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Abstract: We investigate the computational complexity of the discrete logarithm, the
computational Diffie-Hellman and the decisional Diffie-Hellman problems in some identity
black-box groups Gp,t , where p is a prime number and t is a positive integer. These are
defined as quotient groups of vector space Zt+1

p by a hyperplane H given through an identity
oracle. While in general black-box groups that have unique encoding of their elements these
computational problems are classically all hard and quantumly all easy, we find that in the
groups Gp,t the situation is more contrasted. We prove that while there is a polynomial
time probabilistic algorithm to solve the decisional Diffie-Hellman problem in Gp,1, the
probabilistic query complexity of all the other problems is Ω(p), and their quantum query
complexity is Ω(

√
p). Our results therefore provide a new example of a group where the

computational and the decisional Diffie-Hellman problems have widely different complexity.

1 Introduction

Black-box groups were introduced by Babai and Szemerédi [5] for studying the structure of finite matrix
groups. In a black-box group, the group elements are encoded by binary strings of certain length, the
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group operations and their inverses are given by oracles. Similarly, identity testing, that is checking
whether an element is equal to the identity element, is also done with a special identity oracle. These
oracles are also called black-boxes, giving their names to the groups. Identity testing is required when
several strings may encode the same group element. In this case we speak about non-unique encoding,
in opposition to unique encoding when every group element is encoded by a unique string. Black-box
groups with non-unique encoding are motivated by their ability to capture factor groups of subgroups
of matrix groups by certain normal subgroups which admit efficient algorithms for membership testing.
An important example for such a subgroup is the solvable radical, that is the largest solvable normal
subgroup.

A black-box group problem that concerns some global properties of the group may have no inputs
other than the oracles. In some other cases it might also have standard inputs (or inputs, for short), a
finite set of group elements represented by their encodings. A black-box group algorithm is allowed to
call the oracles for the group operations and for the identity test and it might also perform arbitrary bit
operations. The query complexity of an algorithm is the number of oracle calls, while the running time or
computational complexity is the number of oracle calls together with the number of other bit operations,
when we are maximizing over both oracle and standard inputs. In the quantum setting, the oracles are
given by unitary operators.

Many classical algorithms have been developed for computations with black-box groups [6, 4, 15],
for example the identification of the composition factors, even the non-commutative ones. When the
oracle operations can be simulated by efficient procedures, efficient black-box algorithms automatically
produce efficient algorithms. Permutation groups, finite matrix groups over finite fields and over algebraic
number fields fit in this context. There has been also considerable effort to design quantum algorithms
in black-box groups. In the case of unique encoding efficient algorithms have been conceived for the
decomposition of Abelian groups into a direct sum of cyclic groups of prime power order [9], for order
computing and membership testing in solvable groups [24], and for solving the hidden subgroup problem
in Abelian groups [18].

The discrete logarithm problem DLOG, and various Diffie-Hellman type problems are fundamental
tasks in computational number theory. They are equally important in cryptography, since the security of
many cryptographic systems is based on their computational difficulty. Let G be a cyclic group (denoted
multiplicatively). Given two group elements g and h, where g is a generator, DLOG asks to compute
an integer d such that h = gd . Given three group elements g,ga and gb, where g is a generator, the
computational Diffie-Hellman problem CDH is to compute gab. Given four group elements g,ga,gb and
gc, where g is a generator, the decisional Diffie-Hellman problem DDH is to decide whether c = ab
modulo the order of g.

The problems are enumerated in decreasing order of difficulty: DDH can not be harder than CDH
and CDH is not harder than DLOG. While there are groups where even DLOG is easy (for example Zm,
the additive group of integers modulo m), in general all three problems are thought to be computationally
hard. We are not aware of any group where CDH is easy while DLOG is hard. In fact, Maurer and Wolf
have proven in [17] that under a seemingly reasonable number-theoretic assumption, the two problems are
equivalent in the case of unique-encoding groups. Based on this, Joux and Nguyen [14] have constructed
a cryptographic group where DDH is easy to compute while CDH is as hard as DLOG. In generic
black-box groups we have provable query lower bounds for these problems, even in the case of unique
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encoding. Shoup has proven [23] that in Zp, given as a black-box group with unique encoding, to solve
DLOG and CDH require Ω(p1/2) group operations. Subsequently, Damgård, Hazay and Zottare [10]
have established a lower bound of the same order for DDH. We remark that the Pohlig-Hellman [19]
algorithm reduces DLOG in arbitrary cyclic groups to DLOG in its prime order subgroups. Furthermore,
in prime order groups (with unique encodings), Shanks’s baby-step giant-step algorithm solves the
problem using O(p1/2) group operations, thus matching the lower bound for black-box groups.

