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Abstract

A t-dimensional orthogonal representation of a hypergraph is an assignment of nonzero
vectors in Rt to its vertices, such that every hyperedge contains two vertices whose vectors are
orthogonal. The orthogonality dimension of a hypergraph H, denoted by ξ(H), is the smallest
integer t for which there exists a t-dimensional orthogonal representation of H. In this paper
we study computational aspects of the orthogonality dimension of graphs and hypergraphs.
We prove that for every k ≥ 4, it is NP-hard (resp. quasi-NP-hard) to distinguish n-vertex
k-uniform hypergraphs H with ξ(H) ≤ 2 from those satisfying ξ(H) ≥ Ω(logδ n) for some
constant δ > 0 (resp. ξ(H) ≥ Ω(log1−o(1) n)). For graphs, we relate the NP-hardness of ap-
proximating the orthogonality dimension to a variant of a long-standing conjecture of Stahl.
We also consider the algorithmic problem in which given a graph G with ξ(G) ≤ 3 the goal
is to find an orthogonal representation of G of as low dimension as possible, and provide a
polynomial time approximation algorithm based on semidefinite programming.

1 Introduction

A t-dimensional orthogonal representation of a hypergraph H = (V, E) is an assignment of a nonzero
real vector uv ∈ Rt to every vertex v ∈ V, such that every hyperedge e ∈ E contains two vertices
v, v′ ∈ e whose vectors uv and uv′ are orthogonal. The orthogonality dimension of H, denoted by
ξ(H), is the smallest integer t for which there exists a t-dimensional orthogonal representation of
H.1 The notion of orthogonal representations was introduced for graphs by Lovász [43] in the
study of the Shannon capacity and was later involved in a geometric characterization of connec-
tivity properties of graphs by Lovász, Saks, and Schrijver [45]. The orthogonality dimension over
the complex field was used by de Wolf [18] in a characterization of the quantum one-round com-
munication complexity of promise equality problems and by Cameron et al. [14] in the study of
the quantum chromatic number of graphs (see also [49, 10, 11]). An extension of orthogonal repre-
sentations, called orthogonal bi-representations, was introduced by Haemers [31] and has found
several further applications to information theory and to theoretical computer science.
∗A preliminary version appeared in Proceedings of the 44th International Symposium on Mathematical Foundations

of Computer Science (MFCS), pages 39:1–39:15, 2019.
†School of Computer Science, The Academic College of Tel Aviv-Yaffo, Tel Aviv 61083, Israel. Research supported
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1Orthogonal representations of graphs are sometimes defined in the literature as orthogonal representations of the

complement, namely, the definition requires vectors associated with non-adjacent vertices to be orthogonal. In this paper
we have decided to use the other definition because it is extended more naturally to hypergraphs. For a graph G, one
can view the notation ξ(G) as standing for ξ(G).
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Orthogonal representations can be viewed as a generalization of hypergraph vertex colorings,
one of the most fundamental and extensively studied topics in graph theory. Recall that a hyper-
graph H is said to be c-colorable if one can assign one of c colors to every vertex of H such that
no hyperedge is monochromatic. The chromatic number of H, denoted by χ(H), is the smallest
integer c for which H is c-colorable. Obviously, every c-coloring of H induces a c-dimensional
orthogonal representation of H by assigning the ith unit vector ei ∈ Rc to every vertex colored by
the ith color. On the other hand, given a t-dimensional orthogonal representation (uv)v∈V of H one
can assign to every vertex v the vector in {−1, 0,+1}t that consists of the signs of the entries of uv,
and since nonzero orthogonal vectors have distinct sign vectors it follows that H is 3t-colorable.
We conclude that every hypergraph H satisfies

log3 χ(H) ≤ ξ(H) ≤ χ(H). (1)

The upper bound in (1) can clearly be tight (take, e.g., a complete graph), and it turns out that
there exist graphs whose orthogonality dimension is exponentially smaller than their chromatic
number (see Proposition 2.2).

The current work studies the problem of approximating the orthogonality dimension of graphs
and hypergraphs. This research direction was already suggested in the late eighties by Lovász
et al. [45], who remarked that computing the orthogonality dimension of graphs seems to be a
difficult task (see also [44, Chapter 10]). Nevertheless, the only hardness result we are aware of
for this graph parameter is the one of Peeters [47], who proved that for every t ≥ 3 it is NP-hard
to decide whether an input graph G satisfies ξ(G) ≤ t (see the recent follow-up work [27]). Before
stating our hardness and algorithmic results, we overview related previous work on graph and
hypergraph coloring.

1.1 Graph and Hypergraph Coloring

It is well known that the problem of deciding whether an input graph is c-colorable can be easily
solved in polynomial time for c ∈ {1, 2} and is NP-hard for every c ≥ 3 [35].

In 1976, Garey and Johnson [25] have discovered an interesting connection between hardness
of graph coloring and the multichromatic numbers of Kneser graphs. For integers d ≥ 2s, the
Kneser graph K(d, s) is the graph whose vertices are all the s-subsets of [d], where two sets are
adjacent if they are disjoint. A k-tuple coloring f of a graph G = (V, E) is an assignment f (v) of a
set of k colors to every vertex v ∈ V such that f (v) ∩ f (v′) = ∅ whenever v and v′ are adjacent in
G. The kth multichromatic number of G, denoted by χk(G), is the smallest integer c for which G has
a k-tuple coloring with c colors. Equivalently, χk(G) is the smallest integer c for which there exists
a homomorphism from G to the Kneser graph K(c, k). Note that χ1(G) is simply the standard
chromatic number χ(G). In the seventies, Stahl [51] has made the following conjecture regarding
the multichromatic numbers of Kneser graphs (see also [23]).

Conjecture 1.1 ([51]). For all integers k and d ≥ 2s,

χk(K(d, s)) =
⌈ k

s

⌉
· (d− 2s) + 2k.

More than forty years later, Conjecture 1.1 is still widely open. While the right-hand side in
the conjecture is known to form an upper bound on χk(K(d, s)) for all values of k, d and s, the

2



conjecture was confirmed only for a few special cases. For k = 1, the conjecture was proved
by Lovász [42] in a breakthrough application of algebraic topology confirming a conjecture by
Kneser [38]. Stahl [51] proved that the conjecture holds whenever 1 ≤ k ≤ s, d = 2s + 1, or
k is divisible by s. Garey and Johnson [25] proved the case of s = 3 and k = 4, namely, that
χ4(K(d, 3)) = 2d− 4, and used it in the analysis of a reduction from 3-colorability to prove that
for every c ≥ 6, it is NP-hard to distinguish between graphs G that satisfy χ(G) ≤ c and those that
satisfy χ(G) ≥ 2c− 4.

In 1993, Khanna, Linial, and Safra [37] proved that it is NP-hard to decide whether an input
graph G satisfies χ(G) ≤ 3 or χ(G) ≥ 5 (see also [30]). As observed in [9], combining this result
with the proof technique of [25] and the case of s = 3 and k = 5 in Conjecture 1.1 proved by
Stahl [52] (who confirmed there the conjecture for s ≤ 3 and all integers k and d), it follows that
for every c ≥ 6 it is NP-hard to distinguish between the cases χ(G) ≤ c and χ(G) ≥ 2c − 2.
Brakensiek and Guruswami [9] improved this result using different techniques and proved the
NP-hardness of deciding whether a given graph G satisfies χ(G) ≤ c or χ(G) ≥ 2c − 1 for all
c ≥ 3. The latter condition was improved to χ(G) ≥ 2c by Bulı́n, Krokhin, and Opršal [13], and
recently it was significantly improved to χ(G) ≥ ( c

bc/2c) for all c ≥ 6 by Wrochna and Živný [54].
We note that Dinur, Mossel, and Regev [19] proved that assuming a certain variant of the unique
games conjecture, deciding whether a given graph G satisfies χ(G) ≤ 3 or χ(G) ≥ c is NP-hard
for every constant c ≥ 4.

We next consider, for any constant k ≥ 3, the problem of deciding whether an input k-uniform
hypergraph (i.e., a hypergraph each of its hyperedges contains exactly k vertices) is c-colorable.
While the problem can clearly be solved in polynomial time for c = 1, it was shown to be NP-
hard for c = 2 and k = 3 by Lovász [41], motivating the study of the following gap problem:
Given an n-vertex k-uniform hypergraph H, decide whether χ(H) ≤ 2 or χ(H) ≥ c. Guruswami,
Håstad, and Sudan [29] proved that the problem is NP-hard for k ≥ 4 and every constant c ≥ 3.
By combining their proof with the later PCP theorem of Moshkovitz and Raz [46], this result also
follows for the super-constant c = Ω( log log n

log log log n ). For k = 3, the NP-hardness was proved for
every constant c ≥ 3 by Dinur, Regev, and Smyth [20]. Their proof approach was extended in
a recent work of Bhangale [6], who obtained NP-hardness for every k ≥ 4 with the improved
super-constant c = Ω(logδ n) where δ > 0 is some constant. Under the complexity assumption
NP * DTIME(2poly(log n)), several stronger hardness results are known. This includes the case of
k = 3 and c = Ω( 3

√
log log n) proved in [20] and the case of k ≥ 4 and c = Ω( log n

log log n ) proved
in [6]. For additional related results see, e.g., [6, Table 1] and the references therein.

