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Abstract: We give a family of dictatorship tests with perfect completeness and low-
soundness for 2–to–2 constraints. The associated 2–to–2 conjecture has been the basis of a
few inapproximability results with perfect completeness. Our result provides some indication
of the expressiveness and non-triviality of 2–to–2 constraints, given the close connections
between dictatorship tests and satisfiability and approximability of CSPs.
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1 Introduction

In the study of constraint satisfaction problems, dictatorship tests are a surrogate for understanding the
problems’ computational complexity. For a given constraint satisfaction problem over a domain D, a
dictatorship test for a function f : Dn→ D is a random distribution of queries based on the constraints
from the CSP. For example, for NAE-3-SAT, D = {0,1}, a query would pick uniformly at random three
vectors x,y,z ∈ {0,1}n such that xi ∨ yi ∨ zi = 1 and xi ∧ yi ∧ zi = 0 for all i ∈ {1, . . . ,n} and then test
whether f (x)∨ f (y)∨ f (z) = 1 and f (x)∧ f (y)∧ f (z) = 0. For a given function f , there is an associated
probability p ∈ [0,1] for which it satisfies the dictatorship test. Typically some threshold τ > 0 is assigned
for which a function f ‘passes’ the test if p≥ τ . As their name suggests, these tests are usually designed
so that certain dictator functions (also known as projections), functions which depend on only a single
coordinate, pass with probability 1 (or 1− ε , depending on the application).

For constraint satisfaction problems (CSPs), dictatorship tests with a passing probability of τ = 1
have been used to understand the computational complexity of the associated satisfiability problems. In
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the universal algebraic approach to understanding CSPs, functions which pass such dictatorship tests are
known as polymorphisms. (See [10] for a survey on the algebraic study of CSPs.) For a long time (e.g.,
[6]), it has been known that the computational complexity is completely characterized by which functions
pass the dictatorship tests. The deep understanding of such connections has very recently culminated
in two proofs of the Algebraic Dichotomy Conjecture [7, 38, 39]. Although the exact statement of the
conjecture is quite technical, at a moral level it says that a CSP has a polynomial time algorithm if and
only if one is able to satisfy the canonical dictatorship test with arbitrarily complex polymorphisms.
(Formally, such functions are known as “weak near unanimity” operators.)

In the optimization version associated with a CSP, where the goal is to satisfy as many constraints
of the instance as possible, one often seeks to prove that for some threshold τ ∈ (0,1), if a function f
passes the dictatorship test with probability at least τ , then f essentially depends on a small number
of coordinates. In this setting, a similar close connection between approximability and the passing of
dictatorship tests is also known. In particular, Raghavendra [33] showed that the threshold τ for which
dictatorship tests can be passed by highly non-dictatorial functions (those with no influential coordinates),
is exactly the approximation ratio which can be found by the Basic SDP relaxation. Further, under Khot’s
Unique Games Conjecture [21], no polynomial time algorithm can deliver an approximation guarantee
better than τ [20].

The complexity of approximate optimization of every CSP is known to have a sharp threshold1

between algorithms and hardness under the Unique Games Conjecture (UGC). The UGC itself asserts the
inapproximability of a particular CSP called Unique Games. The fascinating aspect of this landscape is
that the hardness of the single Unique Games problem reduces the complexity-theoretic task of showing
inapproximability of every other CSP to the combinatorial/analytic task of designing a good dictatorship
test that works with checks allowed by the CSP.

The Unique Games problem is a special case of a more general family of CSPs called Label Cover
(see Section 2.1 for formal definitions relating to Label Cover, but briefly these are arity two CSPs
whose constraint relations are unions of disjoint complete bipartite graphs; Unique Games is the special
case when the constraint relations are matchings). The decision version of Unique Games is easily
seen to be polynomial time solvable. Therefore, the UGC is useless in understanding the complexity of
approximating satisfiable instances of CSPs (which is an important goal in itself, and also crucial for
problems such as graph and hypergraph coloring). The most general form of Label Cover has also led to
numerous strong inapproximability results, but without some restriction on the structure of the allowed
constraints, it is not flexible enough to give a broad understanding similar to what the UGC provides.