Though, as we said, all three problems are considered computationally intractable on a classical
computer, there is a polynomial time quantum algorithm for DLOG due to Shor [22]. Since DLOG
is an instance of the Abelian hidden subgroup problem, Mosca’s result [18] implies that by a quantum
computer it can also be solved efficiently in black-box groups with unique encoding.

We are concerned here with identity black-box groups, a special class of black-box groups where
only the identity test is given by an oracle. These groups are quotient groups of some explicitly given
ambient group. An identity black box group G is specified by an ambient group G′ and an identity oracle
Id which tests membership in some (unknown) normal subgroup H of G′. In G the group operations are
explicitly defined by the group operations in G′, and therefore it is the quotient group G′/H.

Let p be a prime number. More specifically we will study the problems DLOG, CDH and DDH
in identity black-box groups whose ambient group is Zt+1

p , for some positive integer t, and where the
normal subgroup H, specified by the identity oracle, is isomorphic to Zt

p. We denote such an identity
black box group by Gp,t . We fully characterize the complexity of the three problems in these groups. Our
results are mainly query lower bounds: the probabilistic query complexity of all these problems, except
DDH in level 1 groups, is Ω(p), and their quantum query complexity is Ω(

√
p). These lower bounds

are obviously tight since DLOG(Gp,t) can be solved, for all t ≥ 1, by exhaustive search and by Grover’s
algorithm in respective query complexity p and O(

√
p). We have also one, maybe surprising, algorithmic

result: the computational complexity of DDH(Gp,1) is polynomial. Our results can be summarized in the
following theorems.

Theorem (Lower bounds)

1. For all t ≥ 1, the randomized query complexity of DLOG(Gp,t) and CDH(Gp,1) is Ω(p).

2. For all t ≥ 1, the quantum query complexity of DLOG(Gp,t) and CDH(Gp,1) is Ω(
√

p).

3. For all t ≥ 2, the randomized query complexity of DDH(Gp,t) is Ω(p).

4. For all t ≥ 2, the quantum query complexity of DDH(Gp,t) is Ω(
√

p).

Theorem (Upper bound) DDH(Gp,1) can be solved in probabilistic polynomial time in log p.

2 Preliminaries

Formally, a black-box group G is a 4-tuple G = (C,Mult, Inv, Id) where C is the set of admissible
codewords, Mult : C×C 7→C is a binary operation, Inv : C→C is a unary operation and Id : C→{0,1}
is a unary Boolean function. The operations Mult, Inv and the function Id are given by oracles. We
require that there exists a finite group G̃ and a surjective map φ : C→ G̃ for which, for every x,y ∈C,
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we have φ(Mult(x,y)) = φ(x)φ(y), φ(Inv(x)) = φ(x)−1, and φ(x) = 1G̃ if and only if Id(x) = 1. We
say that x is (more accurately, encodes) the identity element in G or that x = 1 if Id(x) = 1. With the
identity oracle we can test equality since x = y in G exactly when Id(Mult(x, Inv(y))) = 1. We say that
a black-box group has unique encoding if φ is a bijection. For abelian groups we also use the additive
notation in which case the binary operation of G is denoted by Add and its identity element is denoted by
0.

We are concerned here with a special class of black-box groups which are quotient groups of some
explicitly given group. An identity black-box group is a couple G = (G′, Id) where G′ is group and the
identity oracle Id : G′→{0,1} is the characteristic function of some (unknown) normal subgroup H of
G′. We call G′ the ambient group of G. In G the group operations Mult and Inv are defined by the group
operations in the ambient group G′ modulo H. As a consequence, G is the quotient group G′/H.