On the algorithmic side, significant efforts have been made in the literature to obtain poly-
nomial time algorithms for coloring n-vertex 3-colorable graphs using as few colors as possible.
This line of research was initiated by a simple algorithm of Wigderson [53] that used O(

√
n) col-

ors. In a series of increasingly sophisticated combinatorial algorithms, Blum [7] improved the
number of colors to Õ(n3/8). Then, Karger, Motwani, and Sudan [34] introduced an algorithm
based on a semidefinite relaxation and improved the number of colors to Õ(n1/4). Combining
the combinatorial approach of [7] and the semidefinite relaxation of [34], Blum and Karger [7, 8]
improved it to Õ(n3/14), which was later improved by Arora, Chlamtac, and Charikar [3] and by
Chlamtac [16] to Õ(n0.2111) and Õ(n0.2072) respectively. The combinatorial component of these al-
gorithms was recently improved by Kawarabayashi and Thorup [36], who reduced the number
of colors to Õ(n0.19996). Halperin et al. [32] have obtained analogue results for coloring n-vertex
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c-colorable graphs for all constants c ≥ 4, e.g., for c = 4 there exists an efficient algorithm that
uses Õ(n7/19) colors.

For hypergraphs, there exists a simple combinatorial algorithm that given an n-vertex k-uniform
2-colorable hypergraph finds in polynomial time a coloring with Õ(n1−1/k) colors, as was shown
independently by Alon et al. [2] and by Chen and Frieze [15]. For k = 3, this algorithm was com-
bined in [2, 15] with the semidefinite programming approach of [34] to obtain a better bound of
Õ(n2/9), which was later improved to Õ(n1/5) by Krivelevich, Nathaniel, and Sudakov [40]. We
note, however, that Alon et al. [2] have provided evidence that the powerful semidefinite approach
cannot be applied to coloring k-uniform hypergraphs for k ≥ 4.

1.2 Our Contribution

The present paper offers hardness and algorithmic results on the orthogonality dimension of
graphs and hypergraphs. We first mention that known hardness results on the chromatic number
can be used to derive hardness results for the orthogonality dimension. Indeed, the inequalities
given in (1) yield that for every integers t1 and t2, NP-hardness of deciding whether an input k-
uniform hypergraph H satisfies χ(H) ≤ t1 or χ(H) ≥ t2 immediately implies the NP-hardness
of deciding whether it satisfies ξ(H) ≤ t1 or ξ(H) ≥ log3 t2. In particular, the hardness results
of [20, 30] imply that for all constants k ≥ 3 and t ≥ 3, it is NP-hard to decide whether an input
k-uniform hypergraph H satisfies ξ(H) ≤ 2 or ξ(H) ≥ t. For k = 2, such a result follows from [19]
under a variant of the unique games conjecture. However, for super-constant hardness gaps this
implication leads to an exponential loss. In particular, it follows from [6] that for every k ≥ 4 it
is NP-hard to distinguish n-vertex k-uniform hypergraphs H with ξ(H) ≤ 2 from those satisfying
ξ(H) ≥ Ω(log log n). We prove that this exponential loss can be avoided.

Theorem 1.2. Let k ≥ 4 be a fixed integer.

1. There exists a constant δ > 0 for which it is NP-hard to decide whether an input n-vertex k-uniform
hypergraph H satisfies ξ(H) ≤ 2 or ξ(H) ≥ logδ n.

2. Assuming NP * DTIME(nO(log log n)), for every constant c > 0 there is no polynomial time al-
gorithm that decides whether an input n-vertex k-uniform hypergraph H satisfies ξ(H) ≤ 2 or
ξ(H) ≥ c · log n

log log n .

We next consider the hardness of approximating the orthogonality dimension of graphs. Our
result involves a generalization of orthogonal representations of graphs defined as follows. A
t-dimensional orthogonal k-subspace representation of a graph G = (V, E) is an assignment of a
subspace Uv ⊆ Rt with dim(Uv) = k to every vertex v ∈ V, such that the subspaces Uv and Uv′

are orthogonal whenever v and v′ are adjacent in G. For a graph G, let ξk(G) denote the smallest
integer t for which there exists a t-dimensional orthogonal k-subspace representation of G. Note
that ξ1(G) = ξ(G) for every graph G. We prove the following result.

Theorem 1.3. For every graph F, it is NP-hard to decide whether an input graph G satisfies ξ(G) ≤ ξ3(F)
or ξ(G) ≥ ξ4(F).

With Theorem 1.3 in hand, it is of interest to find graphs F for which ξ4(F) is large compared
to ξ3(F). We consider here, in light of Conjecture 1.1, the behavior of the ξk parameters on the
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Kneser graphs K(d, s). For k = 1, it was recently shown that the orthogonality dimension and the
chromatic number coincide on Kneser graphs [33, 1]. We further observe, as an application of a
result of Bukh and Cox [12], that the values of χk and ξk coincide on the Kneser graphs K(d, s) for
every k divisible by s (that is, for all integers ` ≥ 1 and d ≥ 2s, ξ`·s(K(d, s)) = χ`·s(K(d, s)) = ` · d,
and in particular ξ3(K(d, 3)) = d; see Corollary 5.8). It would be natural to ask whether this is also
the case for k = 4 and s = 3.

Question 1.4. Is it true that for every d ≥ 6, ξ4(K(d, 3)) = 2d− 4?

A positive answer to Question 1.4 would imply that for every t ≥ 6, it is NP-hard to decide
whether an input graph G satisfies ξ(G) ≤ t or ξ(G) ≥ 2t − 4, analogously to the hardness
result of [25] for the chromatic number. Note that a result of [12] implies that every d ≥ 6 satisfies
ξ4(K(d, 3)) ≥ d4d/3e (see Lemma 5.7). Combining this bound with Theorem 1.3, it follows that for
every t ≥ 6 it is NP-hard to decide whether an input graph G satisfies ξ(G) ≤ t or ξ(G) ≥ d4t/3e.
In the recent follow-up work [27], it was further shown that there exists a constant c such that for
every sufficiently large d, it holds that ξ4(K(d, 3)) ≥ 3d/2− c. By Theorem 1.3, this implies that
for every sufficiently large t, it is NP-hard to decide whether an input graph G satisfies ξ(G) ≤ t
or ξ(G) ≥ 3t/2− c.

We finally consider the algorithmic problem in which given an n-vertex k-uniform hypergraph
H with constant orthogonality dimension, the goal is to find an orthogonal representation of H of
as low dimension as possible. It is not difficult to show that a hypergraph H satisfies ξ(H) ≤ 2 if
and only if it is 2-colorable. Hence, by the algorithm of Krivelevich et al. [40], given an n-vertex
3-uniform hypergraph H with ξ(H) ≤ 2 it is possible to efficiently find a coloring of H that uses
Õ(n1/5) colors, and, in particular, to obtain an orthogonal representation of H of this dimension.
For graphs, the first nontrivial case is where we are given as input an n-vertex graph G with
ξ(G) ≤ 3, for which we prove the following result.

Theorem 1.5. There exists a randomized polynomial time algorithm that given an n-vertex graph G satis-
fying ξ(G) ≤ 3, finds a coloring of G that uses at most Õ(n0.2413) colors. In particular, the algorithm finds
an orthogonal representation of G of dimension Õ(n0.2413).

In fact, we prove a stronger statement than that of Theorem 1.5, allowing the input graph G to
satisfy ξk(G) ≤ 3k for some integer k (rather than the special case k = 1; see Theorem 5.14).

1.3 Overview of Proofs

1.3.1 Hardness of Approximating the Orthogonality Dimension of Hypergraphs

Theorem 1.2 is proved in two steps. In the first, we show that approximating the orthogonality
dimension of k-uniform hypergraphs becomes harder as the uniformity parameter k grows, and
in the second we prove the hardness result for 4-uniform hypergraphs. By combining the two,
Theorem 1.2 follows. We elaborate below on each of these two steps.

The uniformity reduction. Our goal is to show that for every k1 ≤ k2, one can efficiently trans-
form a given k1-uniform hypergraph H1 to a k2-uniform hypergraph H2 so that ξ(H1) = ξ(H2).
We borrow a reduction used in [29] for hypergraph coloring and prove that it preserves the or-
thogonality dimension. For simplicity of presentation, let us consider here the case of k1 = 2 and
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k2 = 4. Given an n-vertex graph G = (V, E) we construct a 4-uniform hypergraph H whose vertex
set consists of ` copies V1, . . . , V` of V. For i ∈ [`], let Ei denote the collection of 2-subsets of Vi that
correspond to the edges of G. The hyperedges of H are defined as all possible unions of pairs of
sets picked from distinct collections Ei and Ej.

As a warm-up, we observe that for a sufficiently large `, say ` = n + 1, we have χ(G) = χ(H).
Indeed, if G is c-colorable then the c-coloring of G applied to each of the copies of V in H implies
that H is c-colorable. On the other hand, if G is not c-colorable then for every coloring of H by
c colors, every graph (Vi, Ei) contains a monochromatic edge. By ` > c, there are i 6= j and sets
e1 ∈ Ei and e2 ∈ Ej such that all vertices of e1 ∪ e2 share the same color. This implies the existence
of a monochromatic hyperedge in H, hence H is not c-colorable.