Towards this end, Khot himself in his original UGC paper [21] proposed a restricted form of Label
Cover called 2-to-1 Label cover (where the constraint relations are 2-to-1 maps) as a possible UG
surrogate in some settings where inapproximability for satisfiable CSPs is desired.

In this paper, we give a dictatorship test with perfect completeness and arbitrarily small soundness
for 2–to–2 Label Cover (a closely related version to 2–to–1 Label Cover that is more symmetric with
constraint relations that are union of K2,2’s; see [11, Thm A.3] for a reduction).

The main theorem we prove is informally as follows. The formal version appears as Theorem 3.7.

Theorem 1.1 (Informal). There is a family of dictatorship tests with 2–to–2 constraints, which have

1Even so, determining these thresholds in unsolved in many cases (c.f., [28]).
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perfect completeness (i.e., dictators pass the test with probability 1), and if a function f passes one of
these tests with noticeable probability, then f has a coordinate that has noticeable low-degree influence.

While dictatorship tests are probably not the combinatorial/analytic core underlying inapproximability
in the perfect completeness land, nevertheless our result can be viewed as some indication of the
expressiveness and non-triviality of 2–to–1 constraints.

1.1 Related results

The inapproximability results proved using 2–to–1 or 2–to–2 conjecture include hardness of O(1)-coloring
4-colorable graphs [11], hardness of finding independent sets in 2-colorable 3-uniform hypergraphs [25],
Max k-coloring on k-colorable graphs [17], and

√
2− ε hardness of vertex cover (implicit in [21] and

explicit in [22]).
There is evidence of the difficulty of the Unique Games problem, in the form of integrality gaps

against strong semidefinite programming relaxations (from the so-called SA+ hierarchy) [26, 34, 24].
In contrast, at the time of original writing of this paper [4], there were no integrality gaps known for
2–to–2 Label Cover with perfect completeness, even for the most basic SDP. Thus, due to the perfect
completeness requirement, the evidence toward the 2-to-2 conjecture was arguably even more slim
compared to the UGC, though that has changed drastically recently (see Section 1.2).

We note that nontrivial approximation algorithms based on semidefinite programming are known for

the 2–to–1 Label Cover. In particular, for all ε > 0, [9] found a Õ(L)−
√

2−1+ε√
2+1−ε approximation algorithm for

2–to–1 Label Cover (where L is the label size of the instance).

Dictatorships tests on the road to hardness. For the Max-k-CSP problem with perfect completeness,
dictatorship tests are known to exist within a constant factor of known polynomial time approximation
algorithms [37, 3]. The best known NP-hardness results, however, are an exp(kΩ(1)) factor off from the
algorithmic guarantees [19] (this is when requiring perfect completeness; for near-perfect completeness,
the best known NP-hardness result is only off by a constant factor [8]). Recently, a Unique Games-
surrogate was proposed which closes this gap for satisfiable Max-k-CSP up to a polynomial in k factor [5].

In the case of the Not-Two (NTW) predicate, defined as the elements of {0,1}3 which have Hamming
weight not equal to 2, a series of papers [31, 32, 18] went from a dictatorship test to conditional hardness
(under the d–to–1 conjecture) to finally unconditional hardness. Establishing a dictatorship test is often
an important step in the journey to hardness.

1.2 Subsequent work

Most notably, the 2–to–2 conjecture, albeit with imperfect completeness, was resolved by a line of
papers [22, 13, 12, 23, 1].2 This implies the Unique Games conjecture when the completeness is 1/2,
which allows the conversion of a select few UG-hardness results to NP-hardness [2]. In addition, this
sequence of works establishes the first gaps in the sum-of-squares hierarchy for the 2–to–2 conjecture
with perfect completeness. Earlier only a gap on a weakened SDP, where even simple non-negativity of
inner products is not enforced, was known [16].

2At the time this paper was posted on ECCC [4], this research program was proposed but not completed.
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Even with these developments, the dictatorship test is still of independent interest. Because there
exist tractable CSPs, like 3-LIN, with sum-of-squares gaps but no dictatorship test [15, 36], this paper
gives additional evidence that the 2–to–2 conjecture with perfect completeness is true.