Let p be a prime number and let t ≥ 1 be a positive integer. We denote by Zp the additive group of
integers modulo p, by Fp the finite field of size p, and by Zt

p the t-dimensional vector space over Fp. For
h,k ∈ Zt

p, we denote their scalar product modulo p by h · k.
We will work with identity black-box groups whose ambient group is Zt+1

p , and the subgroup H
is isomorphic to Zt

p, that is a hyperplane of Zt+1
p . Regarding the problems we are concerned with, the

only real restriction of this model is that our black-box group G has (known) prime order p. Indeed,
let G = (C,Mult, Inv, Id) be a cyclic black box group of order p. Let g1 = g, g2 = ga, g3 = gb and
g4 = gc be the input quadruple for DDH. We define maps ψi : {0, . . . , p−1} →C as ψ(x) = gx

i . Here
gx

i is computed by a fixed method based on repeated squaring and the binary expansion of x using
poly(log p) iterated applications of the oracle Mult. We also define an oracle Id′ on {0, . . . , p− 1}4

by Id′(x1,x2,x3,x4) = Id(φ1(x1),φ2(x2),φ3(x3),φ4(x4)). It is not difficult to see that this makes G an
identity black box group with ambient group Z4

p where the identity oracle Id′ can be implemented using
a poly(log p) calls to Mult and a single call to Id. This recipe reduces the given instance of DDH to an
instance of DDH in the new setting in an obvious way. Similarly, DLOG and CDH can be reduced to
instances with ambient groups Z2

p and Z3
p, respectively.

We will specify the identity oracle by a non-zero normal vector n ∈ Zt+1
p of H. By permuting

coordinates and multiplying by some non-zero constant, we can suppose without loss of generality
that it is of the form n = (1,n1, . . . ,nt). We call such a vector t-suitable. We define the function
Idn : Zt+1

p →{0,1} by Idn(h) = 1 if h ·n = 0. Clearly Idn is the characteristic function of the hyperplane
Hn = {h ∈ Zt+1

p : h ·n = 0}. We define the identity black-box group Gp,t = (Zt+1
p , Id), where the identity

oracle Id satisfies Id = Idn, for some (unknown) t-suitable vector n. We call t the level of the group
Gp,t . We emphasize again that the group operations of Gp,t are performed as group operations in Zt+1

p .
Therefore, for h,k ∈ Zt+1

p , the equality h = k in Gp,t means equality in Zt+1
p modulo Hn, where Hn is

identified by Idn. To be short, we will refer to Gp,t as the hidden cyclic group of level t. We remark
that any lower bound for t-suitable n remain trivially valid for general normal vector n. Also, the first
nonzero coordinate of n can be found using at most t queries (namely Id(1,0,0, . . . ,0), Id(0,1,0, . . . ,0),
. . ., Id(0, . . . ,0,1,0)). Furthermore, scaling this coordinate to 1 does not affect the oracle Idn. Therefore
t-suitability of n affects any upper bound by at most t queries.

Proposition 2.1. The groups Gp,t and Zp are isomorphic and the map φ : Gp,t → Zp defined by φ(h) =
h ·n ∈ Zp is a group isomorphism.
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Proof. The maps from Zt+1
p to Gp,t (respectively to Zp) mapping h ∈ Zt+1

p to its class in the quotient Gp,t

(respectively to h ·n) are group homomorphisms with the same kernel Hn.

We recall now the basic notions of query complexity for the specific case of Boolean functional oracle
problems. Let m be a positive integer. A functional oracle problem is a function A : S→{0,1}M , where
S⊆ {0,1}m and M ≥ 1 is a positive integer. If M = 1, then we call the functional oracle problem Boolean.
The input f ∈ S is given by an oracle, that is f (x) can be accessed by the query x. The output on f is
A( f ). Each query adds one to the complexity of an algorithm, but all other computations are free. The
state of the computation is represented by three registers, the query register 1≤ x≤m, the answer register
a ∈ {0,1}, and the work register z. The computation takes place in the vector space spanned by all basis
states |x〉|a〉|z〉. In the quantum query model introduced by Beals et al. [7] the state of the computation is
a complex combination of all basis states which has unit length in the norm l2. In the randomized query
model it is a non-negative real combination of unit length in the norm l1, and in the deterministic model it
is always one of the basis states.