We next show that for a sufficiently large ` we have ξ(G) = ξ(H). The first direction is equally
easy, namely, if G has a t-dimensional orthogonal representation then by assigning its vectors
to every copy of V in H we get a t-dimensional orthogonal representation of H. For the other
direction, assume that G satisfies ξ(G) > t, and suppose for the sake of contradiction that ξ(H) ≤
t, i.e., there exists a t-dimensional orthogonal representation (uv)v∈V(H) of H. By ξ(G) > t, for
every i ∈ [`] there are two vertices ai, bi ∈ Vi adjacent in G whose vectors are not orthogonal,
that is, 〈uai , ubi〉 6= 0. Now, it suffices to show that for some i 6= j the four vectors uai , ubi , uaj , ubj

are pairwise non-orthogonal, as this would imply a contradiction to the fact that {ai, bi, aj, bj} is
a hyperedge of H. It is not difficult to see that for some i 6= j the vectors uai and ubj are not
orthogonal. Indeed, let M1 ∈ R`×t be the matrix whose rows are the vectors uai for i ∈ [`], and
let M2 ∈ R`×t be the matrix whose rows are the vectors ubi for i ∈ [`]. Consider the matrix
M ∈ R`×` defined by M = M1 ·MT

2 , and notice that its diagonal entries are all nonzero (because
〈uai , ubi〉 6= 0 for every i) and that its rank is at most t. Assuming that ` > t, the matrix M must
have some nonzero non-diagonal entry (otherwise its rank is `), implying that 〈uai , ubj〉 6= 0 for
some i 6= j. This, however, still does not complete the argument, since it might be the case that for
these indices i and j, one of the inner products 〈uai , uaj〉, 〈ubi , uaj〉, and 〈ubi , ubj〉 is zero, avoiding
the contradiction.

To overcome this difficulty, we use a symmetrization argument showing that the assumption
ξ(H) ≤ t implies that H has some t′-dimensional orthogonal representation (wv)v∈V(H), where t′

is not too large, with the following symmetry property: For every i and j, if 〈wai , wbj〉 6= 0 then the
inner products 〈wai , waj〉, 〈wbi , waj〉, and 〈wbi , wbj〉 are all nonzero. With such an orthogonal rep-
resentation, applying the above argument with ` > t′ would certainly imply a contradiction and
complete the proof. We achieve the symmetry property for t′ = t4 using vector tensor products.
Namely, we assign to every vertex ai the vector wai = uai ⊗ ubi ⊗ uai ⊗ ubi , to every vertex bi the
vector wbi = u⊗2

ai
⊗ u⊗2

bi
, and to every other vertex v the vector wv = u⊗4

v . It is straightforward
to verify that (wv)v∈V(H) forms a t′-dimensional orthogonal representation of H. Moreover, by
standard properties of tensor products we have

〈wai , wbj〉 = 〈uai , uaj〉 · 〈ubi , uaj〉 · 〈uai , ubj〉 · 〈ubi , ubj〉,

which can be used to obtain that if 〈wai , wbj〉 6= 0 then the other three inner products 〈wai , waj〉,
〈wbi , waj〉, and 〈wbi , wbj〉 are nonzero as well. This completes the proof sketch for k1 = 2 and k2 = 4.
For the proof of the general case, we generalize the tensor-based argument to k-tuples of vertices
(see Lemma 3.3) and extend the matrix reasoning applied above using bounds on off-diagonal
Ramsey numbers (see Lemma 3.2 and Remark 3.5).
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Hardness for 4-uniform hypergraphs. We next consider the hardness of approximating the or-
thogonality dimension of 4-uniform hypergraphs. A significant difficulty in proving such a result
lies at the challenge of proving strong lower bounds on the orthogonality dimension. For the sake
of comparison, in most hardness proofs for hypergraph coloring the lower bound on the chro-
matic number of the hypergraph H constructed by the reduction is shown by an upper bound on
its independence number α(H) and the standard inequality χ(H) ≥ |V(H)|

α(H)
. This approach cannot

be used for the orthogonality dimension, which in certain cases can be exponentially smaller than
this ratio (see Proposition 2.2). Exceptions of this approach, where the lower bound on the chro-
matic number is not proved via the independence number, are the works of Dinur et al. [20] and
Bhangale [6] on which we elaborate next.

A standard technique in proving hardness of approximation results is to reduce from the La-
bel Cover problem, in which given a collection of constraints over a set of variables the goal is
to decide whether there exists an assignment that satisfies all the constraints or any assignment
satisfies only a small fraction of them (see Section 4.1). In such reductions, every variable over a
domain [R] is encoded via an error-correcting code known as the long code, and the constraints
are replaced by “inner” constraints designed for the specific studied problem. One way to view
the long code is as the graph whose vertices are all subsets of [R] where two sets are adjacent if
they are disjoint [21]. In the hardness proof of [20] for the chromatic number of 3-uniform hy-
pergraphs, this graph was replaced by the induced subgraph that consists only of subsets of a
given size (i.e., a Kneser graph), where a label α ∈ [R] is encoded by the 2-coloring of the ver-
tices according to whether the sets contain α or not. The analysis of [20] is crucially based on the
large chromatic number of Kneser graphs [42] and on the property that every coloring of Kneser
graphs with number of colors smaller than their chromatic number enforces a large color class
that includes a monochromatic edge. The latter property was proved in [20] using the chromatic
number of the Schrijver graph [50], a vertex-critical subgraph of the Kneser graph. The approach
of [20] was recently extended by Bhangale [6], who used in his long code construction only the
vertices of the Schrijver graph. The fact that this subgraph has much fewer vertices and yet large
chromatic number has led to improved hardness factors. However, for the analysis to work the
“inner” constraints had to include four vertices, and this is the reason that the result was obtained
for 4-uniform hypergraphs (and not for 3-uniform hypergraphs as in [20]).

In the current work we prove the hardness of approximating the orthogonality dimension of
4-uniform hypergraphs using the reduction applied in [6] for hypergraph coloring. While we
achieve the same hardness factors as in [6], the analysis relies on several different ideas and tools.
This includes the aforementioned symmetrization argument for orthogonal representations (see
Lemma 3.3), a lower bound of Golovnev et al. [28] on the sparsity of low rank matrices with
nonzero entries on the diagonal (see Lemma 4.5), and the orthogonality dimension of Schrijver
graphs determined in [33] (see Theorem 2.3).

1.3.2 Hardness of Approximating the Orthogonality Dimension of Graphs

Theorem 1.3 relates the hardness of approximating the orthogonality dimension of graphs to or-
thogonal subspace representations. Our starting point is the NP-hardness of deciding whether
an input graph G satisfies ξ(G) ≤ 3 [47]. Following an approach of Garey and Johnson [25],
our reduction constructs a graph G′ defined as the lexicographic product of some fixed graph F
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and the input graph G. Namely, we replace every vertex of F by a copy of G and replace every
edge of F by a complete bipartite graph between the vertex sets associated with its endpoints (see
Definition 5.2). We then show that if ξ(G) ≤ 3 then G′ has a ξ3(F)-dimensional orthogonal rep-
resentation, whereas if ξ(G) ≥ 4 the orthogonality dimension of G′ is at least ξ4(F). It would be
interesting to figure out the best hardness factors that Theorem 1.3 can yield (see Question 1.4).
We note, though, that our approach is limited to multiplicative hardness gaps bounded by 2, as it
is easy to see that every graph F satisfies ξ4(F) ≤ ξ3(F) + ξ1(F) ≤ 2 · ξ3(F).

1.3.3 Coloring Graphs with Orthogonality Dimension Three

Consider the problem in which given an n-vertex graph G satisfying ξ(G) ≤ 3, the goal is to
find an orthogonal representation of G of as low dimension as possible. Employing an approach
of [17], we attempt to find a coloring of G with a small number of colors, as this in particular
gives an orthogonal representation of the same dimension. As mentioned before, for every c ≥ 3
there are known efficient algorithms for coloring n-vertex c-colorable graphs, however, our only
guarantee on G is that its orthogonality dimension is at most 3. Interestingly, it follows from a
theorem of Kochen and Specker [39] (see also [26]) that the largest possible chromatic number of
such a graph is 4. It follows that given an n-vertex graph G with ξ(G) ≤ 3, one can simply apply
the efficient algorithm of [32] for coloring 4-colorable graphs to obtain a coloring of G by Õ(nγ)

colors where γ = 7/19 ≈ 0.368.
To improve on this bound, we show an efficient algorithm that finds a large independent set

in a given graph G satisfying ξ(G) ≤ 3. We consider two cases according to the maximum degree
in the graph. If G has a vertex of large degree then the algorithm finds a large independent set in
its neighborhood. This can be done since the assumption ξ(G) ≤ 3 implies that the neighborhood
of every vertex of G is 2-colorable (just as for 3-colorable graphs). Otherwise, in case that all
the degrees in G are small, we use an algorithm of Karger et al. [34] based on a semidefinite
relaxation of the chromatic number, called the vector chromatic number. Our analysis relies on a
result by Lovász [43] relating the (strict) vector chromatic number of graphs to their orthogonality
dimension. Now, by repeatedly omitting independent sets in G, we obtain a coloring that uses
Õ(n1/4) colors. This can be slightly improved to Õ(n0.2413) by applying the refined analysis of
Arora et al. [3] for the rounding algorithm of [34].

