m1m2). We can use items (ii) and (iii) of Fact 2.2
to obtain the upper bound ω(1,1+µ,1)≤ω +µ , and optimize the complexity of the algorithm by taking
t =
⌈
(m1m2)

1/3n(1−2ω)/3
⌉
, which gives the upper bound claimed in the second part of the theorem.

In the case of completely dense input matrices (i.e., m1 ≈ n2 and m2 ≈ n2), the second part of
Theorem 3.5 shows that the complexity of the algorithm is Õ(n(5+ω)/3)≤ O(n2.458).

4 Applications: the (max, min)-Product and the Distance Product

In this section we show how to apply the results of Section 3 to construct quantum algorithms for the
(max,min)-product and the distance product.
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4.1 Quantum Algorithm for the (max, min)-Product

In this subsection we present a quantum algorithm for the matrix product 2, which immediately gives a
quantum algorithm with the same complexity for the (max,min)-product as explained in Section 2, and
then gives Theorem 1.1. Our algorithm first exploits the methodology by Vassilevska et al. [23] to reduce
the computation of the product 2 to the computation of several sparse dominance products. The main
technical difficulty to overcome is that, unlike in the classical case, computing all the sparse dominance
products successively becomes too costly (i.e., the cost exceeds the complexity of all the other parts of the
quantum algorithm). Instead, we show that it is sufficient to obtain a small fraction of the entries in each
dominance product and that this task reduces to the computation of a generalized existence dominance
product, and then use the quantum techniques of Proposition 3.2 to obtain precisely only those entries.

Theorem 4.1. There exists a quantum algorithm that computes, for any two n×n matrices A and B with
entries respectively in Z∪{∞} and Z∪{−∞}, the product A2B with high probability in time Õ(n(5−γ)/2),
where γ is the solution of the equation γ +2ω(1+ γ,1+ γ,1) = 5. In particular, this complexity is upper
bounded by O(n2.473).

Proof. Let g ∈ {1, . . . ,n} be a parameter to be chosen later. For each i ∈ {1, . . . ,n}, we sort the entries in
the i-th row of A in increasing order and divide the list into s = dn/ge successive parts Ri

1, . . . ,R
i
s with at

most g entries in each part. For each r ∈ {1, . . . ,s}, define the n×n matrix Ar as follows: Ar[i, j] = A[i, j]
if A[i, j] ∈ Ri

r and Ar[i, j] = ∞ otherwise. The cost of this (classical) preprocessing is O(n2s) time.
We describe below the quantum algorithm that computes C = A2B.

Step 1. For each (i, j) ∈ {1, . . . ,n}×{1, . . . ,n}, we compute the largest r ∈ {1, . . . ,s} such that (Ar ∗
B)[i, j] = 1, if such an r exists. This is done by using the quantum algorithm of Proposition 3.2 with u = s,
v = 1, A(r) = Ar for each r ∈ {1, . . . ,s} and B(1) = B. Note that m1 ≤ s× (ng) = O(n2) and m2 ≤ n2. The
complexity of this step is thus

Õ

(
n5/2
√

t
+nω(1+logn s,1+logn t,1)

)
for any parameter t ∈ {1, . . . ,n2}. We want to minimize this expression. Let us write t = nγ and g = nδ .
For a fixed δ , the first term is a decreasing function of γ , while the second term is an increasing function
of γ . The expression is thus minimized for the value of γ solution of the equation

ω(2−δ ,1+ γ,1) = (5− γ)/2, (4.1)

in which case the expression becomes Õ(n(5−γ)/2).

Step 2. Note that at Step 1 we also obtain all (i, j) ∈ {1, . . . ,n}×{1, . . . ,n} such that no r satisfying
(Ar ∗B)[i, j] = 1 exists. For all those (i, j), we set C[i, j] =−∞. For all other (i, j), we will denote by ri j

the value found at Step 1. We now know that

C[i, j] = max
k: A[i,k]∈Ri

ri j

{Ari j [i,k] |Ari j [i,k]≤ B[k, j]},

and C[i, j] can be computed in time Õ(
√

g) using the quantum algorithm for maximum finding [8], since
|Ri

ri j
| ≤ g. The complexity of Step 2 is thus Õ(n2√g).
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This algorithm computes, with high probability, all the entries of C = A2B. Its complexity is

Õ
(

n2s+n(5−γ)/2 +n2√g
)
= Õ

(
n(5−γ)/2 +n2+δ/2

)
,

since the term n2s = n3−δ is negligible with respect to n(5−γ)/2 = nω(2−δ ,1+γ,1) by item (iv) of Fact 2.2.
This expression is minimized for δ and γ satisfying δ + γ = 1. Injecting this constraint into Equation
(4.1), we find that the optimal value of γ is the solution of the equation γ +2ω(1+ γ,1+ γ,1) = 5, as
claimed. Using Fact 2.1 and items (i) and (ii) of Fact 2.2, we obtain

5 = γ +2(1+ γ)ω

(
1,1,

1
1+ γ

)
≤ γ +2(1+ γ)

(
2+β

(
1

1+ γ
−α

))
= (4+2β −2αβ )+(5−2αβ )γ

and then γ ≥ 1+2αβ−2β

5−2αβ
. The complexity is thus Õ

(
n(12−6αβ+β )/(5−2αβ )

)
≤ O(n2.473), as claimed.