2 Preliminaries

We first formally define what the 2–to–2 Label Cover problem and its corresponding conjecture are.
Subsequently we review the Fourier analytical tools which shall be used to understand the dictatorship
tests.

2.1 The d1–to–d2 Label Cover problems

For a positive integer L, we let [L] denote the set {1,2, . . . ,L}.
Let d1, d2, L1, and L2 be positive integers. For any relation R ⊆ [L1]× [L2] we may consider the

bipartite graph whose two sides are identified with [L1] and [L2] respectively, and two vertices u∈ [L1] and
v ∈ [L2] are connected by an edge if (u,v) ∈ R. We say that R is an d1–to–d2 constraint if all connected
components of this bipartite graph are complete bipartite and have at most d1 components on the [L1] side
and at most d2 vertices on the [L2] side. Note in particular that a d′1–to–d′2 relation is a d1–to–d2 relation
as long as d′1 ≤ d1 and d′2 ≤ d2.

An instance of d1–to–d2 Label Cover consists of a bipartite graph G = (U,V,E), positive integers
L1 and L2, and constraints d1–to–d2 constraints π(u,v) ⊆ [L1]× [L2] or all (u,v) ∈ E. The ‘goal’ is to find
labelings σ : U → [L1] and ψ : V → [L2] such that for all (u,v) ∈ E, (σ(u),ψ(v)) ∈ π(u,v). Any edge
which satisfies this property is said to be satisfied the labelings σ and ψ .

Conjecture 2.1 (d1–to–d2 conjectures [21]). Let d1,d2 ≥ 1 be positive integers and ε > 0 be a constant.
The following promise decision problem is NP-hard. Let Ψ = (U,V,E,L,π(u,v)) be an instance of

d1–to–d2 Label Cover. Distinguish between the following cases.

• Completeness. There exist labelings σ : U → [L1] and ψ : V → [L2] which satisfy all of the
constraints if (d1,d2) 6= (1,1) or at least 1− ε fraction of the constraints if d1 = d2 = 1.

• Soundness. For all labelings at most ε fraction of the constraints are satisfied.

The 1–to–1 conjecture is more well-known as the Unique Games Conjecture.

2.2 Fourier Analysis over Zp

Before we describe the dictatorship tests, we first remind the reader of some the basics of Fourier Analysis
over Zp = {0,1, . . . , p−1}, with addition modulo p, where p is an odd prime.

Let L2(Zn
p;C) be the vector space of functions f : Zn

p→ C with inner product

〈 f ,g〉= 1
pn ∑

x∈Zn
p

f (x)g(x). (2.1)
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The Fourier basis we pick for Zp is the set of characters {χ0,χ1, . . . ,χp−1}, where χi( j) = ζ i j, in
which ζ is the primitive pth root of unity for all i, j ∈ Zp. We extend this basis to Zn

p multiplicatively. For
all α,x ∈ Zn

p, let

χα(x) =
n

∏
i=1

χαi(xi).

It is well-known that the χα ’s form an orthonormal basis with respect to the inner product (2.1). For a
function f : Zn

p→ C, its Fourier coefficients f̂ : Zn
p→ C are the unique function which satisfies

f = ∑
α∈Zn

p

f̂ (α)χα .

For α ∈ Zn
p, we let |α|= {i ∈ [n] : αi 6= 0}. We can now state/define few basic properties of a f : Zn

p→C
(e.g., from [30]):

E[ f ] = f̂ (0, . . . ,0)

Var[ f ] = ∑
α∈Zn

p,α 6=(0,...,0)
| f̂ (α)|2

Infi( f ) = ∑
α∈Zn

p,αi 6=0
| f̂ (α)|2

Inf≤d
i ( f ) = ∑

α∈Zn
p,αi 6=0,|α|≤d

| f̂ (α)|2.

In our analysis of the dictatorship tests, we need a few results from [29, 20] on the noise stability of
our function. There are many definitions, but we only need the Fourier analytic one (e.g., Proposition
8.28 of [30]).

Definition 2.2. For f ∈ Zn
p→ R and η ∈ [−1,1],

Sη( f ) = ∑
α∈Zn

p

η
|α|| f̂ (α)|2,

where 00 = 1.

