
CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19
http://cjtcs.cs.uchicago.edu/

Non-commutative computations: lower
bounds and polynomial identity testing*

Guillaume Lagarde Guillaume Malod Sylvain Perifel

Received January 16, 2017; Revised August 31, 2019; Published September 10, 2019

Abstract: In the setting of non-commutative arithmetic computations, we define a class of
circuits that generalize algebraic branching programs (ABP). This model is called unambigu-
ous because it captures the polynomials in which all monomials are computed in a similar
way (that is, all the parse trees are isomorphic).

We show that unambiguous circuits of polynomial size can compute polynomials that
require ABPs of exponential size, and that they are incomparable with skew circuits.

Generalizing a result of Nisan [23] on ABPs, we provide an exact characterization of the
complexity of any polynomial in our model, and use it to prove exponential lower bounds
for explicit polynomials such as the determinant.

Finally, we give a white-box deterministic polynomial-time algorithm for polynomial
identity testing (PIT) on unambiguous circuits over R and C.

1 Introduction

Arithmetic circuits as a model for complexity-theoretic questions has enjoyed an increase of interest
over the last ten years. This is due in particular to a general strategy, called geometric complexity theory,
to tackle the main open question of complexity, P versus NP, via algebraic means (see the survey [7]
or the website [16]). One of its intermediate goals is to prove that computing the permanent cannot be
efficiently reduced to computing the determinant. This question can naturally be seen as an analogue

*This work was supported by ANR CompA (ANR-13-BS02-0001-01)

Key words and phrases: arithmetic complexity, lower bounds, non-commutative computations, polyno-
mial identity testing

© 2019 Guillaume Lagarde, Guillaume Malod and Sylvain Perifel
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/cjtcs.2019.002

http://dx.doi.org/10.4086/cjtcs
http://cjtcs.cs.uchicago.edu/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/cjtcs.2019.002

GUILLAUME LAGARDE, GUILLAUME MALOD AND SYLVAIN PERIFEL

of P versus NP when using arithmetic circuits as model of computation, as introduced by Valiant in
founding articles [29, 30]. Interest in arithmetic circuits was also sparked by a string of applications of a
measure based on partial derivatives (see the surveys [28, 9]). Recent generalizations of this technique,
coupled with strong parallelization results for arithmetic circuits, have brought us closer to showing that
the permanent cannot be written as a small determinant (see the survey [26]).

One of the earlier articles using such a notion of partial derivatives is Nisan [23], which studies
computations in the non-commutative ring F〈X〉: variables do not commute so that xy and yx are distinct
monomials. Studying non-commutative computations is an important endeavour, as they arise naturally
(for instance when computing over matrices), but also because they can have applications for commutative
computations (see [10, 5], in particular the use of non-commutative determinants to approximate the
commutative permanent). Moreover, non-commutativity is one kind of restriction that can be imposed on
general arithmetic computations. Others, such as multilinearity, have yielded stronger lower bounds than
in the general case (see for example [24], again using partial derivatives). Nisan [23] again provides an
early example, proving exponential lower bounds for non-commutative arithmetic formulas and more
generally for non-commutative algebraic branching programs in 1991. However this did not lead to
superpolynomial lower bounds for general non-commutative circuits. Very little progress was made for a
long time, and there is still no known lower bound for general non-commutative arithmetic circuits that is
stronger than those that we already have for general commutative arithmetic circuits. Recently, Hrubeš,
Wigderson, and Yehudayoff [17] suggested a new line of attack on the general arithmetic circuit lower
bound question, linking it to the classical Sum-of-squares problem. Finally, Nisan’s result was extended
in [21] to a more powerful model, so-called skew circuits, arithmetic circuits where every multiplication
involves at most one argument which is not a variable or a constant. There, non-commutative skew
circuits were shown to be exponentially more powerful than non-commutative branching programs, but
exponentially less powerful than general non-commutative circuits.

Here, we again extend Nisan’s result but in a different direction. Given a (non-commutative) circuit,
we can look at the set of monomials it produces (before any grouping/cancellations). If we pretend that
the computation is also non-associative, the monomial comes with parentheses to indicate the “way” in
which it was computed. The pattern of parentheses for a given monomial (the structure of the monomial
in a sense) can also be seen as a tree. We will focus on circuits where this structure or tree is the same for
all the monomials computed by the circuit, and we will call these circuits unambiguous. If one computes
an algebraic branching program as a circuit, then monomials are all obtained by successive multiplication
on the right, and they all have the same structure. Our model is thus more general than the one considered
by Nisan. Perhaps the most striking aspect of Nisan’s paper, more than its elegance, is that it goes much
farther than the usual results in complexity, which try to get, for a specific polynomial, either a lower
bound or an upper bound, with big O notation, hopefully asymptotically matching. In contrast, Nisan
gives an exact expression for the complexity of any polynomial. More precisely, the minimal size of a
branching program computing a polynomial f is expressed via the ranks of a family of matrices defined
by f , for all branching programs in a certain “canonical” form. We prove a generalization of his theorem,
characterizing the minimal size of a “canonical” unambiguous circuit computing any polynomial f , also
in terms of ranks of matrices. This exact characterization also yields exponential lower bounds, making
unambiguous circuits another “strongest” model of non-commutative computation for which we have
superpolynomial lower bounds (it is incomparable with the models of [21], see Section 5).

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 2

http://dx.doi.org/10.4086/cjtcs

NON-COMMUTATIVE COMPUTATIONS: LOWER BOUNDS AND POLYNOMIAL IDENTITY TESTING

Finally we consider the problem of Polynomial Identity Testing (PIT) for our model. In a general
setting, PIT asks whether a given circuit computes the zero polynomial. The Schwartz-Zippel Lemma [11,
31, 27] yields a simple and efficient randomized algorithm: evaluate the circuit at a random point and
answer “non-zero” iff the result was non-zero. Finding a deterministic algorithm (“derandomizing PIT”)
would imply circuit lower bounds [18], making the search for such an algorithm an important open
problem.

In the non-commutative setting there is also a polynomial-time randomized algorithm [6] (for
polynomial-degree circuits only). But here derandomization has some significant results. A first efficient
white-box1 deterministic algorithm for non-commutative ABPs was given by Raz & Shpilka [25]. Here we
use ideas from a simpler construction given by Arvind et al. [1, 2] to get a polynomial-time deterministic
PIT algorithm for unambiguous circuits over R or C.

Since the publication of this article there have been several works extending its results. Lagarde et
al. [20] extended the lower bound to circuits with an exponential number of different associative structures
in its polynomials and the PIT result to a sum of a constant number of unambiguous circuits, with possibly
different associative structures. A connection with language theory, automata and formal series was then
noticed in [13]. Nisan’s result is a simple consequence of the characterization of recognizable formal
series on words by Fliess [15] (see also [8]). As explained in [14], an extension of [15] to formal series on
trees yields a Nisan-like result for nonassociative noncommutative circuits. Based on this, [14] recovers
and extends previous lower bounds in the associative setting, in particular for noncommutative circuits
with slightly less than all possible parse trees. In both characterization results, the minimal size is given
by the rank of the so-called Hankel matrix. The Hankel matrix and its links with automata and ABPs
were also used in [19] to prove learnability results for arithmetic circuits.