4.2 Quantum Algorithm for the Distance Product

In this subsection we present a quantum algorithm that computes the most significant bits of the distance
product of two matrices, as defined below.

Let A and B be two n×n matrices with entries in Z∪{∞}. Let W be a power of two such that the
value of each finite entry of their distance product C is upper bounded by W . For instance, one can take
the smallest power of two larger than maxi, j{A[i, j]}+maxi, j{B[i, j]}, where the maxima are over the
finite entries of the matrices. Each non-negative finite entry of C can then be expressed using log2(W )

bits: the entry C[i, j] can be expressed as C[i, j] = ∑
log2(W )
k=1 C[i, j]k W

2k for bits C[i, j]1, . . . ,C[i, j]log2(W ). For
any ` ∈ {1, . . . , log2(W )}, we say that an algorithm computes the ` most significant bits of each entry if,
for all (i, j) ∈ {1, . . . ,n}×{1, . . . ,n} such that C[i, j] is finite and non-negative, the algorithm outputs
all the bits C[i, j]1,C[i, j]2, · · · ,C[i, j]`. Vassilevska and Williams [22] have studied this problem, and
shown how to reduce the computation of the ` most significant bits to the computation of O(2`) existence
dominance matrix products of n×n matrices. By combining this with the Õ(n(3+ω)/2)-time algorithm for
dominance product from [18], they obtained a classical algorithm that computes the ` most significant
bits of each entry of the distance product of A and B in time Õ

(
2`n(3+ω)/2

)
≤ Õ

(
2`n2.687

)
.

Here is the main result of this subsection, obtained by reducing the computation of the ` most
significant bits to computing a generalized existence dominance product.

Theorem 4.2. There exists a quantum algorithm that computes, for any two n×n matrices A and B with
entries in Z∪{∞}, the ` most significant bits of each entry of the distance product of A and B in time
Õ
(
20.640`n(5+ω)/3

)
≤ O(20.640`n2.458) with high probability.

Proof. Note that the trivial Õ(n5/2)-time quantum algorithm can be used to compute all the bits of each
entry of the distance product C of A and B. Therefore, we will assume, without loss of generality, that `
satisfies the inequality 20.640`n(5+ω)/3 ≤ n5/2, which implies in particular that 2` ≤ n2.

Assume first that all the entries of C are finite and non-negative. What we want to do is to compute,
for each (i, j) ∈ {1, . . . ,n}×{1, . . . ,n}, the integer d ∈ {0,1 . . . ,2`−1} such that C[i, j] is in the interval
[dW/2`,(d +1)W/2`).
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For any integer x, define the matrices A′x and B′x as follows: for all (i, j) ∈ {1, . . . ,n}×{1, . . . ,n},

A′x[i, j] = A[i, j]− xW
2`/2 , B′x[i, j] =−B[i, j]+

xW
2`

.

Assume for simplicity that ` is even (a similar argument works for ` odd). For each d ∈ {0,1 . . . ,2`−
1}, let d1,d2 ∈ {0,1 . . . ,2`/2−1} denote the values such that d = d12`/2 +d2. For each d ∈ {0,1 . . . ,2`−
1}, define the Boolean matrix Dd = A′d1

∗B′d2
, where ∗ means the strict2 existence dominance product.

Note that d1W
2`/2 +

d2W
2` = dW

2` . Observe that, for each (i, j) ∈ {1, . . . ,n}×{1, . . . ,n}, we have

Dd [i, j] = 0⇐⇒min
k

(A[i,k]+B[k, j])≥ dW
2`

.

For each (i, j) ∈ {1, . . . ,n}×{1, . . . ,n}, the integer d ∈ {1, . . . ,2`} such that C[i, j] is in the interval
[(d − 1)W/2`,dW/2`) can thus be found by computing the smallest d ∈ {0,1 . . . ,2`− 1} such that
Dd [i, j] = 1. We can thus use3 the quantum algorithm of Proposition 3.2, with u = v = 2`/2, A(x) = A′x−1
and B(y) = B′y−1 for each x,y ∈ {1, . . . ,2`/2}. Since m1 ≤ 2`/2n2, m2 ≤ 2`/2n2 and from the inequality
2` ≤ n2 on `, the complexity is

Õ

(
n5/22`/2
√

t
+nω(1+logn(2

`/2),1+logn t,1+logn(2
`/2))

)

for any parameter t ∈ {1, . . . ,2`/2n2}. Let us write µ = logn(2
`) and t = nγ . The complexity is mini-

mized for the value γ such that 5+ µ − γ = 2ω(1+ µ/2,1+ γ,1+ µ/2), for which the complexity is
Õ
(
n(5+µ−γ)/2

)
. Using Fact 2.1 and items (i) and (iii) of Fact 2.2, we obtain

ω(1+µ/2,1+ γ,1+µ/2)≤ γ +(1+µ/2)ω
(

1,
1

1+µ/2
,1
)

≤ γ +(1+µ/2)
(

2+β

(
2

2+µ
−α

))
.