We now cite a variant of the MOO theorem [29] as stated in [20]

Theorem 2.3 (Low-degree MOO theorem [29] from [20]). Consider any η ∈ [0,1), ε > 0, and f : Zn
p→

[0,1]. If max
i∈[n]

Inf≤d
i ( f )≤ δ , where δ (ε,η , p)> 0 and d(ε,η , p) ∈ N, then

Sη( f )≤ Λη(E[ f ])+ ε,

where Λη(µ) is the probability that two η-correlated Gaussians with mean 0 and variance 1 are in the
upper µ fraction of their CDFs.

The only fact we need about Λη is the following upper bound.

Lemma 2.4 (Corollary 3 of [20]). If η ∈ (0,1) and q≥ 2, then

Λη

(
1
q

)
≤
(

1
q

) 2
1+η

.
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3 A Family of Dictatorship Tests for 2–to–2 Label Cover

In this section, we construct the dictatorship tests for 2–to–2 constraints, and then analyze this construction
using Fourier analysis.

3.1 The dictatorship tests

Consider the following 2–to–2 constraint. Let S := {0,1, . . . ,(p−1)/2} ⊆ Zp, where p is an odd prime.
Then our constraints are

πa,b :=
⋃
x∈S

{(x+a,x+b),(−x+a,x+b),(x+a,−x+b),(−x+a,−x+b)} ⊆ Z2
p.

In fact, we can replace x ∈ S with x ∈ Zp in the above definition. When we identify πa,b as a probability
distribution, we give double weight to the 1–to–1 constraint (a,b) so that the marginal distributions are
uniform.

Our dictatorship test is then the following. Let n≥ 1 be a positive integer. The test is on a set of pn

variables, whose labeling is represented by a function F : Zn
p→ Zp. The test proceeds by the following

algorithm.

• Draw a,b ∈ Zp uniformly and independently at random.

• Draw x,y ∈ Zn
p uniformly at random from π

⊗n
a,b .

• Test (F(x),F(y)) ∈ πa,b.

By a standard trick, we may assume that F is folded. That is, for all a∈Zp and x∈Zn
p, F(x+(a, . . . ,a)) =

F(x)+a. As usual, to enforce this, when querying F(x), we instead query F(x− (x1, . . . ,x1)) and add x1
to the result. (For convenience, we write 1n = (1, . . . ,1).) This technicality can be moved within the CSP,
by adjusting checking (F(x),F(y)) ∈ πa,b to (F(x− x11n),F(y− y11n)) ∈ πa−x1,b−y1 .

Note that the dictator functions F(x) = xi for some i ∈ [n] pass this test with probability 1. We now
seek to show that if some F passes this test with probability at least ε , then F is ‘close’ to one of these
dictator functions. Like O’Donnell and Wu [31] we measure closeness in terms of having a coordinate
with a significant low-degree influence.
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3.2 Analysis of the Dictatorship Tests

Identify F with the function f : Zn
p→ C, where f (x) = 1 iff F(x) = 0 and f (x) = 0 otherwise. Since F

is folded, we must have that E[ f ] = 1
p . The success probability is

ε ≤ E
a,b

[
E

(x,y)∼π
⊗n
a,b

[1[(F(x),F(y)) ∈ πa,b]]

]

≤ E
a,b

[
E

(x,y)∼π
⊗n
a,b

[
2p E

(i, j)∼πa,b

[ f (x− i1n) f (y− j1n)]

]]
(double counting when (i, j) = (a,b))

= 2pE
a,b

 E
(x,y)∼π

⊗n
a,b

 E
(i, j)∼πa,b

 ∑
α,β∈Zn

p

f̂ (α) f̂ (β )χα(x− i1n)χβ (y− j1n)


= 2pE

a,b

 E
(i, j)∼πa,b

 ∑
α,β∈Zn

p

f̂ (α) f̂ (β )
n

∏
k=1

E
(xk,yk)∼πa,b

[χαk(xk− i)χβk(yk− j)]