2 Non-commutative computations, parse trees and unambiguous circuits

We consider non-commutative computations (over a field F and a set X of variables): the variables
do not commute (that is we do not have xy = yx). Nevertheless addition is still commutative and the
rules for the constants do not change, according to the underlying field F. We can therefore think of
monomials as strings over the alphabet X . The ring of non-commutative polynomials over a field F and a
set X of variables is denoted by F〈X〉. We will use the following convenient notation for polynomials
of F〈x1, . . . ,xn〉: P(x1, . . . ,xn) = ∑x̄ ax̄x̄, where x̄ denotes a monomial and ax̄ ∈ F the corresponding
coefficient in P.

As a basic model of computation, we use arithmetic circuits (see the survey [28]): that is, directed
acyclic graphs in which vertices of indegree zero are called input gates; all the other vertices are labeled
with + or ×; and the unique vertex of outdegree zero is called the output gate. We add the following
important points:

• input gates are only labeled with variables x ∈ X , not constants;

• multiplication gates have fan-in two, their inputs are ordered and the multiplication is interpreted
according to this order (the left child is multiplied before the right child);

1A PIT algorithm is white-box if it can use the structure of the computation model; it is black-box if it only requires an
evaluation oracle.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 3

http://dx.doi.org/10.4086/cjtcs

GUILLAUME LAGARDE, GUILLAUME MALOD AND SYLVAIN PERIFEL

• addition gates have unbounded fan-in and perform a linear combination of their inputs, with the
associated coefficients αi ∈ F being given on the edges.

Let us emphasize that an addition gate can possibly have only one input, thus performing a scalar
multiplication. The polynomial computed by each gate is defined inductively in a natural way.

Nisan [23] studied non-commutative computations, mainly concentrating on algebraic branching
programs (ABP). An ABP is a directed acyclic graph A with two distinguished vertices s (source) and t
(target), such that every arc is labeled with a constant α ∈ F or a variable x ∈ X . The weight of a path in
A is the monomial equal to the product of the labels of the arcs in the path. The polynomial computed
by A is then the sum of the weights of all paths from s to t in A. This computation model is at least as
powerful as formulas (and indeed strictly stronger in the multilinear commutative setting, see [12]), and
at most as powerful as general circuits.

Actually, simulating an ABP by an arithmetic circuit yields a skew circuit, i.e., a circuit where, for
every multiplication gate, at least one of its arguments is an input gate. Indeed, if we build the circuit
inductively, to obtain a gate computing the same polynomial as a vertex in the ABP we just need to
multiply previously obtained polynomials on the right and by variables or constants. So the resulting
circuit is not only skew, but every “right” argument of a multiplication gate is an input gate: let us call
such a circuit right-skew. We will now describe more precisely the way monomials are obtained using the
notion of parse trees from [22].

Definition 2.1. The set of parse trees of a circuit C is defined by induction on its size:

• if C is of size 1 it has only one parse tree: itself;

• if the output gate of C is a +-gate whose arguments are the gates α and β , the parse trees of C are
obtained by taking either a parse tree of the subcircuit rooted at α and the arc from α to the output
or a parse tree of the subcircuit rooted at β and the arc from β to the output;

• if the output gate of C is a ×-gate whose arguments are the gates α and β , the parse trees of C are
obtained by taking a parse tree of the subcircuit rooted at α , a parse tree of a disjoint copy of the
subcircuit rooted at β , and the arcs from α and β to the output.

A parse tree T computes a polynomial val(T) in a natural way: this is the monomial equal to the product of
the variables labeling the leaves of T (from left to right), multiplied by the coefficient equal to the product
of the constants labeling the edges pointing to a +-gate. So parse trees are in one-to-one correspondence
with the monomials computed by the circuit (before regrouping), and summing the values of the parse
trees thus yields the computed polynomial.

It is easy to see that the parse trees of a right-skew circuit are all in the shape of a comb. In other
words, any monomial, say xi1 · · ·xid , is computed in the following way: ((((xi1xi2)xi3) · · ·xid). This “comb”
shape is exactly like the paths of an ABP, and the two models are basically identical.

These ideas were used in [21] to obtain lower bounds for skew circuits, not just right-skew (or
left-skew by symmetry). Part of the intuition explaining the weakness of such circuits is that, although
parse trees do not have the shape of a comb any longer, they are still like paths: they are trees but at
each branching one of the branches stops immediately. Although one cannot use the same ideas as in

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 4

http://dx.doi.org/10.4086/cjtcs

NON-COMMUTATIVE COMPUTATIONS: LOWER BOUNDS AND POLYNOMIAL IDENTITY TESTING

Nisan’s case directly, this “path” structure of parse trees means that the degree of the monomial is built
up incrementally, so that we can pinpoint exactly the gate where a specific degree is reached in all parse
trees.

Instead of focusing on this incremental nature of the parse trees of right-skew circuits, we can also
note that they all have the same “shape”. This is not true of general skew circuits, for instance if we have
just a sum of a right-skew circuit and a left-skew circuit. The circuits we will be interested in are those
where all parse trees have the same shape, not necessarily a comb or a path as in the case of skew circuits,
but a general tree (see Figures 1 and 2).

Definition 2.2 (Unambiguous circuits). Two parse trees T and T′ are isomorphic if there is a bijection f
from the vertices of T to the vertices of T′ such that:

1. leaves are sent to leaves, +-gates to +-gates, ×-gates to ×-gates;

2. there is an arc from u to v iff there is one from f (u) to f (v);

3. the order of arguments for ×-gates is preserved: if u is the left argument and v the right argument
of a ×-gate w, then f (u) is the left argument and f (v) the right argument of f (w).

A circuit is called unambiguous if all its parse trees are isomorphic. The isomorphism class is called the
shape of the circuit.

Note that because there are no constants on the leaves, an unambiguous circuit computes a homoge-
neous polynomial at each gate. In particular, the output is a homogeneous polynomial.

+

× × ×

z w + +

× ×

a b c

−3 1 1
2

2 1 −1

(a) An unambiguous circuit C.

+

×

+

×

(b) The shape of the circuit C.

Figure 1: An unambiguous circuit and its shape. Note: the output gate is drawn at the bottom.

Let us emphasize that the class of polynomials computable by unambiguous circuits of polynomial
size is quite large and natural: it contains all the ABPs as already explained (cf. Figure 2), as well as
for instance the palindrome polynomial (cf. Section 5) used in [23, 21]. It is rich enough to contain, for
all k, the polynomial fk (defined in [21]) which requires exponential-size circuits of skew-depth k, thus
creating a hierarchy of increasing power inside general non-commutative circuits. A final example: the
Θ(n2n) computation of the permanent, tersely explained by Nisan in [23], is also unambiguous and is
asymptotically as fast as Ryser’s formula (but has the advantage of being monotone and non-commutative).