The query operation O f maps the basis state |x〉|a〉|z〉 into the state |x〉|(a+ f (x)) mod 2〉|z〉. Non-
query operations do not depend on f . A k-query algorithm is a sequence of (k + 1) operations
(U0,U1, . . . ,Uk) where Ui is unitary in the quantum, and stochastic in the randomized model. Initially
the state of the computation is set to some fixed value |0〉|0〉|0〉, and then the sequence of operations
U0,O f ,U1,O f , . . ., Uk−1, O f , Uk is applied. A quantum or randomized algorithm computes A on input
f if the observation of the last M bits of the work register yields A( f ) with probability at least 2/3.
Then Q(A) (respectively R(A)) is the smallest k for which there exists a k-query quantum (respectively
randomized) algorithm which computes A on every input f . We have R(A)≤ Q(A)≤ m.

We define now the problems we are concerned with, the discrete logarithm problem DLOG, the
computational Diffie-Hellman problem CDH and the decisional Diffie-Hellman problem DDH in hidden
cyclic groups Gp,t . As in the rest of the paper the additive notation will to be more convenient, in contrast
to the informal definitions if the introduction, we use here the additive terminology. We say that a
quadruple (g,h,k, `) ∈ G4

p,t is a DH-quadruple if g is a generator of Gp,t , h = ag,k = bg and `= cg for
some integers a,b,c such that c = ab modulo p.

DLOG(Gp,t)
Oracle input: Idn for some t-suitable vector n.
Input: A couple (g,h) ∈ G2

p,t such that g is a generator of Gp,t .
Output: A non-negative integer d such that dg = h.

CDH(Gp,t)
Oracle input: Idn for some t-suitable vector n.
Input: A triple (g,h,k) ∈ G3

p,t such that g is a generator of Gp,t .
Output: ` ∈ Gp,t such that (g,h,k, `) is a DH-quadruple.
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DDH(Gp,t)
Oracle input: Idn for some t-suitable vector n.
Input: A quadruple (g,h,k, `) ∈ G4

p,t such that g is a generator of Gp,t .
Question: Is (g,h,k, `) a DH-quadruple?

An algorithm for these problems has access to the input and oracle access to the oracle input, and
every query is counted as one computational step. We say that it solves the problem efficiently if it
works in time polynomial in log p and t. For any fixed input, the problems become functional oracle
problems, where we consider only those identity oracles for which the input is legitimate. By their query
complexity we mean, both in the quantum and in the randomized model, the maximum, over all inputs, of
the respective query complexity of these functional oracle problems.

The problems are enumerated in decreasing order of difficulty. The existence of an efficient algorithm
for DLOG(Gp,t) implies the existence of an efficient algorithm for CDH(Gp,t), which in turn gives rise to
an efficient algorithm for DDH(Gp,t). For query complexity we have Q(DDH(Gp,t))≤Q(CDH(Gp,t))+
1 and Q(CDH(Gp,t)) ≤ 2Q(DLOG(Gp,t)), and the same inequalities hold for the randomized model.
The problems are getting harder as the level of the hidden cyclic group increases, as the almost trivial
reductions in the next Proposition show. To ease notation, for h = (h0, . . . ,ht) in Zt+1

p , we denote by h′

the element (h0, . . . ,ht ,0) ∈ Zt+2
p .

Proposition 2.2. For every t ≥ 1, DLOG(Gp,t) and DDH(Gp,t) are polynomial time many-one reducible
to respectively DLOG(Gp,t+1) and DDH(Gp,t+1); and CDH(Gp,t) is commutable in polynomial time
with a single query to CDH(Gp,t+1).

Proof. First observe that the identity oracle Idn′ in Gp,t+1 can be simulated by the identity oracle Idn of
Gp,t . Indeed, for an arbitrary element h∗ in Gp,t+1, where h∗= (h0,h1, . . . ,ht ,ht+1), set h= (h0,h1, . . . ,ht).
Then h∗ ·n′ = h ·n. Let g be a generator of Gp,t with identity oracle Idn, that is g ·n 6= 0. Then g′ = (g,0)
is a generator of Gp,t+1 with identity oracle Idn′ , since g′ ·n′ = g ·n, and therefore g′ ·n′ 6= 0.