This gives 5+µ− γ ≤ 2γ +(2−αβ )µ +(4+2β −2αβ ) and thus

γ ≥ (αβ −1)µ +(1−2β +2αβ )

3
.

The complexity is thus

Õ
(

n
5
2+

2β−2αβ−1
6 + (4−αβ )

6 µ

)
= Õ

(
n

5+ω

3 +0.640µ

)
= O

(
20.640`n2.458

)
.

2The strict existence dominance product is obtained by replacing≤ by < in the definition of the existence dominance product
(Definition 3.1). Note that all our results on the existence dominance product also hold for the strict existence dominance product
and their proofs are essentially the same, just replacing inequalities by strict inequalities.

3Actually, we need to modify the order ≺ in Definition 3.1 so that the algorithm of Proposition 3.2 finds the smallest d such
that Dd [i, j] = 1 instead of the largest d. This is done simply by choosing ≺ as the decreasing lexicographic order instead of the
usual lexicographic order. Proposition 3.2 and its proof are unchanged, since the proof only uses the fact that ≺ is a strict total
order.
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Finally, we discuss the general case where the entries of C can be negative or infinite. Observe that
the above algorithm detects which entries of C are larger than (2`−1)W/2`: these are the entries such
that the algorithm finds no d such that Dd [i, j] = 1. We can find which of these entries are larger than W
(and thus infinite) by computing the dominance product A′0 ∗B′2` . Note that the algorithm also finds which
entries of C are negative: these are the entries for which the smallest d such that Dd [i, j] = 1 is d = 0.

Similarly, we can obtain a better classical algorithm as shown in the following theorem.

Theorem 4.3. There exists a classical algorithm that computes, for any two n×n matrices A and B with
entries in Z∪{∞}, the ` most significant bits of each entry of the distance product of A and B in time
Õ
(
20.960`n(3+ω)/2

)
≤ O(20.960`n2.687).

Proof. The proof is similar to the proof of Theorem 4.2, but we use Proposition 3.4 instead of Proposition
3.2. The complexity becomes

Õ
(

2`n3

t
+nω(1+logn(2

`/2),1+logn t,1+logn(2
`/2))

)
for any parameter t ∈ {1, . . . ,2`/2n2}. Let us write µ = logn(2

`) and t = nγ . This expression is then

O
(

n3+µ−γ +nω(1+µ/2,1+γ,1+µ/2)
)
.

This expression is minimized for the value γ such that

3+µ− γ = ω(1+µ/2,1+ γ,1+µ/2),

for which the complexity is Õ
(
n3+µ−γ

)
.

Using Fact 2.1 and items (i) and (iii) of Fact 2.2, we obtain

ω(1+µ/2,1+ γ,1+µ/2)≤ γ +(1+µ/2)ω
(

1,
1

1+µ/2
,1
)

≤ γ +(1+µ/2)
(

2+β

(
2

2+µ
−α

))
.

This gives the inequality

3+µ− γ ≤ γ +(1− αβ

2
)µ +(2+β −αβ ),

from which we obtain

γ ≥ αβ µ/2+(1−β +αβ )

2
.

The complexity is thus

Õ
(

n
(5+β−αβ )

2 +(1− αβ

4 )µ
)
= Õ

(
n

3+ω

2 +0.960µ

)
= O

(
20.960`n2.687

)
,

as claimed.
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Note that the dependency on n of the Õ
(
2`n2.687

)
-time algorithm by Vassilevska and Williams [22]

can be slightly improved using the recent O(n2.684)-time algorithm for dominance product by Yuster [25]
based on rectangular matrix multiplication. We can similarly obtain an improved bound O(2c`n2.684),
for some c < 1, with the same approach as in the proof of Theorem 4.3. However, it is complicated to
express the value of c in a closed form, so we omit the statement of this slight improvement.

5 Sparse Boolean Matrix Multiplication

In this section we describe quantum versions of several known combinatorial techniques for handling
sparse Boolean matrix products. The main result is the following theorem, which shows how to compute
the Boolean product of two matrices A and B by reducing it to four products, each easier to compute than
the original one when A and B are sparse enough. Note that similar ideas have been used in [1, 26] to
analyze applications of those combinatorial techniques in the classical setting. Here we show how to
implement these ideas using quantum enumeration and analyze the complexity of the resulting algorithm.

Theorem 5.1. Assume that there exists an algorithm that, in time M(n1,n2,n3,L), computes the product
of any n1×n2 Boolean matrix and any n2×n3 Boolean matrix such that their product contains at most L
non-zero entries. Let A and B be two n×n Boolean matrices with at most m1 and m2 non-zero entries in
A and B, respectively. For any values of the three parameters `1 ∈ {1, . . . ,m1} and `2, `3 ∈ {1, . . . ,m2},
there exists a quantum algorithm that computes, with high probability, the Boolean product A ·B and has
time complexity

Õ

(
M(`′1, `

′
2, `
′
3,λ )+

√
m1m2 ·min(λ ,m1m2/`2)

`2
+λ

√
m1

`1
+λ

√
m2

`3
+n2

)
,

where λ denotes the number of non-zero entries in A ·B, and `′i = min(`i,n) for each i ∈ {1,2,3}.