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 5

http://dx.doi.org/10.4086/cjtcs

GUILLAUME LAGARDE, GUILLAUME MALOD AND SYLVAIN PERIFEL

+

×

+

×

×

+

Figure 2: Shape of an ABP turned into an unambiguous circuit.

Let us now focus on our first goal: generalizing Nisan’s result and giving a characterization of the
size of unambiguous circuits necessary to compute a given polynomial. To get his results, Nisan focused
on ABPs with a specific structure (homogeneous, layered, with linear forms on the edges).

In our case also, we will need such a canonical form for unambiguous circuits.

Definition 2.3 (Canonical form for unambiguous circuits). A circuit C is canonical if:

1. C is unambiguous.

2. C is layered, starting with input gates, then +-gates, then ×-gates, alternating until a final +-gate.
+-gates at a given layer can only use ×-gates from the previous layer as arguments, while ×-gates
at a given layer must use +-gates as arguments, at least one of which is from the previous layer.

3. Each +-gate has a unique position in the shape. That is, each +-gate appears at most once in any
parse tree and, for any two parse trees T and T′ containing an addition gate u, the isomorphism
from T to T′ maps u to u (see Figure 3).

+

× ×

+ + +

a b c

1 1

1 1 1

(a) An unambiguous circuit C not in
canonical form.

+

×

+ +

a b

1

1 1

(b) A parse tree of C with the
red gate on the right.

+

×

+ +

b c

1

1 1

(c) Another parse tree of C with
the red gate on the left.

Figure 3: An unambiguous circuit violating Condition 3 of the definition of canonical form.

Any unambiguous circuit can be rendered canonical at a small cost, as shown in the lemma below.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 6

http://dx.doi.org/10.4086/cjtcs

NON-COMMUTATIVE COMPUTATIONS: LOWER BOUNDS AND POLYNOMIAL IDENTITY TESTING

Lemma 2.4. Given an unambiguous circuit C of degree d and size s, it is possible to construct in
polynomial time a canonical unambiguous circuit C′ of size at most 2ds computing the same polynomial.

The proof of Lemma 2.4 relies on a careful inspection of the proof of [22, Lemma 2]. A circuit is
called multiplicatively disjoint if each ×-gate has disjoint subcircuits as inputs. The result [22, Lemma 2]
states that every circuit C of degree d can be turned efficiently into an equivalent multiplicatively disjoint
circuit of size (|C|+d)O(1).

The formal degree of a gate is the degree of the polynomial computed by this gate if no cancellation
would occur, that is:

• the formal degree of an input gate (labeled with a variable) is 1;

• the formal degree of a +-gate g = ∑αigi is the maximum of the formal degrees of the gates gi;

• the formal degree of a ×-gate g = g1g2 is the sum of the formal degrees of the gates g1 and g2.

Proof of Lemma 2.4. Condition (2) is easy to obtain. If the output of a ×-gate is the input of another
×-gate, just add a useless +-gate between the two. If the output of an addition gate g1 is the input of
some +-gates g2, . . . ,gk, delete g1 and add to the inputs of g2, . . . ,gk the previous inputs of g1 with the
associated linear coefficients. Thus, condition (2) is obtained at the cost of a blow-up of factor at most 2.

Condition (3) is obtained by applying the algorithm to transform a general circuit into a multi-
plicatively disjoint circuit from [22, Lemma 2]. The resulting circuit has size ≤ 2ds. For the sake of
completeness, we recall the construction here (modified a little bit for the needs of non-commutativity).

For each gate α ∈ C of formal degree e, the new circuit C′ contains distinct gates α1,α2, . . . ,αd+1−e.
αk is called a clone of index k of α . In C, if α is a ×-gate of formal degree e with left input β of formal
degree e1 and right input γ of formal degree e2, then in C′, αk has left input βk and right input γk+e1 . In C,
if α is a +-gate of formal degree e with inputs β 1,β 2, . . . ,β j with coefficients c1,c2, . . . ,c j, then, in C′,
αk has inputs β 1

k ,β
2
k , . . . ,β

j
k with coefficients c1, . . . ,c j.

The fact that C′ is multiplicatively disjoint is immediate with the following “index property”: in C′,
the gates in the subcircuit rooted at αk of formal degree e are clones whose indices lie between k and
k+ e−1. We can easily prove this property by induction. Suppose αk is a multiplication gate (the other
case being simpler) of degree e with left input βk of degree e1 and right input γk+e1 of degree e−e1. Then,
by induction hypothesis, the gates in the subcircuit rooted at βk are clones whose indices lie between k
and k+ e1−1 and gates in the subcircuit rooted at γk+e1 are gates whose indices lie between k+ e1 and
k+ e1 +(e− e1)−1 = k+ e−1. This concludes this case and the proof.

We prove by contradiction that C′ respects condition (3). Let α j be an addition gate in C′ and T and
T′ two parse trees which contain α j but at two different positions. Let l1, l2, . . . , la (resp. g1,g2, . . . ,gb) be
the unique path in T (resp. T′) from the output gate to αk (thus la = gb = αk). Because αk does not share
the same position in the two parse trees, it means that there is a minimal c such that lc and gc are +-gates
with different positions. It means that lc−1 and gc−1 are two ×-gates (because the circuit is constituted of
alternating layers) and that lc and gc are inputs of lc−1 and gc−1, one as left input, one as right input (let
us say in that order). As the circuit is unambiguous, lc and gc must be of same degree e. gc−1 and lc−1 are
clones of same index because the path from the output gate to these gates are identical. Let us say they
are of index k. Thus lc is a clone of index k and gc is a clone of index k+ e (because of the construction

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 7

http://dx.doi.org/10.4086/cjtcs

GUILLAUME LAGARDE, GUILLAUME MALOD AND SYLVAIN PERIFEL

and the fact that one is a left input, the other a right input of the multiplication gate). Thanks to the index
property, this means that the subcircuits defined by lc and gc are clones whose index lies between k and
k+ e−1 for lc and between k+ e and k+2e−1 for gc. These two sub-circuits are thus disjoint, but this
in contradiction with the fact that α j belongs to both of them.

3 Decomposition lemma for canonical unambiguous circuits

Nisan observed that if P has an ABP of small size, then, for all i, P can be decomposed as a small sum of
polynomials of the form g ·h where g and h are homogeneous polynomials of respective degrees i and
(d− i).

This is a common step in lower bound proofs: writing any computation in the model under considera-
tion as a small sum of “building blocks” for which some complexity measure is very low. Here we extend
Nisan’s decomposition to canonical unambiguous circuits.

Because the position of each +-gate in the shape is unique, we can associate to each +-gate α a
unique type (i, p) ∈ N2 which encodes the position of the addition gate in the shape. For that we need
to define the degree of a gate γ in a shape: this is merely the number of leaves in the subtree rooted at
γ (thus, in any parse tree, a gate which corresponds to γ in the shape computes, if it does not vanish, a
monomial of this precise degree).