= 2pE

a,b

 E
(i, j)∼πa,b

 ∑
α,β∈Zn

p

f̂ (α) f̂ (β )
n

∏
k=1

E
xk∼Zp

[
χαk(xk− i+a)(χβk(xk− j+b)+χβk(−xk− j+b))

2

]
= 2pE

a,b

 E
(i, j)∼πa,b

 ∑
α,β∈Zn

p

f̂ (α) f̂ (β )χα((a− i)1n)χβ ((b− j)1n)
n

∏
k=1

E
xk∼Zp

[
χαk+βk(xk)+χαk−βk(xk)

2

]
Note that

E
xk∼Zp

[
χαk+βk(xk)+χαk−βk(xk)

2

]
=


1 (αk,βk) = (0,0)
1/2 α2

k = β 2
k 6= 0

0 otherwise

If α,β ∈ Zn
p, define αβ to be the pointwise product. Furthermore, define

Cα = {αz ∈ Zn
p | z ∈ {1, p−1}n ⊆ Zn

p}.

Then, it is easy to see that the above probability equals

ε ≤ 2pE
a,b

 E
(i, j)∼πa,b

 ∑
α∈Zn

p

∑
β∈Cα

f̂ (α) f̂ (β )χα((a− i)1n)χβ ((b− j)1n)2−|α|


= 2p ∑

α∈Zn
p

∑
β∈Cα

f̂ (α) f̂ (β )2−|α|E
a,b

[
E

(i, j)∼πa,b

[
χα((a− i)1n)χβ ((b− j)1n)

]]
.
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Note that (i, j) ∈ πa,b if and only if a− i =±(b− j). In fact, we can rewrite the above expression as

ε ≤ 2p ∑
α∈Zn

p

∑
β∈Cα

f̂ (α) f̂ (β )2−|α| E
c∼Zp

[
χα(c1n)

χβ (c1n)+χβ (−c1n)

2

]
= p ∑

α∈Zn
p

∑
β∈Cα

f̂ (α) f̂ (β )2−|α|(1[χα+β (1n) = 1]+1[χα−β (1n) = 1])

Note that the Cα ’s are equivalence classes of size 2|α|. In particular, β ∈ Cα iff α ∈ Cβ . Let
C= {Cα : α ∈ Zn

p}. Thus, we then have that

ε ≤ p ∑
Cγ∈C

1
|Cγ | ∑

α,β∈Cγ

f̂ (α) f̂ (β )(1[χα+β (1n) = 1]+1[χα−β (1n) = 1])

Let f̂ (Cγ) be the vector of length |Cγ | whose entries are f̂ (α). Let f̂ (Cγ)
∗ be the transpose-conjugate

of f̂ (Cγ). Let Mγ be the |Cγ |× |Cγ | matrix with entries

Mγ

α,β =
1[χα+β (1n) = 1]+1[χα−β (1n) = 1]

|Cγ |
.

One can verify that Mγ is a real, symmetric, doubly stochastic matrix (modulo scaling of the entries).
Thus, the largest eigenvalue of Mγ , λ γ is this common row/column sum. Then, we can see that3

ε ≤ p ∑
Cγ∈C

f̂ (Cγ)
∗Mγ f̂ (Cγ)

≤ p ∑
Cγ∈C

λ
γ‖ f̂ (Cγ)‖2

= p ∑
Cγ∈C

∑
α∈Cγ

| f̂ (α)|2λ
γ . (3.1)

We next seek to show that λ γ is bounded by a particular decreasing function of |γ|.

Lemma 3.1. There exists a universal constant C > 0 such that for all n ∈ N, p odd prime, and γ ∈ Zn
p:

λ
γ ≤ 2

p
+

C
|γ|1/4 +1

.

Before we can do that, we need the following result.

Lemma 3.2. There exists a universal constant C > 0 such that for all n ∈ N, p prime, and β ∈ Zn
p:

Pr
z∼{0,1}n

[χβ (z) = 1] = Pr
z∼{0,1}n

[
n

∑
i=1

βizi = 0

]
≤ 1

p
+

C
|β |1/4 +1

3This deduction non-obviously uses the facts that ¯̂f (α) = f̂ (−α), −α ∈Cα , and Mγ

α,β
= Mγ

α,−β
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Remark 3.3. This lemma can be considered a finite-field analogue of a result of Littlewood and Offord
[27].