Proof. For any k∈{1, . . . ,n}, let aR
k (resp. bR

k ) be the number of non-zero entries in the k-th row of A
(resp. B) and aC

k (resp. bC
k ) be the number of non-zero entries in the k-th column of A (resp. B). We define

the following six sets of indexes, and compute them classically in time O(n2).

S =
{

k ∈ {1, . . . ,n} |bR
k ≥ m2/`2

}
S′ =

{
k ∈ {1, . . . ,n} |bR

k < m2/`2
}

T =
{

k ∈ {1, . . . ,n} |aR
k ≥ m1/`1

}
T ′ =

{
k ∈ {1, . . . ,n} |aR

k < m1/`1
}

U =
{

k ∈ {1, . . . ,n} |bC
k ≥ m2/`3

}
U ′ =

{
k ∈ {1, . . . ,n} |bC

k < m2/`3
}

Given two sets R,C ⊆ {1, . . . ,n} and an n×n Boolean matrix M, the notation MC
R will represent the

n×n Boolean matrix such that MC
R [i, j] = 1 if and only if M[i, j] = 1 and (i, j) ∈ R×C. For convenience,

MR will represent the matrix MC
R for C = {1, . . . ,n}, and MC the matrix MC

R for R = {1, . . . ,n}.
It is easy to check that

A ·B = AS
T ·BU

S +AS′ ·BS′+AT ′ ·B+A ·BU ′ ,

where + represents the entry-wise OR operation. We will individually compute the four terms of this
sum.
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The computation of AS
T ·BU

S consists in the computation of a |T |×|S|matrix by a |S|×|U |matrix. We
implement this part using the algorithm whose existence is assumed in the statement of the theorem. Note
that, from the sparsity of B, we have m2 ≥ ∑

n
k=1 bR

k ≥ ∑k∈S bR
k ≥ |S|m2/`2, and thus |S| ≤ `2. Similarly

we have |T | ≤ `1 and |U | ≤ `3. Additionally, we know that S, T and U have size at most n. Thus this part
can be implemented in M(`′1, `

′
2, `
′
3,λ ) time.

In order to compute AS′ ·BS′ we do the following. Let m′1 denote the number of non-zero entries of
AS′ . First, we list all these non-zero entries, classically in time O(n2), and record them into two arrays M1

and M2 of size m′1: for each p ∈ {1, . . . ,m′1} the value M1[p] records the row index of the p-th element
of the list, while M2[p] records its column index. Then, for each k ∈ S′, we compute the set of indexes
j ∈ {1, . . . ,n} such that B[k, j] = 1 and record them into an array Nk. Note that Nk has length bR

k , and that
bR

k < m2/`2 from the definition of S′. The computation of all the Nk’s can be done classically in O(n2)

time. Finally, take N = ∑
m′1
c=1 bR

M2[c]
and define the function g : {1, . . . ,N} → {1, . . . ,n}×{1, . . . ,n} as

follows: for any p ∈ {1, . . . ,m′1} and any q ∈ {1, . . . ,bR
M2[p]
},

g

(
q+

p−1

∑
c=1

bR
M2[c]

)
= (M1[p],NM2[p][q]),

where NM2[p][q] denotes the q-th element of the array NM2[p]. It is easy to check that

g({1, . . . ,N}) =
{
(i, j) ∈ {1, . . . ,n}×{1, . . . ,n} | there exists k ∈ S′ such that

A[i,k] = B[k, j] = 1
}
,

i.e., g({1, . . . ,N}) is precisely the set of non-zero entries of AS′ ·BS′ that we want to find. A crucial
point here is that the function g can be evaluated in poly(logn) time using the data structures M1, M2

and Nk. For any subset Σ of {1, . . . ,n}×{1, . . . ,n}, let fΣ : {1, . . . ,N} → {0,1} be the function such
that fΣ(x) = 1 if and only if g(x) /∈ Σ. The quantum procedure starts with Σ being empty, performs
successive quantum searches over {1, . . . ,N}, each time searching for an element x such that fΣ(x) = 1
and adding g(x) to Σ as soon as such an x is found, and stops when no new element x is found. From
the discussion of Section 2, with high probability all searches succeed, in which case at the end of
the procedure Σ = g({1, . . . ,N}). Let λ ′ denote the number of non-zero entries in AS′ ·BS′ and observe
that λ ′ ≤ min(λ ,m1m2/`2), since N < m′1m2/`2 ≤ m1m2/`2. The overall complexity of this quantum
procedure is

Õ
(

n2 +
√

N× (λ ′+1)
)
= Õ

n2 +

√
m1m2 ·min(λ ,m1m2/`2)

`2

 .