For arbitrary g,h,k, ` ∈Gp,t , and for every integer d, we have dg = h if and only if dg′ = h′. Similarly,
(g,h,k, `) is a DH-quadruple if and only if (g′,h′,k′, `′) is a DH-quadruple. This gives the many-one
reductions for DLOG and DDH. In the CDH reduction, on an instance (g,h,k), we call CDH(Gp,t+1) on
instance (g′,h′,k′). Suppose that it gives the answer `∗ = (`0, `1, . . . , `t , `t+1). We set `= (`0, `1, . . . , `t),
and observe that (g,h,k, `) is a DH-quadruple because (g′,h′,k′, `∗) is a DH-quadruple and `∗ · n′ =
` ·n.

3 The complexity in groups of level 1

In most parts of this section we restrict ourselves to the case t = 1. To simplify notation, we set n = (1,s)
and we denote the identity oracle Idn by Ids and the line Hn of the plane Z2

p by Hs. Also, we refer to s
as the secret. As it turns out, solving DLOG(Gp,1) or CDH(Gp,1) is essentially as hard as finding the
secret, therefore we formally define this problem as
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SECRET(Gp,1)
Oracle input: Ids for some s ∈ Zp.
Output: s.

What is the query complexity of finding s, that is how many calls to the identity oracle are needed for
that task? To answer this question, we consider US, the well studied unstructured search problem. For
this, let C be an arbitrary set, and let s ∈C be an arbitrary distinguished element. Then the Grover oracle
∆s : C→{0,1} is the Boolean function such that ∆s(x) = 1 if and only if x = s. The unstructured search
problem over C is defined as

US(C)
Oracle input: ∆s for some s ∈C.
Output: s.

Suppose that the size of C is N. It is easily seen that probabilistic query complexity of US(C) is linear
in N. The quantum query complexity of the problem is also well studied. Grover [12] has determined
that it can be solved with O(

√
N) queries, while Bennett et al. [8] have shown that Ω(

√
N) queries are

also necessary.

Fact 3.1. For |C| = N, the randomized query complexity of US(C) is Θ(N) and its quantum query
complexity is Θ(

√
N).

The relationship between US and the problem SECRET is given by the fact that the identity oracle
Ids and the Grover oracle ∆s can simulate each other with a single query.

Proposition 3.2. The identity oracle Ids of Gp,s and the Grover oracle ∆s, defined over Zp, can simulate
each other with at most one query.

Proof. The simulation of the Grover oracle by the identity oracle is simple: for x ∈ Zp just query Ids on
(x,−1).

For the reverse direction, let h = (h0,h1) be an input to the identity oracle. Then h encodes the identity
element, that is Ids(h) = 1, if and only if −h0 = sh1. When h1 is invertible in Zp we can check by the
Grover oracle if −h0h−1

1 = s. For h1 = 0 the only possible value for h0 to put h into Hs is 0. Therefore
we have

Id(h) =


1 if h = (0,0)
0 if h1 = 0 and h0 6= 0
∆s(−h0h−1

1 ) otherwise.

Corollary 3.3. The randomized query complexity of SECRET(Gp,1) is Θ(p) and its quantum query
complexity is Θ(

√
p).

We will now consider the reductions of SECRET(Gp,1) to DLOG(Gp,1) and CDH(Gp,1). The case
of DLOG(Gp,1) in fact follows from the case of CDH(Gp,1), but it is so simple that it is worth to describe
it explicitly.
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Lemma 3.4. The secret s in Gp,1 can be found with a single oracle call to DLOG(Gp,1)

Proof. First observe that (1,0) is a generator of Gp,1, for every s. The algorithm calls DLOG(Gp,1) on
input (g,h) = ((1,0),(0,1)). Since φ(g) = 1 and φ(h) = s where φ is as in Proposition 2.1, the oracle’s
answer is the secret s itself.

We remark that with overwhelming probability we could have given also a random couple (g,h)∈G2
p,1

to the oracle, where g is a generator. Indeed, let’s suppose that d is the discrete logarithm. Then
h−dg ∈ Hs, and therefore s =−(h0−dg0)(h1−dg1)

−1, where the operations are done in Zp, under the
condition that h1−dg1 6= 0, which happens with probability (p−1)/p.