The the exponent of 1/4 can in fact be improved to 1/2−o(1), but the former is all we need.

Proof. Let k = |β |. Assume k ≥ 1. Assume without loss of generality that the nonzero terms of β are
β1, . . . ,βk.Then

Pr
z∼{0,1}n

[
n

∑
i=1

βizi = 0

]
= E

z∼{0,1}n

[
E

j∼Zp

[
ζ

j ∑
n
i=1 βizi

]]

= E
j∼Zp

[
k

∏
i=1

1+ζ jβi

2

]

≤ 1
p

p−1

∑
j=0

k

∏
i=1

∣∣∣∣∣1+ζ jβi

2

∣∣∣∣∣ .
Since the βi are nonzero for i ∈ [k], we have that for a fixed i, 1+ζ jβi is a permutation of 1+ζ 0, . . . ,1+
ζ p−1. By the k-wise rearrangement inequality [35], the above product is maximized when all the
permutations are consistent. That is,

1
p

p−1

∑
i=0

k

∏
j=1

∣∣∣∣∣1+ζ iβ j

2

∣∣∣∣∣≤ 1
p

p−1

∑
j=0

∣∣∣∣1+ζ j

2

∣∣∣∣k
=

1
p

p−1

∑
j=0

∣∣∣∣1+ cos(2π j/p)+ isin(2π j/p)
2

∣∣∣∣k
=

1
p

p−1

∑
j=0

∣∣∣∣2cos2(π j/p)+2icos(π j/p)sin(π j/p)
2

∣∣∣∣k
=

1
p

p−1

∑
j=0
|cos(π j/p)|k

=
1
p
+

2
p

(p−1)/2

∑
j=1

cosk(π j/p),

To further bound, we need the following elementary inequality

Claim 3.4. For all θ ∈ [0,π/2],

cosθ ≤ 1− θ 2

4
.

Proof. Note that sinη ≥ η/2 for all η ∈ [0,π/2] since sinη−η/2 is a concave function in [0,π/2] which
is nonnegative at its endpoints. We then integrate this from 0 to θ to obtain the above inequality.
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Thus, for all j ∈ {1, . . . ,(p−1)/2},

cosk(π j/p)≤
(

1− π2 j2

4p2

)k

Let `= b2p/(k1/4)c. Then, we have that

1
p
+

2
p

(p−1)/2

∑
j=1

cosk(π j/p)≤ 1
p
+

2
p

(p−1)/2

∑
j=1

(
1− π2 j2

4p2

)k

≤ 1
p
+

2
p

`

∑
j=1

(
1− π2 j2

4p2

)k

+
2
p

(p−1)/2

∑
j=`+1

(
1− π2 j2

4p2

)k

≤ 1
p
+

2`
p
+max

(
2((p−1)/2− `)

p

(
1− π2(`+1)2

4p2

)k

,0

)

≤ 1
p
+

4
k1/4 +max

(
1− π2

k1/2 ,0
)k

≤ 1
p
+

4
k1/4 + e−π2

√
k

≤ 1
p
+

C′

k1/4 +1
,

for some universal constant C′ > 0. To account for the case k = 0, we may set C = max(C′,1).

Proof of Lemma 3.1. By the previously mentioned symmetries of Mγ ,

λ
γ = E

α∼Cγ

[
1[χα+γ(1n) = 1]+1[χα−γ(1n) = 1]

]
= 2 E

α∼Cγ

[
1[χα−γ(1n) = 1]

]
= 2 E

z∼{−1,1}n

[
1[χγz−γ(1n) = 1]

]
= 2 E

z∼{−1,1}n

[
1[χγ(z−1n) = 1]

]
= 2 E

z′∼{0,1}n

[
1[χγ((1n−2z′)−1n) = 1]

]
= 2 E

z′∼{0,1}n

[
1[χγ(z′) = 1]

]
(since p odd prime)

≤ 2
p
+

2C
|γ|1/4 +1

,

where the last step follows from Lemma 3.2.