The computation of AT ′ ·B is done as follows. For each k ∈ {1, . . . ,n}, let a′k denote the number
of non-zero entries in the k-th column of AT ′ . We first perform a O(n2)-time classical preprocessing
step: for each k ∈ {1, . . . ,n}, we construct the set Ek of the row indexes of all non-zero entries in the
k-th column of AT ′ , and construct the set Fk of the column indexes of all non-zero entries in the k-th
row of B. Note that |Ek| = a′k and |Fk| = bR

k . The quantum procedure computing AT ′ ·B uses a set
Σ ⊆ {1, . . . ,n}×{1, . . . ,n}, initially empty. For each k ∈ {1, . . . ,n}, all the (i, j) ∈ Ek×Fk such that
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AT ′ [i,k] = B[k, j] = 1 and (i, j) /∈ Σ are computed by performing a quantum enumeration, as above, over
the set Ek×Fk, adding (i, j) to Σ as soon as such a (i, j) is found, and stopping when no new element

(i, j) is found. The overall time complexity is Õ
(

n2 +∑
n
k=1

√
a′kbR

k (λk +1)
)
, where λk is the number

of elements found when processing k. Note that the inequality ∑k a′kbR
k < λ min(m1/`1,n) holds, since

∑k a′kbR
k also represents the total number of witnesses of AT ′ ·B, i.e., the number of triples (i, j,k) such

that AT ′ [i,k] = B[k, j] = 1 (observe that there are at most λ pairs (i, j) satisfying this condition, all such
that i ∈ T ′). Since ∑k λk ≤ λ ≤ n2, this complexity is upper bounded by

Õ

(
n2 +

√
λ +n×

√
n

∑
k=1

a′kbR
k

)
= Õ

(
n2 +

√
λ +n×

√
λ min

(
m1

`1
,n
))

= Õ
(

n2 +λ ×
√

m1

`1

)
.

Computing A · BU ′ is done similarly to the computation of the product AT ′ · B with complexity
Õ
(

n2 +λ
√

m2/`3

)
.

We now compare the results of Theorem 5.1 to previous works. For the case m1 = m2 ≈ n2, the
bounds obtained in Theorem 5.1 are not better than the best known output-sensitive algorithms for
Boolean matrix multiplication [11, 14, 16]. Interestingly, we nevertheless recover the same complexity
O(λ
√

n) as in [14] for the region n3/2 ≤ λ ≤ n2, but using different methods (this is done by taking
`1 = m1/(n+1), which gives T ′ = {1, . . . ,n} and reduces the computation of A ·B to the computation of
only AT ′ ·B). Consider now sparse input matrices and, for concreteness, focus on the case m1 = m2 (we
denote this value simply by m). The complexity of the algorithm by Amossen and Pagh [1], while not
stated in this form, can be written as

Õ
(
M(`′1, `

′
2, `
′
1,λ )+m2/`2 +λm/`1 +n2)

using the notations of Theorem 5.1. In comparison, Theorem 5.1 gives (by choosing `1 = `3) the upper
bound

Õ
(

M(`′1, `
′
2, `
′
1,λ )+min(m

√
λ/`2,m2/`2)+λ

√
m/`1 +n2

)
.

We see that the second and third terms in our complexity are never worse. In order to evaluate quantita-
tively the speedup obtained in the quantum setting, let us consider the case when only the input matrices
are sparse (i.e., λ ≈ n2). In this case, the algorithm by Amossen and Pagh has the same complexity as the
algorithm by Yuster and Zwick [26] described in the introduction. In comparison, Theorem 5.1 gives
the following result, which shows that our quantum algorithm is better than their classical algorithm, as
discussed in the introduction.

Theorem 5.2 (complete version of Theorem 1.2). Let A and B be two n×n Boolean matrices with at most
m1 and m2 non-zero entries in A and B, respectively. There exists a quantum algorithm that computes,
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with high probability, the Boolean matrix product A ·B and has time complexity
Õ(n×min(m1,m2)) if 1≤√m1m2 ≤ n,
Õ(n2) if n≤√m1m2 ≤ n1+α/2,

Õ
(
(m1m2)

β

1+2β n
2+2β−αβ

1+2β

)
if n1+α/2 ≤√m1m2 ≤ nω−1/2,

Õ(nω) if nω−1/2 ≤√m1m2 ≤ n2.

Proof. First consider the case
√

m1m2 ≤ n. Assume for now that m1 ≤m2. We use the following strategy:
we first use quantum enumeration to find all the non-zero entries of A and, then, for each such entry A[i,k],
we output all the j’s such that B[k, j] = 1. The complexity of this strategy is Õ(

√
(m1 +1)n2 +m1n) =

Õ(m1n). The same argument gives the upper bound Õ(m2n) when m2 ≤ m1.
If n≤√m1m2 ≤ n1+α/2, then we use the quantum algorithm of Theorem 5.1 with parameters `1 = m1,

`2 = m1m2/n2, `3 = m2, and applying the algorithm for rectangular matrix multiplication over a field
described in Section 2 for the part M(`′1, `

′
2, `
′
3,n

2). This gives overall complexity Õ(n2) time.
If n1+α/2 ≤√m1m2 ≤ nω−1/2, then we use the quantum algorithm of Theorem 5.1 with parameters

`1 = m1, `3 = m2 and

`2 = (m1m2)
1

1+2β n
2(αβ−1)

1+2β ,

giving overall complexity

Õ
(
(m1m2)

β

1+2β n
2+2β−αβ

1+2β

)
.

Finally, if
√

m1m2 ≥ nω−1/2, then we simply use the best existing classical algorithm for dense matrix
multiplication.

6 Proofs of Lemma 3.3 and Proposition 3.4

In this section we give the proofs of Lemma 3.3 and Proposition 3.4.