As already mentioned, our algorithm can handle any graph G that satisfies ξk(G) ≤ 3k for
some integer k, rather than for k = 1 (see Theorem 5.14). The generalized analysis involves a
connection, recently proved by Bukh and Cox [12], between the (strict) vector chromatic number
and the graph parameters ξk.

1.4 Outline

The rest of the paper is organized as follows. In Section 2, we provide some background on the
orthogonality dimension and on the Kneser and Schrijver graphs. In Section 3, we present and
analyze the uniformity reduction. In Section 4, we prove our hardness result for 4-uniform hy-
pergraphs and derive Theorem 1.2. In the final Section 5, we prove our hardness and algorithmic
results on the orthogonality dimension of graphs, confirming Theorems 1.3 and 1.5.
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2 Preliminaries

2.1 Orthogonality Dimension

We define the orthogonality dimension of hypergraphs over a general field.

Definition 2.1. A t-dimensional orthogonal representation of a hypergraph H = (V, E) over a field
F is an assignment of a vector uv ∈ Ft with 〈uv, uv〉 6= 0 to every vertex v ∈ V, such that for every
hyperedge e ∈ E there are two vertices v, v′ ∈ e satisfying 〈uv, uv′〉 = 0. The orthogonality dimension
of a hypergraph H = (V, E) over F, denoted by ξ(H, F), is the smallest integer t for which there exists a
t-dimensional orthogonal representation of H over F. For the real field R, we let ξ(H) stand for ξ(H, R).

The following proposition shows that there are graphs whose orthogonality dimension is ex-
ponentially smaller than their chromatic number.

Proposition 2.2. There exists an explicit family of graphs Gt such that ξ(Gt) ≤ t and χ(Gt) ≥ 2Ω(t).

Proof: Let t be an integer divisible by 4. Consider the graph Gt = (V, E) whose vertices are all the
t
2 -subsets of [t] where two sets A, B ∈ V are adjacent if their intersection size satisfies |A ∩ B| = t

4 .
Notice that by |A| = |B| = t

2 , this condition is equivalent to |A4 B| = t
2 . Assign to every vertex

A the vector uA ∈ {±1}t where (uA)i = +1 if i ∈ A and (uA)i = −1 otherwise. We claim that
(uA)A∈V is an orthogonal representation of Gt. Indeed, for every adjacent vertices A, B ∈ V we
have

〈uA, uB〉 = (−1) · |A4 B|+ (t− |A4 B|) = t− 2 · |A4 B| = 0.

This implies that ξ(Gt) ≤ t. On the other hand, by a celebrated result of Frankl and Rödl [24],
α(Gt) ≤ 2c·t for some c < 1, implying that

χ(Gt) ≥
|V|

α(Gt)
≥

( t
t/2)

2c·t ≥ 2(1−c−o(1))·t,

completing the proof.

2.2 Kneser and Schrijver Graphs

For integers d ≥ 2s, the Kneser graph K(d, s) is the graph whose vertices are all the s-subsets of [d],
where two sets are adjacent if they are disjoint.

A set A ⊆ [d] is said to be stable if it does not contain two consecutive elements modulo d (that
is, if i ∈ A then i + 1 /∈ A, and if d ∈ A then 1 /∈ A). In other words, a stable subset of [d] is
an independent set in the cycle Cd with the numbering from 1 to d along the cycle. For integers
d ≥ 2s, the Schrijver graph S(d, s) is the graph whose vertices are all the stable s-subsets of [d],
where two sets are adjacent if they are disjoint.

The orthogonality dimension of the Kneser and Schrijver graphs was determined in [33] using
topological methods.

Theorem 2.3 ([33]). For every d ≥ 2s, ξ(K(d, s)) = ξ(S(d, s)) = d− 2s + 2.

The number of vertices in K(d, s) is clearly (d
s). We need the following simple bound, given

in [20], on the number of vertices in S(d, s).

Lemma 2.4 ([20]). For every d ≥ 2s, the number of vertices in S(d, s) is at most ( d
d−2s).

9



3 The Uniformity Reduction

In this section we reduce the problem of approximating the orthogonality dimension of k1-uniform
hypergraphs over a field F to approximating it on k2-uniform hypergraphs, where k1 ≤ k2.

3.1 Ramsey Numbers

For integers s and t, the Ramsey number R(s, t) is defined as the smallest integer n such that every
n-vertex graph contains a clique of size s or an independent set of size t (or both). We need the
following well-known upper bound on Ramsey numbers due to Erdös and Szekeres [22].

Theorem 3.1 ([22]). For all integers s and t, R(s, t) ≤ (t+s−2
s−1 ).

The following lemma relates Ramsey numbers to nonzero patterns of matrices with nonzero
entries on the diagonal.

Lemma 3.2. Let F be a field, and let M be an n× n matrix over F with nonzero entries on the diagonal.
Denote t = rankF(M) and suppose that n ≥ R(s, t + 1). Then there exists a set C ⊆ [n] of size |C| = s
such that for every i, i′ ∈ C it holds that Mi,i′ 6= 0 or Mi′,i 6= 0 (or both).

Proof: Let M ∈ Fn×n be a matrix with nonzero entries on the diagonal such that t = rankF(M)

and n ≥ R(s, t + 1). Define a graph G on the vertex set [n] where two distinct vertices i and
i′ are adjacent if Mi,i′ 6= 0 or Mi′,i 6= 0 (or both). Observe that any principal sub-matrix of M
that corresponds to an independent set in G is diagonal and has nonzero entries on the diagonal.
This implies that the size of any independent set in G does not exceed the rank t of M, that is,
α(G) < t + 1. Since G has at least R(s, t + 1) vertices, it follows that G contains a clique C of size
s. This set C satisfies the requirement of the lemma.

3.2 Symmetrization Lemma

We turn to prove our symmetrization lemma for orthogonal representations, which is used in the
analysis of the uniformity reduction (Section 3.3) and in our hardness proof for 4-uniform hyper-
graphs (Section 4). The lemma says, roughly speaking, that given an orthogonal representation
of a hypergraph H and a collection A of pairwise disjoint k-tuples of vertices of H, one can con-
struct another orthogonal representation of H with a polynomially related dimension such that
the following property holds: For every two k-tuples a and b in A such that the vectors associated
with the first vertex of a and the second vertex of b are not orthogonal, it holds that all the vectors
associated with the vertices of a are not orthogonal to all the vectors associated with the vertices
of b. The lemma is used to prove lower bounds on the orthogonality dimension of hypergraphs.
Indeed, in order to show that an assignment of vectors to the vertices does not form an orthogonal
representation, one has to show that the vectors associated with the vertices of some hyperedge
are pairwise non-orthogonal. For a hyperedge that consists of vectors from some k-tuples of A,
the lemma essentially allows us to consider only the first two vertices of every such k-tuple.

In the proof of the lemma we use the notion of tensor product of vectors. Recall that for a field
F, the tensor product of the vectors u ∈ Fn and u′ ∈ Fn′ , denoted by u⊗ u′, is a vector in Fn·n′

with coordinates corresponding to all products ui · u′i′ for i ∈ [n] and i′ ∈ [n′]. We let u⊗k denote
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the tensor product of the vector u with itself k times. It is well known and easy to verify that for
every u, w ∈ Fn and u′, w′ ∈ Fn′ it holds that 〈u⊗ u′, w⊗ w′〉 = 〈u, w〉 · 〈u′, w′〉. We also need the
following notation. For a set V and a k-tuple a ∈ Vk we let a[i] stand for the ith component of a,
that is, a = (a[1], a[2], . . . , a[k]).

Lemma 3.3. Let k ≥ 2 be an integer, let H = (V, E) be a hypergraph with a t-dimensional orthogonal
representation (uv)v∈V over a field F, and let A ⊆ Vk be a collection of pairwise disjoint k-tuples of vertices
of H. Suppose that for every a ∈ A and i, i′ ∈ [k], 〈ua[i], ua[i′]〉 6= 0. Then there exists a tk2

-dimensional
orthogonal representation (wv)v∈V of H over F such that

1. for every a ∈ A and i, i′ ∈ [k], 〈wa[i], wa[i′]〉 6= 0, and

2. for every (distinct) a, b ∈ A such that 〈wa[1], wb[2]〉 6= 0 it holds that 〈wa[i], wb[i′]〉 6= 0 for all
i, i′ ∈ [k].

Proof: For a hypergraph H = (V, E) and a collection A ⊆ Vk of pairwise disjoint k-tuples of ver-
tices of H, let (uv)v∈V be a t-dimensional orthogonal representation of H over F as in the lemma.
We assign to the vertices of H tk2

-dimensional vectors (wv)v∈V over F as follows. For every a ∈ A,
define

wa[1] = (ua[1] ⊗ ua[2] ⊗ · · · ⊗ ua[k])
⊗k,

wa[2] = u⊗k
a[1] ⊗ u⊗k

a[2] ⊗ · · · ⊗ u⊗k
a[k].

For every other vertex v ∈ V, i.e., a vertex that does not appear in the first two coordinates of the
k-tuples of A, we define wv = u⊗k2

v . Note that the assignment is well defined since the k-tuples
of A are pairwise disjoint. (In fact, we could weaken the condition of pairwise disjointness in the
lemma and allow a[i] = b[i′] for a, b ∈ A and i, i′ ≥ 3.)