The reduction of SECRET(Gp,1) to CDH(Gp,1) requires more work. The main idea of the reduction
is to extend Gp,t to a field and use the multiplication for the characterization of DH-quadruples. Indeed,
since Zp is the additive group of the field Fp, we can use the isomorphism φ of Proposition 2.1 between
Gp,t and Zp to define appropriate multiplication and multiplicative inverse operations. This extends Gp,t

to a field isomorphic to Fp which we denote by Fp,t . This process is completely standard but we describe
it for completeness. The definitions of these two operations are:

hk = φ
−1(φ(h)φ(k)),

h−1 = φ
−1(φ(h)−1).

With these operations the map φ becomes a field isomorphism between Fp,t and Fp.

Proposition 3.5. The map φ of Proposition 2.1 is an isomorphism between Fp,t and Fp.

Proof. By definition φ(hk) = φ(h)φ(k) and φ(h−1) = φ(h)−1.

The field structure of Fp,t yields a very useful characterization of DH-quadruples.

Proposition 3.6. Let g be a generator of Gp,t . In Fp,t the quadruple (g,h,k, `) is a DH-quadruple if and
only if

g`−hk = 0.

Proof. Let h = ag,k = bg and ` = cg for some integers a,b,c. Using the field structure of Fp,t , it is
true that g`− hk = 0 if and only if (c− ab)g2 = 0. Since Fp,t is isomorphic to Fp, an element g is a
generator of the additive group Zp exactly when g 6= 0, and therefore when g2 is a generator. Therefore
(c−ab)g2 = 0 if an only if c = ab.

We define the application χ :Zt+1
p →Fp[x1, . . . ,xt ], from Zt+1

p to the ring of t-variate polynomials over
Fp, where the image χ(h) of h = (h0,h1, . . . ,ht) ∈ Zt+1

p is the polynomial ph(x1, . . . ,xt) = h0 +∑
t
i=1 hixi.

Observe that ph(n1, . . .nt) = h ·n, therefore the isomorphism φ between Gp,t with identity oracle Idn and
Zp can also be expressed as φ(h) = ph(n1, . . .nt).

Proposition 3.7. Let g be a generator of Gp,1 and let h,k, ` be arbitrary elements. Then (g,h,k, `) is a
DH-quadruple if and only if s is a root of the polynomial pg(x)p`(x)− ph(x)pk(x).
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Proof. By Proposition 3.6 we know that (g,h,k, `) is a DH-quadruple if and only if g`− hk = 0, that
is when pg`−hk(s) = 0. Now Proposition 3.5 implies that this happens exactly when pg(s)p`(s)−
ph(s)pk(s) = 0.

Lemma 3.8. There is a probabilistic polynomial time algorithm which, given oracle access to CDH(Gp,1),
solves SECRET(Gp,1). The algorithm asks a single query to CDH(Gp,1). If we are also given a quadratic
non-residue in Zp, the algorithm can be made deterministic.

Proof. The algorithm sets g = (1,0),h = (0,1),k = (1,1) and presents it to the oracle. Let the oracle’s
answer be `= (`0, `1). Since (g,h,k, `) is a DH-quadruple, by Proposition 3.7 we have that s is the root
of the second degree equation

x2 +(1− `1)x+ `0 = 0.

Assuming that a quadratic non-residue in Zp is available then the (not necessarily distinct) roots x1,x2
can be computed in deterministic polynomial time using the Shanks-Tonelli algorithm [21]. Without this
assumption, a quadratic non-residue can always be computed in probabilistic polynomial time because for
p > 2 the quadratic residues form a subgroup of index two of the multiplicative group of Fp and hence
p > 2 half of the nonzero elements in Zp are not squares. Finally, we make at most two calls to Ids on
(x1,−1) and on (x2,−1). The positive answer tells us which one of the roots is the secret s.

Similarly to the DLOG case, we could have presented with overwhelming probability also a random
triple (g,h,k) ∈ G3

p,s to CDH(Gp,1), where g is a generator. Indeed, if the oracle answer is `= (`0, `1)
then s is a root of the (at most second degree) equation

(g0 +g1x)(`0 + `1x) = (h0 +h1x)(k0 + k1x).

If the equation is of degree 2 then we can proceed as in the proof of Lemma 3.8. This happens exactly
when h1k1 6= g1`1. But for every possible fixed value a for g1`1, the probability, over random h1 and k1,
that h1k1 = a is at most 2/p, the worst case being a = 0. Therefore a random triple (g,h,k) would be
suitable for the proof with probability at least (p−2)/p.