6.1 Proof of Lemma 3.3

We will use the notation col(M,k) to denote the number of finite entries in the k-th row of M, for any
n1×n2 matrix M with entries in Z∪{±∞} and any k ∈ {1, . . . ,n2}.

Our algorithm proceeds in several steps.

Preprocessing: column balancing
For each r ∈ {1, . . . , t}, we do the following. Consider the u matrices A(1)

r , . . . ,A(u)
r . Each matrix has

size n×n and we know that the total number of finite entries in these u matrices is at most dm1/te:

u

∑
x=1

n

∑
k=1

col(A(x)
r ,k)≤ dm1/te . (6.1)
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We will construct u matrices Ã(1)
r , . . . , Ã(u)

r , each of size n×2n. Each Ã(x)
r will contain all the finite entries

in A(x)
r , but these u matrices will satisfy the following sparsity condition on each column:

u

∑
x=1

col(Ã(x)
r ,k′)≤ dm1/(nt)e for all k′ ∈ {1, . . . ,2n}. (6.2)

These matrices are related to the concept of column balancing developed in [6].
Let us describe how to construct these matrices Ã(1)

r , . . . , Ã(u)
r . For each index k ∈ {1, . . . ,n}, we first

collect together all the finite entries in the k-th column of A(1)
r , . . . ,A(u)

r and sort them in increasing order.
This gives, for each k, a sorted list of at most nu numbers, with possible repetitions. We then divide this
list into successive parts T 1

r,k,T
2

r,k, . . . ,T
ar,k

r,k , for some ar,k ≥ 1, such that{
|T q

r,k|= dm1/(nt)e for q ∈ {1, . . . ,ar,k−1},
|T q

r,k| ≤ dm1/(nt)e for q = ar,k.

Define pr = ∑
n
k=1 ar,k and notice that pr ≤ 2n: there are at most n parts of size exactly dm1/(nt)e due to

Equation (6.1), and at most n parts of size strictly less than dm1/(nt)e (these parts are among the n parts
with q = ar,k). To each pair (k,q) with k ∈ {1, . . . ,n} and q ∈ {1, . . . ,ar,k}, we assign an arbitrary index in
{1, . . . , pr}, denoted ρr(k,q), in a bijective way. Finally, for each x ∈ {1, . . . ,u}, we construct the n×2n
matrix Ã(x)

r as follows: for all i ∈ {1, . . . ,n} and all k′ ∈ {1, . . . ,2n},

Ã(x)
r [i,k′] =

{
A(x)

r [i,k] if k′ ∈ {1, . . . , pr} and A(x)
r [i,k] ∈ T q

r,k, where (k,q) = ρ−1
r (k′),

∞ otherwise.

This means that each finite entry of A(x)
r appears in Ã(x)

r , in the same row but generally in a different
column. By construction, Equation (6.2) holds. The overall cost of this (classical) preprocessing step is
Õ(n2tu) time.

Preprocessing: recording relevant information about the input matrices
Since the complexity of the quantum procedure described in the last part of the proof will depend

crucially on the way information about matrices Ã(x)
r and B(y)

r is stored, we introduce adequate data
structures to record this information.

For each x ∈ {1, . . . ,u}, we do the following. For all r ∈ {1, . . . , t} we list the finite entries in each
column of Ã(x)

r , classically in time Õ(n2t), and create a 3-dimensional array U(x) such that U(x)[r,k′,b]
records the index of the row of the b-th finite entry in the k′-th column of Ã(x)

r , for each r ∈ {1, . . . , t},
each k′ ∈ {1, . . . ,2n}, and each b ∈ {1, . . . ,col(Ã(x)

r ,k′)}.
For each y∈ {1, . . . ,v}, we do the following. We construct, classically in time O(n2t), a list containing

all the finite entries of B(y)
1 , . . . ,B(y)

t . Let us denote the total number of these finite entries by m(y),
and remember that we have ∑

v
y=1 m(y) ≤ m2. We then create an array V(y) of size m(y): for each

a ∈ {1, . . . ,m(y)}, if the a-th element of the list is B(y)
r [k, j], then V(y)[a] is set to the 3-tuple (r,k, j).

The overall cost of this (classical) preprocessing step is Õ(n2t(u+ v)) time.

Construction of the matrices Â(x)
r and B̂(y)

r
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For each r ∈ {1, . . . , t} and each x ∈ {1, . . . ,u}, we construct an n×2n Boolean matrix Â(x)
r as follows:

for all i ∈ {1, . . . ,n} and all k′ ∈ {1, . . . ,2n},

Â(x)
r [i,k′] = 1 iff Ã(x)

r [i,k′] 6= ∞.

For each r ∈ {1, . . . , t} and each y ∈ {1, . . . ,v}, we construct a 2n×n Boolean matrix B̂(y)
r as follows: for

all k′ ∈ {1, . . . ,2n} and all j ∈ {1, . . . ,n},

B̂(y)
r [k′, j] = 1 iff k′ ∈ {1, . . . , pr} and B(y)

r [k, j]≥maxT q
r,k, where (k,q) = ρ

−1
r (k′).

These are the matrices mentioned in the statement of the lemma. The overall cost of this (classical)
construction step is Õ(n2t(u+ v)) time.