Definition 3.1 (Type of a gate). Let α be an addition gate: it corresponds to an addition gate γ in the
shape. Let i be the degree of γ . If L is the unique path (in the shape) from γ to the output gate, we denote
by β1, . . . ,βk the gates (in the shape) which appear as left input of a ×-gate of L. Let p be the sum of the
degrees of the βi. Then, the type of α is (i, p).

Intuitively, i is the degree computed by α and p is the degree of the monomials which are concatenated
on the left in computations involving α (see Figure 5). In order to state our decomposition result we need
a definition from [21] which we restate here.

Definition 3.2 (j-products, see Figure 4). Given homogeneous polynomials g,h ∈ F〈X〉 of degrees dg

and dh respectively and an integer j ∈ [0,dh], we define the j-product of g and h — denoted g× j h — as
follows:

• When g and h are monomials, then we can factor h uniquely as a product of two monomials h1h2
such that deg(h1) = j and deg(h2) = dh− j. In this case, we define g× j h to be h1 ·g ·h2.

h1 g h2

j dg dh− j

Figure 4: j-product of two monomials g and h.

• The map is extended bilinearly to general homogeneous polynomials g,h. Formally, let g,h be
general homogeneous polynomials, where g = ∑` g`, h = ∑i hi and g`,hi are monomials of g,h
respectively. For j ∈ [0,dh], each hi can be factored uniquely into h1

i ,h
2
i such that deg(h1

i) = j and
deg(h2

i) = dh− j. And g× j h is defined to be ∑i ∑` h1
i g`h2

i .

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 8

http://dx.doi.org/10.4086/cjtcs

NON-COMMUTATIVE COMPUTATIONS: LOWER BOUNDS AND POLYNOMIAL IDENTITY TESTING

Proposition 3.3 (Decomposition for canonical unambiguous circuits). If a polynomial P of degree d is
computed by a canonical unambiguous circuit and if (i, p) is an existing type2 of addition gate, then P
can be written as P = ∑

ki,p
j=1 f j×p h j, where:

1. ki,p is the number of addition gates of type (i, p) and f1, . . . , fki,p are the polynomials computed by
these gates;

2. ∀ j,deg(f j) = i and deg(h j) = d− i.

deg. i

+
α

×

×

+

+

β1

+

βk

deg. p
+

+

(a) A shape and a gate α of type (i, p).

p i

f

d− p− i

(b) Repartition of the variables in the monomial
corresponding to the shape.

Figure 5: Type of a gate in a shape.

Proof. (See Figure 5 for an illustration.) Let C be a canonical unambiguous circuit computing the
polynomial P. We have: P = ∑T∈S val(T), where S is the set of all parse trees of C. Let α1, . . . ,αki,p be
the gates of type (i, p) in C, computing respectively the polynomials f1, f2, . . . , fki,p . By definition of
the type, the f j are of degree i. For 1 ≤ j ≤ ki,p, let S j be the set of parse trees containing the gate α j.
Because a parse tree contains at most one addition gate of a given type, and because the type of a +-gate
is unique, we have S j ∩Sk = /0 for j 6= k. Moreover, if a given type exists, every parse tree contains an
addition gate of this type because the considered circuit is unambiguous. Thus the S j are a partition of S:
S = S1tS2t·· ·tSki,p , where t denotes the disjoint union. We can then rewrite the previous equality as

P = ∑T∈S val(T) = ∑
ki,p
j=1 ∑T∈S j val(T).

Fix j ∈ [1,ki,p]. Consider the circuit C j(y) obtained by changing α j into an input gate labeled with a
new variable y and deleting unused gates. Note that C j(f j) =C (abusing notations and using the name
of the circuit for the computed polynomial). Let Tj be the set of parse trees of C j containing the input
gate α j. The value of any parse tree T ∈ Tj is of the form y×p hT where hT is a monomial of degree

2That is, at least one addition gate is of this type.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 9

http://dx.doi.org/10.4086/cjtcs

GUILLAUME LAGARDE, GUILLAUME MALOD AND SYLVAIN PERIFEL

(d− i). Then, by bilinearity of the j-product, Vj(y) := ∑T∈Tj val(T) = y×p h j, where h j is a polynomial
of degree (d− i). Note that ∑T∈S j val(T) =Vj(f j) and therefore ∑T∈S j val(T) = f j×p h j.

4 Exact complexity for canonical unambiguous circuits

We will use the number of +-gates of a canonical unambiguous circuit as an estimate of its size. The
following lemma shows that this is a good measure of overall size.

Lemma 4.1. Let C be a canonical unambiguous circuit with s +-gates. Then we can transform C into a
new canonical unambiguous circuit, without changing the shape, with s +-gates and at most s2 ×-gates.

Proof. Denote by si the number of +-gates on the i-th layer of C. If C has strictly more than s2 ×-gates,
then one layer i contains strictly more than s2

i ×-gates. It means that two different ×-gates on the same
layer perform the same computation; therefore one of them can be deleted and its output replaced by the
output of the other one.

We will use this notion of size to get an exact expression of the complexity of computing a given
polynomial with a canonical unambiguous circuit. To do this, we create a complexity measure which is
an extension for canonical unambiguous circuits of the one given by Nisan [23] for algebraic branching
programs. For a given homogeneous polynomial P of degree d and each integer i≤ d, Nisan defined the
partial derivative matrix M(i)(P), which is a nd−i×ni matrix whose rows are indexed by monomials on
X of degree (d− i) and columns by monomials of degree i. The entry (m1,m2) of the matrix is defined
to be the coefficient of the monomial m1m2 in P. Intuitively speaking, the rank of the matrix M(i)(P)
is a measure of how “correlated” the prefix of length i of a monomial appearing in P is to the rest of
the monomial. Small ABPs have “information bottlenecks” at each degree i, and hence the amount of
correlation in the computed polynomial must be low. In our case the correlation will be between the
prefix of degree p and the suffix of degree (d− p− i) on the one hand, and the middle part of degree i on
the other hand.

Definition 4.2. Let P be a polynomial of degree d on n variables (x1,x2, . . . ,xn). For (i, p)∈ [0,d]× [0,d]
with i+ p ≤ d, we define M(i,p)(P) to be a matrix of size nd−i× ni. Rows are indexed by all pairs
(x̄, z̄) ∈ {x1, . . . ,xn}p ×{x1, . . . ,xn}d−p−i. Columns are indexed by words ȳ ∈ {x1, . . . ,xn}i. Finally,
M(i,p)(P)(x̄,z̄),ȳ is the coefficient of the monomial x̄ · ȳ · z̄ in P.

We can now express exactly the number of additions needed to compute a given polynomial by a
canonical unambiguous circuit.