We first observe that the assignment (wv)v∈V is an orthogonal representation of H over F. For
every vertex v ∈ V, the vector wv is a tensor product of k2 vectors of the form uv′ with v′ ∈ V. This
implies that 〈wv, wv〉 is a product of inner products of the form 〈uv′ , uv′〉with v′ ∈ V, and since they
are all nonzero it follows that 〈wv, wv〉 6= 0. Now, since (uv)v∈V is an orthogonal representation of
H, it suffices to show that for every two vertices v, v′ ∈ V, it holds that 〈wv, wv′〉 = 0 whenever
〈uv, uv′〉 = 0. Consider two vertices v, v′ ∈ V such that 〈uv, uv′〉 = 0. Notice that wv and wv′ are
tensor products of k2 vectors, the (k + 1)th of which is uv and uv′ respectively, hence 〈wv, wv′〉 = 0.

We next verify that the orthogonal representation (wv)v∈V of H over F satisfies the properties
required by the lemma. For the first item, observe that for every a ∈ A each vector wa[i] is a
tensor product of k2 vectors of the form ua[j] with j ∈ [k]. Hence, the inner product 〈wa[i], wa[i′]〉
for i, i′ ∈ [k] is a product of inner products of the form 〈ua[j], ua[j′]〉 with j, j′ ∈ [k], which are all
nonzero by assumption, hence 〈wa[i], wa[i′]〉 6= 0. For the second item, consider distinct a, b ∈ A
such that 〈wa[1], wb[2]〉 6= 0. Observe that

〈wa[1], wb[2]〉 = ∏
(j,j′)∈[k]×[k]

〈ua[j], ub[j′]〉,

which implies that 〈ua[j], ub[j′]〉 6= 0 for all j, j′ ∈ [k]. Since every inner product 〈wa[i], wb[i′]〉 for
i, i′ ∈ [k] is a product of inner products of the form 〈ua[j], ub[j′]〉 with j, j′ ∈ [k], we derive that
〈wa[i], wb[i′]〉 6= 0, and we are done.
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3.3 The Reduction

We are ready to prove the main result of this section.

Theorem 3.4. Let k2 ≥ k1 ≥ 2 be constants. For every parameter m = m(n) ≤ n there exists a polynomial
time reduction that given a k1-uniform hypergraph H1 on n vertices outputs a k2-uniform hypergraph H2

on n ·mO(1) vertices such that for every field F,

1. ξ(H2, F) ≤ ξ(H1, F), and

2. if ξ(H2, F) ≤ m then ξ(H1, F) ≤ ξ(H2, F).

Proof: Let k2 ≥ k1 ≥ 2 be constants and put s = dk2/k1e. For a given parameter m = m(n) ≤ n
consider the reduction that given a k1-uniform hypergraph H1 = (V, E) on n vertices outputs
the k2-uniform hypergraph H2 = (V ′, E′) defined as follows. Its vertex set is defined as V ′ =
V1 ∪ · · · ∪V` where each Vi is a copy of the vertex set V of H1 and

` =

(
mk2

1 + s− 1
s− 1

)
. (2)

Let Ei denote the collection of k1-subsets of Vi that correspond to the hyperedges in the hypergraph
H1. A hyperedge of H2 is given by the union of s − 1 sets picked from different Ei’s together
with additional k2 − (s − 1) · k1 ≤ k1 vertices chosen from a set picked from another Ei. More
precisely, for every distinct indices i1, . . . , is, choices of eij ∈ Eij for j ∈ [s], and a set e′is

⊆ eis of
size |e′is

| = k2 − (s − 1) · k1 we include in H2 the hyperedge ei1 ∪ · · · ∪ eis−1 ∪ e′is
. Note that H2

is a k2-uniform hypergraph on n · ` = n ·O(mk2
1·(s−1)) vertices and that it can be constructed in

polynomial running time.
To prove Item 1 of the theorem, assume that there exists a t-dimensional orthogonal represen-

tation of H1 over F. For the hypergraph H2, assign the same vectors to each of the ` copies of
the vertex set V. Since every hyperedge of H2 contains a k1-subset from some Ei, two of the vec-
tors associated with its vertices are orthogonal. It follows that this assignment is a t-dimensional
orthogonal representation of H2 over F, hence ξ(H2, F) ≤ ξ(H1, F).

To prove Item 2, denote t = ξ(H2, F) ≤ m and let (uv)v∈V′ be a t-dimensional orthogonal rep-
resentation of H2 over F. Assume by contradiction that ξ(H1, F) > t. Then, the restriction (uv)v∈Vi

of the given orthogonal representation to any Vi does not form an orthogonal representation of
the hypergraph (Vi, Ei). This implies that for every i ∈ [`] there exists a k1-tuple ai ∈ Vk1

i whose
vertices form a hyperedge in (Vi, Ei) such that 〈uai [j], uai [j′]〉 6= 0 for all j, j′ ∈ [k1].

Applying Lemma 3.3 to the orthogonal representation (uv)v∈V′ of H2 over F with the pairwise
disjoint k1-tuples {ai | i ∈ [`]}, we obtain a tk2

1-dimensional orthogonal representation (wv)v∈V′ of
H2 over F that satisfies the following properties:

1. 〈wai [j], wai [j′]〉 6= 0 for every i ∈ [`] and j, j′ ∈ [k1], and

2. for every (distinct) i, i′ ∈ [`] such that 〈wai [1], wai′ [2]
〉 6= 0 it holds that 〈wai [j], wai′ [j′]〉 6= 0 for

all j, j′ ∈ [k1].

Let M1 ∈ F`×tk2
1 be the matrix whose rows are the vectors wai [1] for i ∈ [`], and let M2 ∈ F`×tk2

1

be the matrix whose rows are the vectors wai [2] for i ∈ [`]. Consider the matrix M ∈ F`×` defined
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by M = M1 ·MT
2 , and notice that Mi,i′ = 〈wai [1], wai′ [2]

〉 for every i, i′ ∈ [`] and that its rank is at

most tk2
1 . Property (1) of the orthogonal representation (wv)v∈V′ implies that the diagonal entries

of M are all nonzero. By the Erdös-Szekeres bound on Ramsey numbers (Theorem 3.1) and the
definition of ` in (2), we have ` ≥ R(s, mk2

1 + 1) ≥ R(s, tk2
1 + 1). Hence, we can apply Lemma 3.2

to obtain that there exists a set C ⊆ [`] of size |C| = s such that for every i, i′ ∈ C it holds that
Mi,i′ 6= 0 or Mi′,i 6= 0.

To complete the proof recall that the hypergraph H2 includes a hyperedge whose vertices all
appear in the k1-tuples ai with i ∈ C. We will get a contradiction by proving that the vectors
assigned to these vertices by the orthogonal representation (wv)v∈V′ of H2 are pairwise non-
orthogonal. Indeed, by Property (1) of (wv)v∈V′ , we have 〈wai [j], wai [j′]〉 6= 0 for every i ∈ C
and j, j′ ∈ [k1]. In addition, for distinct i, i′ ∈ C it holds that Mi,i′ 6= 0 or Mi′,i 6= 0, that is,
〈wai [1], wai′ [2]

〉 6= 0 or 〈wai′ [1]
, wai [2]〉 6= 0. By Property (2) of (wv)v∈V′ we have 〈wai [j], wai′ [j′]〉 6= 0 for

all i, i′ ∈ C and j, j′ ∈ [k1], and we are done.

Remark 3.5. We note that the use of Ramsey numbers in the proof of Theorem 3.4 is not essential. As
pointed out to us by an anonymous reviewer, to prove the assertion of the theorem it suffices to analyze the
reduction for the case k2 = k1 + 1 which can be repeatedly applied to imply the general result. For this
special case, the Ramsey numbers are not needed as demonstrated in the discussion in Section 1.3. Yet, we
have decided to present here the direct analysis for general k1 and k2 since it shows that the reduction used
in [29] for hypergraph coloring perfectly preserves the orthogonality dimension, and because the running
time of this reduction is slightly better than that of repeatedly applying the reduction for k2 = k1 + 1.

We derive the following corollary.

Corollary 3.6. Let k2 ≥ k1 ≥ 2 be constants. There exists a polynomial time reduction that given a k1-
uniform hypergraph H1 on n vertices outputs a k2-uniform hypergraph H2 on nO(1) vertices such that for
every field F, ξ(H1, F) = ξ(H2, F).

Proof: Apply Theorem 3.4 with m(n) = n. By Item 1, we have ξ(H2, F) ≤ ξ(H1, F) ≤ n. Combin-
ing this with Item 2, we get that ξ(H1, F) ≤ ξ(H2, F), and we are done.

4 The Orthogonality Dimension of Hypergraphs

We prove the following hardness result for the orthogonality dimension of 4-uniform hypergraphs
over the real field (see Remark 4.11).

Theorem 4.1.

1. There exists a constant δ > 0 for which it is NP-hard to decide whether an input n-vertex 4-uniform
hypergraph H satisfies ξ(H) ≤ 2 or ξ(H) ≥ logδ n.

2. Assuming NP * DTIME(nO(log log n)), for every constant c > 0 there is no polynomial time al-
gorithm that decides whether an input n-vertex 4-uniform hypergraph H satisfies ξ(H) ≤ 2 or
ξ(H) ≥ c · log n

log log n .

Theorem 1.2 follows by combining Theorem 4.1 with Corollary 3.6.
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4.1 Label Cover

Theorem 4.1 is proved by a reduction from the Label Cover problem, defined as follows.