We also need to invoke the following analytical lemma.
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Lemma 3.5. For all ε > 0 and L ∈ N, there exists P(ε,L) ∈ N, such that for all primes p ≥ P, there
exists δ (ε,L, p)> 0 and d(ε,L, p) ∈ N such that for all f : Zn

p→{0,1} with E[ f ] = 1/p the following
holds. If Inf≤d

i ( f )≤ δ for all i ∈ [n] then

∑
α∈Zn

p,|α|≤L
| f̂ (α)|2 ≤ ε E[ f ] =

ε

p
.

Remark 3.6. The LHS does not fundamentally depend on the choice of Fourier basis for Zp. For
example, the Efron-Stein decomposition [14] works just as well.

Proof. First, we set the parameters

η = 1/2

P = d(εη
L)−

1+η

1−η e+1

ε
′ =

εηL

p
−
(

1
p

) 2
1+η

(positive since p≥ P)

Let d and δ be the parameters guaranteed by the modified MOO theorem (Theorem 2.3) where their
(ε,η , p) is our (ε ′,η , p). If max

i∈[n]
Inf≤d

i ( f )≤ δ , by a standard argument

∑
α∈Zn

p,|α|≤L
| f̂ (α)|2 ≤ ∑

α∈Zn
p

η
|α|−L| f̂ (α)|2

≤ η
−LSη( f )

≤ η
−L(Λη(1/p)+ ε

′) (modified MOO theorem, since max
i

Inf≤d
i ( f )≤ δ )

≤ η
−L

((
1
p

) 2
1+η

+ ε
′

)
(Lemma 2.4)

= η
−L εηL

p
=

ε

p
,

as desired.

Now, we may establish the main result.

Theorem 3.7. For every ε > 0, there exists P ∈ N such that for all primes p≥ P, there exists δ > 0 and
d ∈ N such that the following holds. If F : Zn

p→ Zp is a folded function which passes the 2–to–2 Label
Cover modulo p dictatorship test with probability at least ε , then

max
i∈[n]

Inf≤d
i f ≥ δ ,

where f (x) = 1[F(x) = 0].
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Proof. First select the following parameters

ε
′ = ε/(8C)

L =

⌈(
1
ε ′

)4
⌉
.

Let P′ be the P guaranteed by Lemma 3.5 when ε = ε ′/2 and L = L. Let P = max(P′,4/ε). Assume
p≥ P. Let δ and d be the values (independent of n) guaranteed by Lemma 3.5 for our choice of p.

From our previous analysis (3.1), we know that

ε ≤ p ∑
Cγ∈C

∑
α∈Cγ

| f̂ (α)|2λ
γ(3.1)

≤ p ∑
Cγ∈C

∑
α∈Cγ

| f̂ (α)|2
(

2
p
+

C
|α|1/4 +1

)
(Lemma 3.1).

= 2 ∑
α∈Zn

p

| f̂ (α)|2 +Cp ∑
α∈Zn

p

| f̂ (α)|2

|α|1/4 +1
.

By Parseval’s identity,

∑
α∈Zn

p

| f̂ (α)|2 = 1
pn ∑

x∈Zn
p

f (x)2 = 1/p < ε/4.

Thus, the first term contributes at most ε/2 to the sum. For the next part, note that C
L1/4+1 ≤

ε

8 . Then,

ε ≤ ε/2+ pC ∑
β∈Zn

p,|β |≤L

| f̂ (β )|2

|β |1/4 +1
+ p ∑

β∈Zn
p,|β |>L

C| f̂ (β )|2

|β |1/4 +1

≤ ε/2+ pC ∑
β∈Zn

p,|β |≤L
| f̂ (β )|2 + p ∑

β∈Zn
p,|β |>L

ε

8
| f̂ (β )|2

≤ ε/2+ pC ∑
β∈Zn

p,|β |≤L
| f̂ (β )|2 + ε/8.

Thus, we have that

∑
β∈Zn

p,|β |≤L
| f̂ (β )|2 ≥ 3ε

8pC
>

ε ′

2
E[ f ].

By the contrapositive to Lemma 3.5, we have that max
i∈[n]

Inf≤d
i f ≥ δ , as desired.
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