Relation with the matrix C2
For each r ∈ {1, . . . , t}, each x ∈ {1, . . . ,u} and each y ∈ {1, . . . ,v}, consider the Boolean product

Â(x)
r · B̂(y)

r . This product gives us some of the non-zero entries of A(x)
r ∗B(y)

r , but not all. Indeed, by
definition, Â(x)

r [i,k′] = 1 if and only if A(x)
r [i,k]∈ T q

r,k, where (k,q) = ρ−1
r (k′). The indexes of the non-zero

entries of Â(x)
r · B̂(y)

r are thus precisely all the (i, j) ∈ {1, . . . ,n}×{1, . . . ,n} for which there exists some
k ∈ {1, . . . ,n} satisfying

A(x)
r [i,k] ∈ T q

r,k for some q ∈ {1, . . . ,ar,k} and B(y)
r [k, j]≥maxT q

r,k.

Let us now consider the remaining non-zero entries of A(x)
r ∗B(y)

r : the (i, j) ∈ {1, . . . ,n}×{1, . . . ,n}
for which there exists some k ∈ {1, . . . ,n} satisfying

A(x)
r [i,k] ∈ T q

r,k for some q ∈ {1, . . . ,ar,k} and A(x)
r [i,k]≤ B(y)

r [k, j]< maxT q
r,k. (6.3)

Define the n×n matrix D with entries in S∪{(0,0)} as follows. For any (i, j) ∈ {1, . . . ,n}×{1, . . . ,n},
the entry D[i, j] is the largest element (x,y) ∈ S such that Equation (6.3) holds for some r ∈ {1, . . . , t} and
some k ∈ {1, . . . ,n}, if at least one such (x,y) exists, and D[i, j] = (0,0) otherwise.

We then have

C2[i, j] = max

{
{D[i, j]}∪{(x,y) ∈ S |

t

∑
r=1

Â(x)
r · B̂(y)

r [i, j] = 1}

}
,

for all (i, j) ∈ {1, . . . ,n}×{1, . . . ,n}, as claimed in the statement of the lemma.

Construction of the matrix D
We finally show how to compute the matrix D. The idea is to find, for all (x,y) ∈ S in decreasing

order, all the pairs of indexes (i, j) ∈ {1, . . . ,n}×{1, . . . ,n} such that Equation (6.3) holds for some
r ∈ {1, . . . , t} and some k ∈ {1, . . . ,n}, and strike out those pairs as soon as they are found.

The procedure for computing D is described in Figure 2. The set R, initially empty, records all pairs
(i, j) for which D[i, j] has already been computed. During the loop of Steps 8-13 the procedure enumerates
all the (i, j)∈ ({1, . . . ,n}×{1, . . . ,n})\R such that Equation (6.3) holds for some r ∈ {1, . . . , t} and some
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1 R← /0;
2 for all (i, j) ∈ {1, . . . ,n}×{1, . . . ,n} do D[i, j]← (0,0); enddo
3 for all y ∈ {1, . . . ,v}, all r ∈ {1, . . . t} and all ( j,k) ∈ {1, . . . ,n}×{1, . . . ,n} do
4 compute the smallest q ∈ {1, . . . ,ar,k} satisfying B(y)

r [k, j]< maxT q
r,k and denote it by q(y)rk j;

5 enddo
6 for all (x,y) ∈ S in decreasing order do
7 test-full← false;
8 while test-full = false do
9 find (r, i, j,k)∈{1, . . . , t}×{1, . . . ,n}3 such that (i, j) 6∈ R and Ã(x)

r [i,ρr(k,q
(y)
rk j)]≤ B(y)

r [k, j];
# comment: the search of Step 9 is actually done over Γ(x,y) ⊂ {1, . . . , t}×{1, . . . ,n}3

10 if a solution (r, i, j,k) is found
11 then D[i, j]← (x,y); R← R∪{(i, j)};
12 else test-full← true;
13 enddo
14 enddo

Figure 2: Procedure computing the matrix D.

k ∈ {1, . . . ,n}. Note that only the non-(−∞) entries of B(y)
r need to be considered and, from Equation

(6.3), for each such non-(−∞) entry B(y)
r [k, j] only the non-(∞) entries A(x)

r [i,k] of A(x)
r such that

A(x)
r [i,k] ∈ T

q(y)rk j
r,k

need to be considered, where q(y)rk j is the smallest integer in {1, . . . ,ar,k} such that

B(y)
r [k, j]< maxT

q(y)rk j
r,k .

By construction, these non-(∞) entries of A(x)
r are in the ρr(k,q

(y)
rk j)-th column of Ã(x)

r . The loop of Steps
8-13 thus performs successive quantum searches over the set

Γ
(x,y) =

{
(r, i, j,k) ∈ {1, . . . , t}×{1, . . . ,n}3 ∣∣B(y)

r [k, j] 6=−∞ and

Ã(x)
r [i,ρr(k,q

(y)
rk j)] 6= ∞

}
,

looking for elements (r, i, j,k) ∈ Γ(x,y) such that

(i, j) /∈ R and Ã(x)
r [i,ρr(k,q

(y)
rk j)]≤ B(y)

r [k, j].