Definition 4.2. In the Label Cover problem the input L = (U, V, E, R, L, φ) consists of a (bi-regular)
graph (U, V, E) where every vertex of U is associated with a variable with range [R] and every vertex of V
is associated with a variable with range [L]. Every edge (x, z) ∈ E is associated with a projection constraint
φx→z : [R] → [L]. Given an instance L the goal is to find an assignment ρ to the variables of U ∪ V that
maximizes the number of edges (x, z) ∈ E such that φx→z(ρ(x)) = ρ(z).

The following theorem follows from the PCP theorem [4, 5] combined with the parallel repeti-
tion theorem [48].

Theorem 4.3. For every ` = `(n) there exists a reduction from 3-SAT to Label Cover that given a 3-SAT
instance ϕ of size n outputs in running time nO(`) a Label Cover instance L of size nO(`) with range size
2O(`) such that

• if ϕ is satisfiable then there exists an assignment to L that satisfies all the constraints, and

• if ϕ is not satisfiable then every assignment to L satisfies at most 2−Ω(`) fraction of the constraints.

We also need the following result of [46] which gives better parameters for sub-constant sound-
ness error.

Theorem 4.4 ([46]). For every ε = ε(n) there exists a reduction from 3-SAT to Label Cover that given a 3-
SAT instance ϕ of size n outputs in running time poly(n, 1

ε ) a Label Cover instance L of size n1+o(1) · 1
εO(1)

with range size exp( 1
εO(1) ) such that

• if ϕ is satisfiable then there exists an assignment to L that satisfies all the constraints, and

• if ϕ is not satisfiable then every assignment to L satisfies at most ε fraction of the constraints.

4.2 Sparsity of Low Rank Matrices

The following lemma, proved by Golovnev, Regev, and Weinstein [28], relates the sparsity of a
matrix with nonzero entries on the diagonal to its rank.

Lemma 4.5 ([28]). For every field F and an n× n matrix M over F with nonzero entries on the diagonal,
the number s(M) of nonzero entries in M satisfies s(M) ≥ n2

4·rankF(M)
.

4.3 Proof of Theorem 4.1

The proof of Theorem 4.1 uses a reduction of Bhangale [6], described below.

The reduction. The reduction gets as input an instance L = (U, V, E, R, L, φ) of the Label Cover
problem (see Definition 4.2) and produces a 4-uniform hypergraph H. Let t be an integer param-
eter to be determined later, and set s = d(R− t)/2e.

The vertices of H include for every variable x ∈ U a copy C[x] of the vertex set of the Schrijver
graph S(R, s) (see Section 2.2). Formally, for every variable x ∈ U we define C[x] by

C[x] = {x} ×V(S(R, s)),
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so that every vertex of C[x] is referred to as a pair (x, A), where A is a stable s-subset of [R]. The
vertex set of H is V(H) = ∪x∈UC[x].

We next define the hyperedges of H. We identify here sets with their characteristic vectors,
that is, for a set A we let Aα be 1 if α ∈ A and 0 otherwise. For every two variables x, y ∈ U
with a common neighbor z ∈ V in L, the set {(x, A), (x, B), (y, C), (y, D)} forms a hyperedge in H
if for every α, β ∈ [R] such that φx→z(α) = φy→z(β) it holds that {Aα, Bα, Cβ, Dβ} = {0, 1}. This
completes the description of the reduction.

To provide some intuition, we note that the role of the component C[x] in H is to encode the
value of the variable x, where an assignment of α ∈ [R] to x is encoded by the 2-coloring of C[x] in
which every vertex (x, A) is colored by Aα ∈ {0, 1}. This encoding is used in the following simple
proof of the completeness of the reduction.

Proposition 4.6 (Completeness). If the Label Cover instance L is satisfiable then ξ(H) ≤ 2.

Proof: Assume that there exists a satisfying assignment ρ to the variables of U ∪ V such that
φx→z(ρ(x)) = ρ(z) for every edge (x, z) of L. Consider the 2-coloring of H that assigns to every
vertex (x, A) the color Aρ(x). We claim that this coloring is proper. To see this, consider a hyper-
edge {(x, A), (x, B), (y, C), (y, D)} of H defined with respect to a common neighbor z ∈ V of x
and y. Since ρ is a satisfying assignment, we have φx→z(ρ(x)) = ρ(z) and φy→z(ρ(y)) = ρ(z),
and thus φx→z(ρ(x)) = φy→z(ρ(y)). By the definition of the hyperedges of H we conclude that
{Aρ(x), Bρ(x), Cρ(y), Dρ(y)} = {0, 1}, hence the hyperedge is not monochromatic. This implies that
χ(H) ≤ 2 and thus ξ(H) ≤ 2, as required.

We turn to prove the soundness of the reduction.

Proposition 4.7 (Soundness). If ξ(H) ≤ t then there exists an assignment to the variables of U ∪V that
satisfies at least 1

4·t6 fraction of the edges of L.

Proof: Assume that ξ(H) ≤ t. Then there exists an assignment of a nonzero vector uv ∈ Rt to
every vertex v ∈ V(H) such that every hyperedge of H contains two vertices assigned to orthog-
onal vectors. For every variable x ∈ U, the vertices of C[x] can be viewed as the vertices of the
Schrijver graph S(R, s), which by Theorem 2.3 satisfies

ξ(S(R, s)) = R− 2s + 2 = R− 2 · d(R− t)/2e+ 2 ≥ R− (R− t + 1) + 2 = t + 1.

This implies that for every variable x ∈ U the assignment (uv)v∈C[x] does not form an orthogonal
representation of the graph S(R, s), hence there exist two vertices ax = (x, A(x)) and bx = (x, B(x))

in C[x] such that A(x) ∩ B(x) = ∅ and 〈uax , ubx〉 6= 0.
Applying Lemma 3.3 to the orthogonal representation (uv)v∈V(H) of H with the pairwise dis-

joint pairs {(ax, bx) | x ∈ U}, we obtain a t4-dimensional orthogonal representation (wv)v∈V(H) of
H that satisfies the following properties:

1. for every x ∈ U, 〈wax , wbx〉 6= 0, and

2. for every x, y ∈ U such that 〈wax , wby〉 6= 0, the inner products 〈wax , way〉, 〈wbx , way〉, and
〈wbx , wby〉 are all nonzero.
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We turn to show that there exists an assignment to the variables of U ∪V that satisfies at least
1

4·t6 fraction of the edges of L. To this end, we define a randomized assignment to the variables of
U ∪ V as follows. For every x ∈ U consider the set E(x) = [R] \ (A(x) ∪ B(x)). Notice that the
disjointness of the sets A(x) and B(x) implies that

|E(x)| = R− 2 · s = R− 2 · d(R− t)/2e ≤ t.

We assign to every variable x ∈ U an assignment ρ(x) chosen uniformly at random from E(x).
We further assign to every variable z ∈ V an assignment ρ(z) that maximizes the number of
constraints involving z that can be satisfied, given that the assignment of every x ∈ U is chosen
from E(x). More formally, for a variable z ∈ V let Uz ⊆ U be the set of neighbors of z in U and
define ρ(z) to be some β ∈ [L] with largest number of variables x ∈ Uz such that β ∈ φx→z(E(x)).

We need the following three claims.

Claim 4.8. For every variable z ∈ V, there exists a variable x ∈ Uz for which at least 1
4·t4 fraction of the

variables y of Uz satisfies 〈wax , wby〉 6= 0.

Claim 4.9. For every variable z ∈ V and two variables x, y ∈ Uz such that 〈wax , wby〉 6= 0, we have
φx→z(E(x)) ∩ φy→z(E(y)) 6= ∅.

Claim 4.10. Let F be a collection of `-subsets of [R] that includes a set that intersects every set of F . Then
there exists an element of [R] that belongs to at least 1

` fraction of the sets of F .

Let us first show that these three claims complete the proof of the proposition. We claim that
for every variable z ∈ V, the randomized assignment ρ satisfies in expectation at least 1

4·t6 fraction
of the constraints involving z. Indeed, fix a variable z ∈ V. By Claim 4.8, there exists a variable
x ∈ Uz for which at least 1

4·t4 fraction of the variables y of Uz satisfies 〈wax , wby〉 6= 0. By Claim 4.9,
this x satisfies φx→z(E(x)) ∩ φy→z(E(y)) 6= ∅ for at least 1

4·t4 fraction of the variables y of Uz.
Applying Claim 4.10 to these sets φy→z(E(y)), we obtain that there exists an element of [R] that
belongs to at least 1

|E(x)| ·
1

4·t4 ≥ 1
4·t5 fraction of the sets φy→z(E(y)) with y ∈ Uz. By the definition

of ρ(z), we get that ρ(z) ∈ φy→z(E(y)) for at least 1
4·t5 fraction of the variables y ∈ Uz. Since ρ(y) is

chosen uniformly at random from E(y), ρ satisfies in expectation at least 1
t ·

1
4·t5 = 1

4·t6 fraction of
the constraints involving z, as required. Now, by linearity of expectation, ρ satisfies in expectation
at least 1

4·t6 fraction of the constraints of L, so in particular, there exists an assignment satisfying at
least 1

4·t6 fraction of the constraints of L, and we are done.
It remains to prove Claims 4.8, 4.9, and 4.10.