Theorem 3.9. The following lower bounds hold for the query complexity of DLOG and CDH:

(1) The classical query complexity of both DLOG(Gp,s) and CDH(Gp,s) is Ω(p).

(2) The quantum query complexity of both DLOG(Gp,s) and CDH(Gp,s) is Ω(
√

p).

Proof. Let us suppose that with m queries to the identity oracle Ids, one can solve DLOG(Gp,1) or
CDH(Gp,1). Respectively Lemma 3.4 and Lemma 3.8 imply that SECRET(Gp,1) can be solved with m
queries. The result then follows from the lower bounds of Corollary 3.3.

Theorem 3.10. The DDH(Gp,1) problem can be solved in probabilistic polynomial time. If we are given
a quadratic non-residue in Zp the algorithm can be made deterministic.
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Proof. Let (g,h,k, `) be an input to DDH(Gp,1) where g is a generator of Gp,1. By Proposition 3.7 it is a
DH-quadruple if and only if s is a root of the polynomial pg(x)p`(x)− ph(x)pk(x), and that is what the
algorithm checks. When the polynomial is constant, then the answer is yes if the constant is zero, and
otherwise it is no. When the polynomial is non constant, the algorithm essentially proceeds as the one in
Lemma 3.8. It solves the (at most second degree) equation and then checks with the identity oracle if one
root is equal to s.

4 The complexity of DDH in groups of level 2

There are several powerful means to prove quantum query lower bounds, most notably the adversary and
the polynomial method [7]. The quantum adversary method initiated by Ambainis [2] has been extended
in several ways. The most powerful of those, the method using negative weights [13], turned out to be an
exact characterization of the quantum query complexity [16]. We use here a special case of the positive
weighted adversary method [1, 3, 25] that also gives probabilistic lower bounds [1].

Fact 4.1. Let A : S→{0,1} be a Boolean functional oracle problem, where S⊆ {0,1}m. For any S×S
matrix M, set

σ(M, f ) = ∑
g∈S

M[ f ,g].

Let Γ be an arbitrary S×S nonnegative symmetric matrix that satisfies Γ[ f ,g] = 0 whenever A( f ) = A(g).
For 1≤ x≤ m, let Γx be the matrix

Γx[ f ,g] =

{
0 if f (x) = g(x),
Γ[ f ,g] otherwise.

Then

Q(A) = Ω

(
min

Γ[ f ,g]6=0, f (x)6=g(x)

√
σ(Γ, f )σ(Γ,g)

σ(Γx, f )σ(Γx,g)

)
,

R(A) = Ω

(
min

Γ[ f ,g]6=0, f (x)6=g(x)
max

{
σ(Γ, f )
σ(Γx, f )

,
σ(Γ,g)
σ(Γx,g)

})
.

Theorem 4.2. The following lower bounds hold for the query complexity of DDH in level 2 hidden cyclic
groups:

Q(DDH(Gp,2)) = Ω(
√

p) and R(DDH(Gp,2)) = Ω(p).

Proof. Let i = ((1,0,0),(0,1,0),(0,0,1),(0,1,1)). Observe that the element (1,0,0) is a generator of
Gp,2, for any 2-suitable vector n = (1,n1,n2). By Proposition 3.6, we know that i is a DH-quadruple if
and only if n1 + n2 = n1n2. We say that n is positive if this equality holds, otherwise we say that it is
negative. Let m = p3 and let S = {Idn : n ∈ Z2

p}. We will apply Fact 4.1 to the Boolean functional oracle
problem DDH defined in Gp,2 on input i with the oracle input being the identity oracle Idn : Z3

p→{0,1}.
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For simplicity we will refer to this Boolean functional oracle problem just by DDH(n). We define the
symmetric p2× p2 Boolean adversary matrix Γ as follows:

Γ[n,n′] =

{
1 if DDH(n) 6= DDH(n′),
0 otherwise,

where again Γ[n,n′] is a shorthand notation for Γ[Idn, Idn′ ].
We first determine σ(Γ,n). If n1 = 1 then there is no n2 such that n1 + n2 = n1n2. Otherwise, for

every fixed n1 6= 1, there is a unique n2 that makes this equality hold, in particular n2 = n1(n1− 1)−1.
Therefore the number of positive n is p−1 and the number of negative n is p2− p+1. Thus we have the
following values for σ(Γ,n):

σ(Γ,n) =

{
p2− p+1 if n is positive,
p−1 otherwise.