Theorem 4.3. Let P be a homogeneous polynomial of degree d and T a shape with d leaves. Then the
minimal number of addition gates needed to compute P by a canonical unambiguous circuit with shape T
is exactly equal to ∑

(i,p)∈S
rank

(
M(i,p)(P)

)
, where S is the set of all existing types of +-gates in the shape T.

Proof. Fix a canonical unambiguous circuit C with shape T which computes P. Fix also (i, p) — an
existing type of addition gate — and let α1, . . . ,αki,p be all the (i, p)-addition gates in C. Let P =

∑
ki,p
j=1 f j×p h j be the decomposition given by Proposition 3.3. To simplify notations, set also k = ki,p.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 10

http://dx.doi.org/10.4086/cjtcs

NON-COMMUTATIVE COMPUTATIONS: LOWER BOUNDS AND POLYNOMIAL IDENTITY TESTING

Decomposition of the matrix M(i,p) as L(i,p)R(i,p). We show that M(i,p) is the product of two “small”
matrices L(i,p) and R(i,p):

• R(i,p) is a matrix of size k× ni. Rows are indexed by all gates α1, . . . ,αk. Columns are indexed
by monomials ȳ ∈ {x1, . . . ,xn}i. R(i,p)

t,ȳ is the coefficient of the monomial ȳ in the polynomial ft
computed by the gate αt .

• L(i,p) is a matrix of size nd−i×k. Rows are indexed by all pairs (x̄, z̄)∈{x1, . . . ,xn}p×{x1, . . . ,xn}d−p−i.
Columns are indexed by all gates α1, . . . ,αk. L(i,p)

(x̄,z̄),t is the coefficient of the monomial x̄z̄ in the
polynomial computed by the circuit where αt is replaced by an input gate with value 1. That is:
L(i,p)
(x̄,z̄),t is the coefficient of the monomial x̄z̄ in the polynomial ht .

One can easily verify that M(i,p) = L(i,p)R(i,p).

Lower bound. Since rank
(
M(i,p)

)
≤ rank

(
L(i,p)

)
≤ k, the number k of addition gates of type (i, p) must

be at least rank(M(i,p)). Therefore, considering all existing types, we have just proved that the number of
addition gates is at least ∑(i,p)∈S rank

(
M(i,p)(P)

)
.

Upper bound. We prove that if rank
(
M(i,p)

)
< k, we can delete one (i, p)-addition gate in the circuit.

We will possibly be increasing at the same time the number of ×-gates but, thanks to Lemma 4.1, this is
innocuous. If rank

(
L(i,p)

)
= rank

(
R(i,p)

)
= k, then, since L(i,p) and R(i,p) are nd−i×k and k×ni matrices,

respectively, rank
(
M(i,p)

)
should also be k. Thus, either L(i,p) or R(i,p) is of rank strictly less than k.

If rank
(
R(i,p)

)
< k, then one row (let us say, w.l.o.g., the first row) of R(i,p) is a linear combination of

the other rows. Going back to the meaning of the matrix, it means that the polynomial f1 computed by
the gate α1 is a linear combination of the polynomials f2, . . . , fk computed by the gates α2, . . . ,αk. Let us
say f1 = ∑

k
i=2 ci fi for ci ∈ F. We construct a new circuit where α1 is deleted. We denote by β1, . . . ,βm the

×-gates which receive as input α1. In the new circuit, we create (k−1) copies of β1, . . . ,βm — namely
β 2

1 , . . . ,β
2
m,β

3
1 , . . .β

3
m, . . . ,β

k
1 , . . . ,β

k
m. β i

j does exactly the same computation as β j, but instead of taking
α1 as input, it takes αi. Finally, an addition gate in the old circuit which took as input a β j now takes
∑

k
i=2 ciβ

i
j as input.

If rank
(
L(i,p)

)
< k, then one column (let us say, w.l.o.g., the first column) of L(i,p) is a linear

combination of the other columns. This means that there are constants c2, . . . ,ck such that h1 = ∑
k
j=2 c jh j.

Let γ1, . . . ,γm be all the coefficients on the input edges of α1 coming respectively from multiplication
gates β1, . . . ,βm. In the new circuit, we delete α1 and we add for all 1≤ l ≤m,2≤ j≤ k an edge between
βl and α j with the coefficient c jγl . The new circuit computes the polynomial ∑

k
j=2(f j + c j f1)×p h j. By

bilinearity of the j-product, this is equal to

k

∑
j=2

(f j×p h j +(c j f1)×p h j) =
k

∑
j=2

f j×p h j +
k

∑
j=2

(c j f1)×p h j

=
k

∑
j=2

f j×p h j +
k

∑
j=2

f1×p (c jh j) =
k

∑
j=2

f j×p h j + f1×p

(
k

∑
j=2

(c jh j)

)

=
k

∑
j=2

f j×p h j + f1×p h1 = P.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 11

http://dx.doi.org/10.4086/cjtcs

GUILLAUME LAGARDE, GUILLAUME MALOD AND SYLVAIN PERIFEL

Remark 4.4. When the shape is right-skew (thus corresponding to an ABP), then p = 0 in the proof
above, and M(i,p) is the usual matrix M(i) of Nisan [23]. Since the number of additions gates in the shape
corresponds exactly to the number of vertices in an ABP in canonical form, our result is a direct extension
of Nisan’s.

5 Comparison with skew circuits.

In this section we show that the classes of polynomials computed by polynomial-size unambiguous
circuits on the one hand, and by polynomial-size skew circuits on the other hand, are incomparable.
Define the palindrome of degree d over n variables as:

Pald(x1, . . . ,xn) := ∑
z̄∈{x1,..,xn}d/2

z̄.z̄m,

where z̄m is the mirror of z̄ (e.g z̄m = x3x2x1 if z̄ = x1x2x3). It is easy to construct a small unambiguous
and skew circuit for Pald(x1, . . . ,xn) by using the following inductive formula:

Pald(x1, . . . ,xn) =
n

∑
i

xiPald−2(x1, . . . ,xn)xi.

We can then use the construction for Pald(x1, . . . ,xn) to compute the square of the palindrome with a
small unambiguous circuit. Note that [21] shows that the square of the palindrome polynomial needs
exponential-size skew circuits: therefore, unambiguous is not included in skew (when considering
polynomial-size circuits).

In the remainder of this section we construct a polynomial computable by a skew circuit of polynomial
size but not by unambiguous circuits of polynomial size. The idea is the following: given a canonical
unambiguous circuit of degree d (without any condition on its shape), there is always an addition gate of
type (i, p) where i ∈ [d

3 ,
2d
3], p ∈ [0,d− i] (Lemma 5.1, proof given in the appendix). We then consider a

polynomial such that the associated matrices M(i,p) have an exponential rank for all i∈ [d
3 ,

2d
3], p∈ [0,d− i].

According to the previous section, this means that computing the polynomial by unambiguous circuits
requires at least an exponential number of gates.

Lemma 5.1. Given a canonical unambiguous circuit computing a polynomial of degree d, there is always
an existing type (i, p) where i ∈ [d

3 ,
2d
3], p ∈ [0,d− i].