Proof of Claim 4.8: Fix a variable z ∈ V and denote n = |Uz|. Let M1 ∈ Rn×t4
be the matrix

whose rows are the vectors wax for x ∈ Uz, and let M2 ∈ Rn×t4
be the matrix whose rows are the

vectors wbx for x ∈ Uz. Consider the matrix M ∈ Rn×n defined by M = M1 ·MT
2 , and notice that

Mx,y = 〈wax , wby〉 for every x, y ∈ Uz and that its rank is at most t4. Property (1) of the orthogonal
representation (wv)v∈V(H) implies that the diagonal entries of M are all nonzero, so we can apply

Lemma 4.5 to obtain that s(M) ≥ n2

4·t4 . In particular, there exists a row of M with at least n
4·t4

nonzero entries. This implies that there exists a variable x ∈ Uz for which at least 1
4·t4 fraction of

the variables y of Uz satisfies 〈wax , wby〉 6= 0, as required.
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Proof of Claim 4.9: Fix a variable z ∈ V and two variables x, y ∈ Uz such that 〈wax , wby〉 6= 0.
Assume by contradiction that φx→z(E(x)) ∩ φy→z(E(y)) = ∅.

We first show that the set e = {(x, A(x)), (x, B(x)), (y, A(y)), (y, B(y))} is a hyperedge of H.
To see this, suppose that some α, β ∈ [R] satisfy φx→z(α) = φy→z(β). By the assumption that
φx→z(E(x)) and φy→z(E(y)) are disjoint, it follows that α /∈ E(x) or β /∈ E(y), that is, α ∈
A(x) ∪ B(x) or β ∈ A(y) ∪ B(y). In the former case, using the fact that A(x) ∩ B(x) = ∅, we have
{A(x)

α , B(x)
α } = {0, 1} implying that e is a hyperedge. The latter case is handled similarly.

We now show that the vectors in {wax , wbx , way , wby} are pairwise non-orthogonal. By Prop-
erty (1) of the vectors in (wv)v∈V(H) we have 〈wax , wbx〉 6= 0 and 〈way , wby〉 6= 0. By assumption we
have 〈wax , wby〉 6= 0, and using Property (2) we get that 〈wax , way〉, 〈wbx , way〉, and 〈wbx , wby〉 are all
nonzero as well. Since e is a hyperedge of H, this yields a contradiction to the fact that (wv)v∈V(H)

is an orthogonal representation of H, and we are done.

Proof of Claim 4.10: Assume that the set A ∈ F intersects every set ofF . Denote A = {a1, . . . , a`}
and put Ai = {B ∈ F | ai ∈ B} for every i ∈ [`]. Since F = ∪i∈[`]Ai, it follows that

|F | = | ∪i∈[`] Ai| ≤ ∑
i∈[`]
|Ai|,

implying that there exists an i ∈ [`] such that |Ai| ≥ |F |
` . Therefore, some ai belongs to at least 1

`

fraction of the sets of F , as required.

The proof of the proposition is completed.

To derive Theorem 4.1 we just have to set the parameters appropriately, as is done below.

Proof of Theorem 4.1, Item 1: Let ε and t be two parameters. By Theorem 4.4, there exists a re-
duction that maps a 3-SAT instance ϕ of size n in running time poly(n, 1

ε ) to a Label Cover instance
L of size n1+o(1) · 1

εO(1) with range size R ≤ exp( 1
εO(1) ) such that if ϕ is satisfiable then so is L and

if ϕ is not satisfiable then every assignment to L satisfies at most ε fraction of the constraints. We
proceed by mapping the instance L to a 4-uniform hypergraph H using the reduction described
above. By Lemma 2.4 and the fact that R − 2s ≤ t, the number of vertices in S(R, s) is at most
( R

R−2s) ≤ Rt. Hence, the number N of vertices in H satisfies

N ≤ n1+o(1) · 1
εO(1)

· Rt ≤ n1+o(1) · exp
( 1

εO(1)

)t
.

By Proposition 4.6, if ϕ is satisfiable then ξ(H) ≤ 2. By Proposition 4.7, if ξ(H) ≤ t then there
exists an assignment to the variables of U ∪ V that satisfies at least 1

4·t6 fraction of the constraints
of L. In particular, for ε < 1

4·t6 , if ϕ is not satisfiable then ξ(H) > t.
Now, for a sufficiently small constant δ > 0 set t = logδ n and, say, ε = 1

log7δ n
, so that ε < 1

4·t6 .

For these parameters the running time of the reduction is polynomial in n and the hypergraph
H has N = n1+o(1) vertices. The reduction implies that for some δ′ > 0 it is NP-hard to decide
whether an input N-vertex 4-uniform hypergraph H satisfies ξ(H) ≤ 2 or ξ(H) ≥ logδ′ N, com-
pleting the proof.
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Proof of Theorem 4.1, Item 2: Let ` and t be two parameters. By Theorem 4.3, there exists a re-
duction that maps a 3-SAT instance ϕ of size n in running time nO(`) to a Label Cover instance L
of size nO(`) with range size R ≤ 2O(`) such that if ϕ is satisfiable then so is L and if ϕ is not satisfi-
able then every assignment to L satisfies at most 2−Ω(`) fraction of the constraints. We proceed by
mapping the instance L to a 4-uniform hypergraph H using the reduction described above. Using
Lemma 2.4, the number N of vertices in H satisfies

N ≤ nO(`) · Rt ≤ nO(`) · 2O(`·t).

By Proposition 4.6, if ϕ is satisfiable then ξ(H) ≤ 2. By Proposition 4.7, if ξ(H) ≤ t then there
exists an assignment to the variables of U ∪ V that satisfies at least 1

4·t6 fraction of the constraints
of L. In particular, for ` = Ω(log t), if ϕ is not satisfiable then ξ(H) > t.

Now, for an arbitrarily large constant c′ > 0 put t = c′ · log n and define ` = c′′ · log log n
for a sufficiently large c′′ > 0. For these parameters the running time of the reduction is nO(`) =

nO(log log n) and the hypergraph H has N = nO(log log n) vertices. The reduction implies that as-
suming NP * DTIME(nO(log log n)), there is no polynomial time algorithm that decides whether an
input N-vertex 4-uniform hypergraph H satisfies ξ(H) ≤ 2 or ξ(H) ≥ c · log N

log log N , where c > 0 can
be arbitrarily large. This completes the proof.

Remark 4.11. A recent work of Alishahi and Meunier [1] extends Theorem 2.3 and shows that for every
d ≥ 2s and for every field F, it holds that ξ(S(d, s), F) = d− 2s + 2. This, combined with the above proof
and with Corollary 3.6, implies that the hardness results given in Theorem 1.2 hold for the orthogonality
dimension over every field F. We omit the details.

5 The Orthogonality Dimension of Graphs

In this section we focus on the orthogonality dimension of graphs and prove Theorems 1.3 and 1.5.

5.1 Orthogonal Subspace Representations

We generalize the notion of orthogonal representations over the real field by assigning to every
vertex a subspace of a given dimension, so that adjacent vertices are assigned to orthogonal sub-
spaces.

Definition 5.1. A t-dimensional orthogonal k-subspace representation of a graph G = (V, E) is an
assignment of a subspace Uv ⊆ Rt with dim(Uv) = k to every vertex v ∈ V, such that the subspaces Uv

and Uv′ are orthogonal whenever v and v′ are adjacent in G. For a graph G, let ξk(G) denote the smallest
integer t for which there exists a t-dimensional orthogonal k-subspace representation of G.

Clearly, ξ(G) = ξ1(G) for every graph G. It is also easy to see that the multichromatic numbers of
graphs, defined in Section 1.1, bound the parameters ξk from above, namely, ξk(G) ≤ χk(G) for
every G and k.

5.2 Hardness

In this section we prove Theorem 1.3, namely that for every graph F, it is NP-hard to decide
whether an input graph G satisfies ξ(G) ≤ ξ3(F) or ξ(G) ≥ ξ4(F). The proof employs the notion
of lexicographic product of graphs, defined as follows.

18



Definition 5.2. The lexicographic product of the graphs G1 = (V1, E1) and G2 = (V2, E2), denoted by
G1 • G2, is the graph whose vertex set is V1 × V2 where two vertices (x1, y1) and (x2, y2) are adjacent if
either {x1, x2} ∈ E1 or x1 = x2 and {y1, y2} ∈ E2.

One can view the graph G1 • G2 as the graph obtained from G1 by replacing every vertex by
a copy of G2 and replacing every edge by a complete bipartite graph between the vertex sets
associated with its endpoints. We need the following property of the orthogonality dimension of
lexicographic products of graphs.

Lemma 5.3. For every two graphs G1 and G2, ξ(G1 • G2) = ξk(G1) where k = ξ(G2).

Proof: Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs and denote k = ξ(G2).
We first prove that ξ(G1 •G2) ≥ ξk(G1). Denote t = ξ(G1 •G2), then there exists a t-dimensional

orthogonal representation (u(x,y))(x,y)∈V1×V2
of G1 • G2. For every x ∈ V1, let Ux denote the sub-

space of Rt spanned by all vectors u(x,y) with y ∈ V2. By the definition of G1 • G2, the subspaces
Ux and Ux′ are orthogonal whenever x and x′ are adjacent in G1. Further, for every x ∈ V1, the
restriction of the given orthogonal representation to the copy of G2 associated with x forms an or-
thogonal representation of G2, so by k = ξ(G2) it follows that dim(Ux) ≥ k. This implies that there
exists a t-dimensional orthogonal k-subspace representation of G1, hence ξk(G1) ≤ t, as required.