The procedure of Figure 2 correctly computes the matrix D whenever the quantum enumeration
does not err, that is, with probability at least 1−1/poly(n) if safe Grover search is used, as discussed in
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Section 2. Let us consider its time complexity. The cost of Step 2 is Õ(n2), and the cost of the loop of
Steps 3-5 is Õ(n2tv) since each q(y)rk j can be found in poly(logn) time using binary search.

In order to evaluate the cost of the loop of Steps 8-13, we need to discuss in more details how to
perform the quantum search over the set Γ(x,y) since subtle issues arise when considering how to access
time-efficiently the relevant entries of the matrices and how to check if an element is a solution in poly(n)
time. Note that

|Γ(x,y)|=
t

∑
r=1

∑
j,k such that

B(y)
r [k, j]6=−∞

col(Ã(x)
r ,ρr(k,q

(y)
rk j)).

We define a bijection g from the set {1, . . . , |Γ(x,y)|} to the set Γ(x,y) as follows. Remember that the data
structures U(x) and V(y) are available, recording information about the Ã(x)

r ’s and the B(y)
r ’s, respectively.

For notational convenience for each a ∈ {1, . . . ,m(y)} with corresponding value V(y)[a] = (r,k, j), we
will write V1[a] = r, V2[a] = k, V3[a] = j and W[a] = ρr(k,q

(y)
rk j). Note that these four values can be

immediately obtained from V(y)[a]. We define the function g as follows: for all a ∈ {1, . . . ,m(y)} and all
b ∈ {1, . . . ,col(Ã(x)

V1[a]
,W[a])},

g

(
b+

a−1

∑
c=1

col(Ã(x)
V1[c]

,W[c])

)
= (V1[a],U(x)

[
V1[a],W[a],b

]
,V3[a],V2[a]).

It is easy to check that g is a bijection from {1, . . . , |Γ(x,y)|} to Γ(x,y). The crucial point here is that the
function g can be evaluated in poly(logn) time since U(x) and V(y) are available (in particular, given any
z ∈ {1, . . . , |Γ(x,y)|} one can find the values a and b such that z = b+∑

a−1
c=1 col(Ã(x)

V1[c]
,W[c]) efficiently,

using binary search for instance). We can then implement Step 9 by performing quantum searches over
the set {1, . . . , |Γ(x,y)|}. From the discussion in Section 2, the time complexity of the loop of Steps 8-13,
for fixed (x,y), is thus

Õ
(√
|Γ(x,y)|× (λ (x,y)+1)

)

= Õ


√√√√√√√
 t

∑
r=1

∑
j,k such that

B(y)
r [k, j]6=−∞

col(Ã(x)
r ,ρr(k,q

(y)
rk j))

× (λ (x,y)+1)

 ,

where λ (x,y) denotes the number of elements found during the execution of the loop (i.e., the number of
new entries of D computed).

The total cost of the procedure of Figure 2 is then

Õ

n2tv+
u

∑
x=1

v

∑
y=1

√√√√√√√
 t

∑
r=1

∑
j,k such that

B(y)
r [k, j]6=−∞

col(Ã(x)
r ,ρr(k,q

(y)
rk j))

× (λ (x,y)+1)

 .

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 21

http://dx.doi.org/10.4086/cjtcs
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Using Equation (6.2), the inequality ∑
u
x=1 ∑

v
y=1 λ (x,y) ≤ n2, and the Cauchy-Schwarz inequality, we can

rewrite this expression as

Õ

n2tv+
v

∑
y=1

√√√√√√√
 t

∑
r=1

∑
j,k such that

B(y)
r [k, j]6=−∞

m1

nt

× (u+
u

∑
x=1

λ (x,y))


= Õ

(
n2tv+

√
m1m2

nt
× (uv+

u

∑
x=1

v

∑
y=1

λ (x,y))

)

= Õ
(

n2tv+
√

m1m2n
t

+

√
m1m2uv

tn

)
.

This concludes the description of how to construct the matrix D.
Since the preprocessing has cost Õ(n2t(u+ v)), the overall complexity of the algorithm is

Õ
(

n2t(u+ v)+
√

m1m2n
t

+

√
m1m2uv

tn

)
.

This concludes the proof of Lemma 3.3.

6.2 Proof of Proposition 3.4

The algorithm is essentially the same as in the proof of Proposition 3.2. The only change is that a classical
algorithm, which we describe below, is used instead of the quantum algorithm in Lemma 3.3. In the proof
of Lemma 3.3 we use classical enumeration (i.e., exhaustive search) instead of quantum enumeration in
the procedure of Figure 2. The complexity of the loop of Steps 8-13 of the procedure of Figure 2 is thus
|Γ(x,y)|, and the total complexity of the procedure becomes

Õ

n2tv+
u

∑
x=1

v

∑
y=1

t

∑
r=1

∑
j,k such that

B(y)
r [k, j]6=−∞

col(Ã(x)
r ,ρr(k,q

(y)
rk j))

= Õ
(

n2tv+
m1m2

tn

)
.

The overall complexity of the classical version of Lemma 3.3 is thus

Õ
(

n2t(u+ v)+n2tv+
m1m2

tn

)
= Õ

(
n2t(u+ v)+

m1m2

tn

)
,

which gives the upper bound claimed.
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