Proof. It is sufficient to prove that there is a +-gate of degree i ∈ [d
3 ,

2d
3]: the condition on p follows

immediately from the definition of the type. Let α be a ×-gate of degree > 2
3 d as close as possible to the

leaves. Let β ,γ be the inputs of α and i, j their respective degree. We have i+ j > 2d
3 ,1≤ i≤ 2d

3 ,1≤
j ≤ 2d

3 . These conditions force i or j to be in [d
3 ,

2d
3].

The moving palindrome of degree n on (n+1) variables is:

Paln
mov(x1, . . . ,xn,w) := ∑

l∈[0, 2n
3]

wlPal
n
3 (x1, . . . ,xn)w

2n
3 −l,

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 12

http://dx.doi.org/10.4086/cjtcs

NON-COMMUTATIVE COMPUTATIONS: LOWER BOUNDS AND POLYNOMIAL IDENTITY TESTING

where w is a fresh variable (distinct from the xi). The first proposition below is easy to prove and
follows from the construction for Pald(x1, . . . ,xn), the second is an application of our size characterization
for canonical unambiguous circuits.

Proposition 5.2. Paln
mov(x1, . . . ,xn,w) is computable by a skew circuit of size polynomial in n.

Proposition 5.3. Computing Paln
mov(x1, . . . ,xn,w) with a canonical unambiguous circuit requires at least

nn/6 gates.

Proof. Consider a canonical unambiguous circuit C computing Paln
mov. Thanks to Lemma 5.1, we know

that there is always an existing type (i, p) where i ∈ [n
3 ,

2n
3], p ∈ [0,n− i]. To apply Theorem 4.3, it

is enough to show that for all such (i, p), rank(M(i,p)(Paln
mov)) ≥ nn/6. This will possible because for

each such type, there is a polynomial in the sum defining Paln
mov which has a large rank and the other

polynomials will not interfere.
Let us fix a particular (i, p), i ∈ [n

3 ,
2n
3], p ∈ [0,n− i]. Because i ≤ 2n

3 we have p+(n− p− i) ≥ n
3 .

Then one of the two following cases occurs.
Case p≥ n

6 . In this case we show first that

rank(M(i,p)(Paln
mov))≥ rank(M(i,p)(wp− n

6 Pal
n
3 (x1, . . . ,xn)wn−p− n

6)).

Indeed,

M(i,p)(Paln
mov) = ∑

l∈[0, 2n
3]

M(i,p)(wlPal
n
3 (x1, . . . ,xn)w

2n
3 −l);

And note then that, if (a,b) is a coordinate of a non-zero coefficient of

M(i,p)(wp− n
6 Pal

n
3 (x1, . . . ,xn)wn−p− n

6)

and (a′,b′) is a coordinate of a non-zero coefficient of

M(i,p)(wlPal
n
3 (x1, . . . ,xn)w

2n
3 −l),

with l 6= p− n
6 , then a 6= a′ and b 6= b′. Finally, observe that in this case, every row and column of

M(i,p)(wp− n
6 Pal

n
3 (x1, . . . ,xn)wn−p− n

6) contains at most one non-zero coefficient and there are exactly nn/6

non-zero coefficients. Thus:

rank
(

M(i,p)(Paln
mov)

)
≥ rank

(
M(i,p)(wp− n

6 Pal
n
3 (x1, . . . ,xn)wn−p− n

6)
)
≥ nn/6.

Case n− p− i≥ n
6 . With similar arguments, we have this time

rank
(

M(i,p)(Paln
mov)

)
≥ rank

(
M(i,p)(wp+i− n

6 Pal
n
3 (x1, . . . ,xn)w

5n
6 −p−i)

)
≥ nn/6.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 13

http://dx.doi.org/10.4086/cjtcs

GUILLAUME LAGARDE, GUILLAUME MALOD AND SYLVAIN PERIFEL

6 Lower bounds for permanent and determinant

In the non-commutative setting we need to define an order on the variables of each monomial of
the permanent or the determinant. We will start by considering the so-called Cayley permanent and
determinant:

perC
n = ∑

s∈Sn

n

∏
i=1

x1,s(1) · · ·xn,s(n) and detCn = ∑
s∈Sn

sgn(s)
n

∏
i=1

x1,s(1) · · ·xn,s(n).

To get lower bounds we need to estimate the ranks of certain matrices M(i,p). The following lemma is
proved exactly in the same way as Lemma 2 in [23].

Lemma 6.1. For all i≤ n, p≤ n− i, rank
(
M(i,p)(perC

n)
)
= rank

(
M(i,p)(detCn)

)
=
(n

i

)
.

We can now obtain the following lower bounds, thanks to Lemma 5.1.

Theorem 6.2. Computing perC
n or detCn with an unambiguous circuit requires at least

(n
n/3

)
gates.

For other orders on the monomials we once again follow Nisan.

Definition 6.3. Two polynomials P and Q are called weakly equivalent if for each monomial of P with
non-zero coefficient there exists a monomial of Q with the same variables (but perhaps in a different
order) with non-zero coefficient, and vice-versa.

Lemma 6.4. For all i≤ n, p≤ n− i, rank
(
M(i,p)

)
for any polynomial weakly equivalent to the permanent

or the determinant is at least
(n

i

)
.

Theorem 6.5. Computing a polynomial weakly equivalent to perC
n or detCn with an unambiguous circuit

requires at least
(n

n/3

)
gates.

7 Polynomial Identity Testing via Hadamard product

Here, we give a deterministic polynomial-time algorithm for PIT for the polynomials computed by
unambiguous non-commutative circuits.3 We will use the following binary operation over polynomials
from [1].

Definition 7.1. Given two polynomials P = ∑x̄ ax̄x̄ and Q = ∑x̄ bx̄x̄, the Hadamard product of P and Q,
written P�Q, equals ∑x̄ ax̄bx̄x̄.

In [1], a logspace algorithm is given which, on input two ABPs A and B, outputs a new ABP C
computing the Hadamard product of the polynomials computed by A and B. Consequently, they observed
that this result gives the following derandomization for PIT.

3A deterministic polynomial-time algorithm for PIT on non-commutative skew circuits is claimed in [4], but in fact it only
works for circuits that are both skew and unambiguous (private communication with the authors). Actually, this algorithm seems
to be removed from the conference version [3].

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 14

http://dx.doi.org/10.4086/cjtcs

NON-COMMUTATIVE COMPUTATIONS: LOWER BOUNDS AND POLYNOMIAL IDENTITY TESTING

Theorem 7.2 ([1]). The problem of polynomial identity testing for non-commutative algebraic branching
programs over R is in P.

Here, we extend this result: we give a construction to perform the Hadamard product of two
unambiguous circuits with the same shape. In other words, we prove that the class of unambiguous
circuits of a given shape is stable under Hadamard product. As in the case of ABPs, it will provide a
deterministic polynomial-time algorithm for PIT over unambiguous circuits.