Let us recall, that by definition, for every h ∈ Gp,2,

Γh[n,n′] =

{
1 if DDH(n) 6= DDH(n′) and Idn(h) 6= Idn′(h),
0 otherwise.

(4.1)

We fix now n and n′ such that DDH(n) 6= DDH(n′), we will suppose without loss of generality that
n is positive and n′ is negative. We also fix h = (h0,h1,h2) in Z3

p such that Idn(h) 6= Idn′(h). This implies
that (h1,h2) 6= (0,0). We want to lower bound σ(Γ,n)/σ(Γh,n) and σ(Γ,n′)/σ(Γh,n′). Obviously both
fractions are at least 1. We distinguish two cases according to whether Idn(h) = 0 or Idn′(h) = 0.

Case 1: Idn′(h) = 0. Then

σ(Γh,n′) =
∣∣∣∣{(m1,m2) ∈ Z2

p :
m1 +m2 = m1m2 and
h0 +h1m1 +h2m2 = 0

}∣∣∣∣ .
We claim that the carnality at the right hand side is at most 2. We know already that m1 6= 1 and
m2 = m1(m1−1)−1. Therefore m1 satisfies the second degree equation

h1x2 +(h0−h1 +h2)x−h0 = 0.

The number of roots of this equation is at most 2, unless the polynomial is 0. But this can not be the case,
because then h1 = h2 = 0, a contradiction. Therefore, taking into account (4.1), we have

σ(Γ,n′)
σ(Γh,n′)

= Ω

( p
1

)
= Ω(p). (4.2)

Case 2: Idn(h) = 0. Then

σ(Γh,n)≤ |{(m1,m2) ∈ Z2
p : h0 +h1m1 +h2m2 = 0}|.

Since (h1,h2) 6= (0,0), the number of roots of this linear equation with two variables is p. Therefore,
again taking into account (4.1), we have

σ(Γ,n)
σ(Γh,n)

= Ω

(
p2

p

)
= Ω(p). (4.3)

The statements of the theorem immediately follow from equations (4.2) and (4.3).

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2023, Article 01, pages 1–14 11

http://dx.doi.org/10.4086/cjtcs
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Similarly to the remarks after Lemmas 3.4 and 3.8, we could have used in the proof instead of i a
random input (g,h,k, `), with high probability of success. Indeed, if we can show that the number of
solutions of the system of equations

(g0 +g1x+g2y)(`0 + `1x+ `2y)
− (h0 +h1x+h2y)(k0 + k1x+ k2y) = 0

1+u1x+u2y = 0

is at most 2 for every u = (1,u1,u2) in Z3
p, with (u1,u2) 6= (0,0), then the same proof works. To see what

we claim we observe first that g2`2−h2k2 is nonzero with probability at least (p−1)/p. If this happens
then we are done with every u of the form u = (1,u1,0). Indeed, in that case u1 6= 0 and the second
equation implies x =−1/u1 and by substituting this in the first equation we obtain an equation in y with
a proper quadratic term. To deal with those u for which u2 6= 0 we set α = 1/u2 and β = u1/u2. By the
second equation we have y =−βx−α and substituting this in the first equation the polynomial becomes

P0 +P1x+P2x2,

with
P0 = A+Bα +Cα

2, P1 = D+Eα +Bβ +2Cαβ and P2 = (F +Eβ +Cβ
2),

where A = g0`0−h0k0, B = h0k2 +h2k0−g0`2−g2`0, C = g2`2−h2k2), D = g0`1 +g1`0−h0k1−h1k0,
E = h1k2 +h2k1−g1`2−g2`1 and F = g1`1 +h1k1. Using Macaulay2 [11], one can show that the ideal
of Fp[g0, . . . , `2,α,β ] generated by P0,P1 and P2 contains a nonzero polynomial f of degree six from
Fp[g0, . . . , `2]. By the Schwartz-Zippel lemma [20, 26], f takes a nonzero value with probability at least
1−6/p. If that happens then there exist no α,β making the three coefficients P0,P1 and P2 simultaneously
zero. The overall probability of choosing a good g,h,k, ` is therefore at least 1-7/p.
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