We next prove that ξ(G1 • G2) ≤ ξk(G1). Denote t = ξk(G1), then there exists a t-dimensional
orthogonal k-subspace representation (Ux)x∈V1 of G1. By k = ξ(G2), there exists a k-dimensional
orthogonal representation (uy)y∈V2 of G2. For every x ∈ V1, the fact that dim(Ux) = k implies
that there exists an orthogonal linear transformation Tx from Rk onto Ux. We assign to every
vertex (x, y) ∈ V1 × V2 of G1 • G2 the nonzero vector w(x,y) = Tx(uy) ∈ Rt. We claim that this is
a t-dimensional orthogonal representation of G1 • G2. To see this, let (x1, y1) and (x2, y2) be two
adjacent vertices in G1 • G2. If x1 and x2 are adjacent in G1 then the subspaces Ux1 and Ux2 are
orthogonal, hence the vectors w(x1,y1) ∈ Ux1 and w(x2,y2) ∈ Ux2 are orthogonal as well. Otherwise,
x1 = x2 and the vertices y1 and y2 are adjacent in G2. This implies that the vectors uy1 and uy2

are orthogonal, and since Tx1 preserves inner products it follows that Tx1(uy1) and Tx1(uy2) are
orthogonal, and we are done.

Equipped with Lemma 5.3, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3: Fix a graph F. We reduce from the NP-hard problem of deciding whether
an input graph G satisfies ξ(G) ≤ 3 [47]. The reduction maps an input graph G to the lexicographic
product G′ = F • G of F and G. The graph G′ can clearly be constructed in polynomial time. The
correctness of the reduction follows from Lemma 5.3. Indeed, we have ξ(G′) = ξk(F) for k = ξ(G),
so if ξ(G) ≤ 3 then ξ(G′) ≤ ξ3(F) and if ξ(G) ≥ 4 then ξ(G′) ≥ ξ4(F).

5.3 Algorithm

Before presenting our algorithm, we provide some background on the vector chromatic number
of graphs.

19



5.3.1 Vector Chromatic Number

Consider the following two relaxations of the chromatic number of graphs, due to Karger, Mot-
wani, and Sudan [34].

Definition 5.4. For a graph G = (V, E) the vector chromatic number of G, denoted by χv(G), is the
minimal real value of κ > 1 for which there exists an assignment of a unit real vector uv to every vertex
v ∈ V such that 〈uv, uv′〉 ≤ − 1

κ−1 whenever v and v′ are adjacent in G.

Definition 5.5. For a graph G = (V, E) the strict vector chromatic number of G, denoted by χ
(s)
v (G),

is the minimal real value of κ > 1 for which there exists an assignment of a unit real vector uv to every
vertex v ∈ V such that 〈uv, uv′〉 = − 1

κ−1 whenever v and v′ are adjacent in G.

It is well known and easy to verify that for every graph G, χv(G) ≤ χ
(s)
v (G) ≤ χ(G). Karger et

al. [34] have obtained the following algorithmic result.

Theorem 5.6 ([34]). There exists a randomized polynomial time algorithm that given an n-vertex graph G
with maximum degree at most ∆ and χv(G) ≤ κ for some κ ≥ 2, finds an independent set of size Ω̃( n

∆1−2/κ ).

Note that the well-known Lovász ϑ-function, introduced in [43], is known to satisfy ϑ(G) =

χ
(s)
v (G) for every graph G [34]. Combining this with a result of [43], it follows that the orthogonal-

ity dimension forms an upper bound on the strict vector chromatic number, that is, ξ(G) ≥ χ
(s)
v (G)

for every graph G. This was recently generalized by Bukh and Cox as follows (see [12, Proposi-
tion 23]).

Lemma 5.7 ([12]). For every graph G and an integer k, ξk(G) ≥ k · χ(s)
v (G).

We derive that the graph parameters ξk and χk coincide on Kneser graphs K(d, s) whenever k
is divisible by s.

Corollary 5.8. For all integers ` ≥ 1 and d ≥ 2s, ξ`·s(K(d, s)) = ` · d.

Proof: For the upper bound on ξ`·s(K(d, s)), recall that Conjecture 1.1 was confirmed for k = ` · s
in [51], hence ξ`·s(K(d, s)) ≤ χ`·s(K(d, s)) = ` · d. For the lower bound, combine Lemma 5.7 with
the fact that χ

(s)
v (K(d, s)) = d

s (see [43]), to get that ξ`·s(K(d, s)) ≥ ` · d.

5.3.2 The Algorithm

We present an efficient algorithm that given a graph G that satisfies ξ(G) ≤ 3 (or, more generally,
ξk(G) ≤ 3k for some k), finds a coloring of G with relatively few colors. We use the following
simple claim of Blum [7] which reduces the algorithmic task of coloring a graph to the algorithmic
task of finding a large independent set in it.

Claim 5.9 ([7]). Let G be a graph family which is closed under taking induced subgraphs, let c1, c2 > 1
be arbitrary fixed constants, and let f : N → N be any non-decreasing function satisfying c1 · f (n) ≤
f (2n) ≤ c2 · f (n) for all sufficiently large n. Then if there exists a (randomized) polynomial time algorithm
which finds an independent set of size f (n) in any n-vertex graph G ∈ G, then there exists a (randomized)
polynomial time algorithm which finds an O( n

f (n) )-coloring of any n-vertex graph G ∈ G.
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We need the following two simple lemmas.

Lemma 5.10. Let G = (V, E) be a graph such that ξk(G) ≤ 2k for some integer k. Then G is 2-colorable.

Proof: Let G = (V, E) be a graph satisfying ξk(G) ≤ 2k, and let (Uv)v∈V be a 2k-dimensional
orthogonal k-subspace representation of G. It suffices to prove that every connected component
of G is 2-colorable. Fix a vertex v in some connected component of G, and observe that there
exists a unique subspace of R2k of dimension k orthogonal to Uv. This implies that the orthogonal
subspace representation of G provides a 2-coloring of the connected component of v, where the
vertices of even distance from v are assigned to Uv and the vertices of odd distance from v are
assigned to its orthogonal complement U⊥v , so we are done.

For a graph G and a vertex v, let N(v) denote the neighborhood of v in G and let G[N(v)]
denote the subgraph of G induced by N(v).

Lemma 5.11. Let G = (V, E) be a graph such that ξk(G) ≤ 3k for some integer k. Then for every vertex
v ∈ V the subgraph G[N(v)] is 2-colorable.

Proof: Let G = (V, E) be a graph satisfying ξk(G) ≤ 3k, and let (Uv)v∈V be a 3k-dimensional
orthogonal k-subspace representation of G. Let v ∈ V be a vertex in G. The subspace Uv is
orthogonal to all subspaces Uv′ with v′ ∈ N(v). By dim(Uv) = k, the orthogonal complement
of Uv in R3k has dimension 2k. It follows that G[N(v)] admits a 2k-dimensional orthogonal k-
subspace representation, hence by Lemma 5.10 it is 2-colorable, as required.

We are ready to prove the following result.

Theorem 5.12. There exists a randomized polynomial time algorithm that given an n-vertex graph G that
satisfies ξk(G) ≤ 3k for some k, finds a coloring of G that uses at most Õ(n1/4) colors. In particular, the
algorithm finds an orthogonal representation of G of dimension Õ(n1/4).

Proof: By Claim 5.9 it suffices to show that there exists a randomized polynomial time algorithm
that given an n-vertex graph G = (V, E) with ξk(G) ≤ 3k for some k, finds in G an independent
set of size Ω̃(n3/4). We consider two possible cases. Suppose first that there exists a vertex v ∈ V
in G whose degree is at least ∆ = n3/4. Then by Lemma 5.11 the subgraph G[N(v)] is 2-colorable,
so we can find an independent set in G of size at least ∆

2 by finding in polynomial time a 2-coloring
of G[N(v)] and taking a largest color class. Otherwise, the maximum degree of G is at most ∆. By
Lemma 5.7 we have

χv(G) ≤ χ
(s)
v (G) ≤ ξk(G)

k
≤ 3,

so by Theorem 5.6 we can find in polynomial time an independent set of size Ω̃( n
∆1/3 ) ≥ Ω̃(n3/4),

and we are done.

To improve the number of used colors, we employ the following result that stems from the
analysis by Arora et al. [3] of the semidefinite relaxation of [34]. (For an explicit statement, see [17,
Lemma 4.12], applied with σ = 0.5, c ≈ 0.04843726, and δ ≈ 0.7587.)
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Theorem 5.13 ([3]). There exists a randomized polynomial time algorithm that given an n-vertex graph G
with maximum degree at most ∆ = n0.7587 and χv(G) ≤ 3, finds an independent set in G of size at least
Ω̃(n · ∆−0.3179) ≥ Ω̃(n0.7587).

By applying Theorem 5.13 instead of Theorem 5.6 in the proof of Theorem 5.12, we obtain the
following slight improvement, confirming Theorem 1.5.

Theorem 5.14. There exists a randomized polynomial time algorithm that given an n-vertex graph G that
satisfies ξk(G) ≤ 3k for some k, finds a coloring of G that uses at most Õ(n0.2413) colors.
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