W.l.o.g. we work with homogeneous polynomials. Indeed, if P and Q are decomposed into homoge-
neous components P = ∑

n
k=1 Pi and Q = ∑

n
k=1 Qi, then P�Q = ∑

n
k=1 Pi�Qi. Circuits will be assumed

canonical, since Lemma 2.4 gives an explicit algorithm working in polynomial time to transform an
unambiguous circuit into its canonical form. The idea is to create a circuit computing iteratively the
Hadamard product of all pairs of addition gates of same type. The regularity of the parse tree will allow
us to spread the Hadamard product layer by layer.

Lemma 7.3. Let d,d′ ∈ N and let (Pi)1≤i≤n and (Qi)1≤i≤m be families of polynomials with deg(Pi) = d
and deg(Qi) = d′. Set also (αi, j)1≤i≤n,1≤ j≤m ∈ Rnm and (βi, j)1≤i≤n,1≤ j≤m ∈ Rnm. Then:(

∑
(i, j)

αi, jPiQ j

)
�

(
∑
(i, j)

βi, jPiQ j

)
= ∑

(i, j),(k,l)
αi, jβk,l(Pi�Pk)(Q j�Ql).

Theorem 7.4 (Hadamard product of two unambiguous circuits). Let C and D be two unambiguous
circuits in canonical form, of the same shape, and of size s and s′, that compute two polynomials P and
Q. Then P�Q is computed by an unambiguous circuit of size at most ss′; moreover, this circuit can be
constructed in polynomial time.

Proof. The new circuit computes the Hadamard product of all pairs (α1,α2) ∈ C×D of addition gates of
the same type. As the output gate in C and in D are of the same type4, the new circuit will in particular
compute the Hadamard product of P and Q. If the degree of α1 and α2 is 1, then the Hadamard product is
trivial since the gates compute variables.

Assume we have constructed the circuit until layer i (that is, for each gate of degree less than or
equal to i). We now show how to construct the layer (i+ 1). Let α1 ∈ C and α2 ∈D be two addition
gates of degree (i+1) and of same type. Because the circuits are unambiguous, α1 (resp. α2) computes
a polynomial of the form R1 = (∑(i, j) αi, jPiQ j) (resp. R2 = (∑(i, j) βi, jPiQ j)), where the Pi are all of
identical types, and where the Q j are also all of identical types. Lemma 7.3 then shows how to compute
R1�R2 from the previously computed Pi�Pj and Qi�Q j.

By induction, we thus construct the desired circuit layer by layer. Given a type, if there were i (resp. j)
addition gates of this type in C (resp. in D), we have created exactly i j gates in the new circuit. Therefore,
the total number of gates in the new circuit is no more than ss′.

Corollary 7.5. There is a deterministic polynomial-time algorithm for PIT for polynomials computed by
non-commutative unambiguous circuits over R.

4because C and D have the same shape

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 15

http://dx.doi.org/10.4086/cjtcs

GUILLAUME LAGARDE, GUILLAUME MALOD AND SYLVAIN PERIFEL

Proof. Given P(x1, . . . ,xn) computed by a unambiguous circuit, construct the circuit which computes
(P�P)(x1, . . . ,xn) and evaluate it on (1,1, . . . ,1). The output is the sum of the squares of the coefficients
of P, therefore it is equal to 0 if and only if P is equal to the zero polynomial.

Remark 7.6. From a circuit computing a polynomial P = ∑x̄ ax̄x̄ over C, it is not hard to deduce a circuit
for the conjugate P̄ = ∑x̄ āx̄x̄. Therefore, a similar algorithm works over C, since (P� P̄) = ∑x̄ |ax̄|2x̄.

We also obtain another corollary that is to be compared with the results of Section 6.

Corollary 7.7. Over R, in the non-commutative setting, computing the determinant with an unambiguous
circuit is as hard as computing the permanent.

Proof. Observe that det�det= per. Therefore, by Theorem 7.4, from a circuit computing the determinant,
we can build in polynomial time a circuit computing the permanent.

References

[1] VIKRAMAN ARVIND, PUSHKAR S. JOGLEKAR, AND SRIKANTH SRINIVASAN: Arithmetic circuits
and the Hadamard product of polynomials. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2009, December 15-17, 2009, IIT Kanpur,
India, pp. 25–36, 2009. [doi:10.4230/LIPIcs.FSTTCS.2009.2304] 3, 14, 15

[2] VIKRAMAN ARVIND, PARTHA MUKHOPADHYAY, AND SRIKANTH SRINIVASAN: New results
on noncommutative and commutative polynomial identity testing. Computational Complexity,
19(4):521–558, 2010. [doi:10.1007/s00037-010-0299-8] 3

[3] VIKRAMAN ARVIND AND S. RAJA: The complexity of bounded register and skew arithmetic com-
putation. In ZHIPENG CAI, ALEX ZELIKOVSKY, AND ANU G. BOURGEOIS, editors, Computing
and Combinatorics - 20th International Conference, COCOON 2014, Atlanta, GA, USA, August
4-6, 2014. Proceedings, volume 8591 of Lecture Notes in Computer Science, pp. 572–583. Springer,
2014. 14

[4] VIKRAMAN ARVIND AND S. RAJA: The complexity of two register and skew arithmetic computa-
tion. Electronic Colloquium on Computational Complexity (ECCC), 21:28, 2014. 14

[5] A. BARVINOK: New Permanent Estimators via Non-Commutative Determinants. ArXiv Mathemat-
ics e-prints, July 2000. [arXiv:math/0007153] 2

[6] ANDREJ BOGDANOV AND HOETECK WEE: More on noncommutative polynomial identity testing.
In Proceedings of the 20th Annual IEEE Conference on Computational Complexity, CCC ’05, pp.
92–99, Washington, DC, USA, 2005. IEEE Computer Society. [doi:10.1109/CCC.2005.13] 3

[7] PETER BÜRGISSER, J. M. LANDSBERG, LAURENT MANIVEL, AND JERZY WEYMAN: An
overview of mathematical issues arising in the geometric complexity theory approach to VP 6= VNP.
SIAM J. Comput., 40(4):1179–1209, August 2011. [doi:10.1137/090765328] 1

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 16

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2304
http://dx.doi.org/10.1007/s00037-010-0299-8
http://arxiv.org/abs/math/0007153
http://dx.doi.org/10.1109/CCC.2005.13
http://dx.doi.org/10.1137/090765328
http://dx.doi.org/10.4086/cjtcs

NON-COMMUTATIVE COMPUTATIONS: LOWER BOUNDS AND POLYNOMIAL IDENTITY TESTING

[8] J.W. CARLYLE AND A. PAZ: Realizations by stochastic finite automata. Journal of Computer and
System Sciences, 5(1):26 – 40, 1971. [doi:https://doi.org/10.1016/S0022-0000(71)80005-3] 3

[9] XI CHEN, NEERAJ KAYAL, AND AVI WIGDERSON: Partial derivatives in arithmetic complexity
and beyond. Foundations and Trends in Theoretical Computer Science, 6(1-2):1–138, 2011. 2

[10] STEVE CHIEN, LARS EILSTRUP RASMUSSEN, AND ALISTAIR SINCLAIR: Clifford algebras and
approximating the permanent. J. Comput. Syst. Sci., 67(2):263–290, 2003. 2

[11] RICHARD A. DEMILLO AND RICHARD J. LIPTON: A probabilistic remark on algebraic program
testing. Inf. Process. Lett., 7(4):193–195, 1978. [doi:10.1016/0020-0190(78)90067-4] 3

[12] ZEEV DVIR, GUILLAUME MALOD, SYLVAIN PERIFEL, AND AMIR YEHUDAYOFF: Separating
multilinear branching programs and formulas. In Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pp. 615–624, 2012.
[doi:10.1145/2213977.2214034] 4

[13] NATHANAËL FIJALKOW, GUILLAUME LAGARDE, AND PIERRE OHLMANN: Tight bounds using
hankel matrix for arithmetic circuits with unique parse trees. Electronic Colloquium on Computa-
tional Complexity (ECCC), 25:38, 2018. 3

[14] NATHANAËL FIJALKOW, GUILLAUME LAGARDE, PIERRE OHLMANN, AND OLIVIER SERRE:
Lower bounds for arithmetic circuits via the hankel matrix. Electronic Colloquium on Computational
Complexity (ECCC), 25:180, 2018. 3

[15] MICHEL FLIESS: Matrices de Hankel. J. Math. Pures Appl. (9), 53:197–222, 1974. 3

[16] GCT publications. http://gct.cs.uchicago.edu/. 1

[17] PAVEL HRUBES, AVI WIGDERSON, AND AMIR YEHUDAYOFF: Non-commutative circuits and
the sum-of-squares problem. Electronic Colloquium on Computational Complexity (ECCC), 17:21,
2010. 2

[18] VALENTINE KABANETS AND RUSSELL IMPAGLIAZZO: Derandomizing polynomial identity
tests means proving circuit lower bounds. Comput. Complex., 13(1/2):1–46, December 2004.
[doi:10.1007/s00037-004-0182-6] 3

[19] ADAM KLIVANS AND AMIR SHPILKA: Learning restricted models of arithmetic circuits. Theory
of Computing, 2(10):185–206, 2006. [doi:10.4086/toc.2006.v002a010] 3

[20] GUILLAUME LAGARDE, NUTAN LIMAYE, AND SRIKANTH SRINIVASAN: Lower bounds and pit
for non-commutative arithmetic circuits with restricted parse trees. computational complexity, 09
2018. [doi:10.1007/s00037-018-0171-9] 3

[21] NUTAN LIMAYE, GUILLAUME MALOD, AND SRIKANTH SRINIVASAN: Lower bounds for non-
commutative skew circuits. Electronic Colloquium on Computational Complexity (ECCC), 22:22,
2015. 2, 4, 5, 8, 12

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 17

http://dx.doi.org/https://doi.org/10.1016/S0022-0000(71)80005-3
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1145/2213977.2214034
http://gct.cs.uchicago.edu/
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.4086/toc.2006.v002a010
http://dx.doi.org/10.1007/s00037-018-0171-9
http://dx.doi.org/10.4086/cjtcs

GUILLAUME LAGARDE, GUILLAUME MALOD AND SYLVAIN PERIFEL

[22] GUILLAUME MALOD AND NATACHA PORTIER: Characterizing Valiant’s algebraic complexity
classes. J. Complexity, 24(1):16–38, 2008. [doi:10.1016/j.jco.2006.09.006] 4, 7

[23] NOAM NISAN: Lower bounds for non-commutative computation (extended abstract). In Proceed-
ings of the 23rd ACM Symposium on Theory of Computing, ACM Press, pp. 410–418, 1991. 1, 2, 4,
5, 10, 12, 14

[24] RAN RAZ: Multi-linear formulas for permanent and determinant are of super-polynomial size. J.
ACM, 56(2), 2009. [doi:10.1145/1502793.1502797] 2

[25] RAN RAZ AND AMIR SHPILKA: Deterministic polynomial identity testing in non-commutative
models. Comput. Complex., 14(1):1–19, April 2005. [doi:10.1007/s00037-005-0188-8] 3

[26] RAMPRASAD SAPTHARISHI: Recent progress on arithmetic circuit lower bounds. Bulletin of the
EATCS, 114, 2014. 2

[27] J. T. SCHWARTZ: Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27(4):701–717, October 1980. [doi:10.1145/322217.322225] 3

[28] AMIR SHPILKA AND AMIR YEHUDAYOFF: Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.
2, 3

[29] L. G. VALIANT: Completeness Classes in Algebra. In STOC ’79: Proceedings of the eleventh
annual ACM symposium on Theory of computing, pp. 249–261, New York, NY, USA, 1979. ACM
Press. 2

[30] L. G. VALIANT: Reducibility by Algebraic Projections. In Logic and Algorithmic: an Interna-
tional Symposium held in honor of Ernst Specker, volume 30 of Monographies de l’Enseignement
Mathémathique, pp. 365–380, 1982. 2

[31] RICHARD ZIPPEL: Probabilistic algorithms for sparse polynomials. In Proceedings of the Inter-
national Symposiumon on Symbolic and Algebraic Computation, EUROSAM ’79, pp. 216–226,
London, UK, UK, 1979. Springer-Verlag. 3

AUTHORS

Guillaume Lagarde
KTH Royal Institute of Technology,
School of Electrical Enginering and Computer Science.
glagarde kth se
https://guillaume-lagarde.github.io/

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 18

http://dx.doi.org/10.1016/j.jco.2006.09.006
http://dx.doi.org/10.1145/1502793.1502797
http://dx.doi.org/10.1007/s00037-005-0188-8
http://dx.doi.org/10.1145/322217.322225
https://guillaume-lagarde.github.io/
http://dx.doi.org/10.4086/cjtcs

NON-COMMUTATIVE COMPUTATIONS: LOWER BOUNDS AND POLYNOMIAL IDENTITY TESTING

Guillaume Malod
Université de Paris,
IMJ-PRG, CNRS,
F-75013 Paris, France.
malod math univ-paris-diderot fr

Sylvain Perifel
Université de Paris,
IRIF, CNRS,
F-75013 Paris, France. sylvain perifel irif fr
https://www.irif.fr/~sperifel/

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2019, Article 02, pages 1–19 19

https://www.irif.fr/~sperifel/
http://dx.doi.org/10.4086/cjtcs

	Introduction
	Non-commutative computations, parse trees and unambiguous circuits
	Decomposition lemma for canonical unambiguous circuits
	Exact complexity for canonical unambiguous circuits
	Comparison with skew circuits.
	Lower bounds for permanent and determinant
	Polynomial Identity Testing via Hadamard product
	References

