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Abstract: An emerging trend in approximate counting is to show that certain ‘low-
temperature’ problems are easy on typical instances, despite worst-case hardness results. For
the class of regular graphs one usually shows that expansion can be exploited algorithmically,
and since random regular graphs are good expanders with high probability the problem
is typically tractable. Inspired by approaches used in subexponential-time algorithms for
Unique Games, we develop an approximation algorithm for the partition function of the
ferromagnetic Potts model on graphs with a small-set expansion condition. In such graphs it
may not suffice to explore the state space of the model close to ground states, and a novel
feature of our method is to efficiently find a larger set of ‘pseudo-ground states’ such that it
is enough to explore the model around each pseudo-ground state.

1 Introduction

The Potts model is a probability distribution on colorings of the vertices of a graph which arises in
combinatorics, approximate counting and statistical physics. In the ferromagnetic Potts model, which is
the focus of our work, interactions between colors are chosen to favor monochromatic edges. The model
is defined by a partition function, which turns out to be a specialization of the Tutte polynomial. The
main algorithmic questions associated to statistical models such as the Potts model are to approximate
the partition function and to sample approximately from the probability distribution. In probability and
statistical physics one might be interested in phase transitions as the parameters of the model vary. For
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example, on the complete graph (the mean-field Potts model in physics terminology) the phase transition
is well-understood (see e.g. [4] and the references therein). An intuitive description of the phase transition
is that at high temperature the model is dominated by ‘disordered’ colorings with no dominant color or
long-range structure, while at low temperature the model is dominated by colorings with a dominant
color which grants long-range structure to the coloring. The phase transition is also key to the design
of approximation algorithms for the partition function. At high temperature the model is characterized
by lack of correlation between colors of distant vertices which can be exploited algorithmically, and the
description of the model at low temperatures suggests a natural approach: pick a dominant color and
consider small deviations from a monochromatic coloring. This approach was pioneered by Helmuth,
Perkins and Regts [15] and has let to a growing theory of ‘low-temperature algorithms’ for various
statistical models including the ferromagnetic Potts model [17, 6, 14, 5, 10].

In the language of physics, a strategy for such low-temperature algorithms is to consider the ground
states of the model and try to efficiently enumerate the contribution to the partition function from states
close to a ground state. For the ferromagnetic Potts model, a ground state corresponds to a coloring
in which every edge is monochromatic. In many cases there are hardness results suggesting that this
approach to a low-temperature algorithm cannot work in general (unless a surprising complexity-theoretic
collapse occurs), so we seek sufficient conditions on the graphs considered such that one can carry out
this approach. A major breakthrough of Jenssen, Keevash and Perkins [17] shows that the combinatorial
notion of expansion suffices in several settings, including the ferromagnetic Potts model on bounded-
degree graphs. Faster algorithms based on Markov chains but using the same underlying techniques were
later given by Chen, Galanis, Goldberg, Perkins and Vigoda [6].

We give some key definitions before introducing our methods and new results. Given a graph
G, a number of colors q, and an inverse-temperature parameter β > 0, the partition function of the
ferromagnetic Potts model on G is

ZG(β ) = ∑
ω:V (G)→[q]

eβmG(ω),

where mG(ω) counts the number of edges of G which are monochromatic under the coloring ω . Note
that large β corresponds to low temperature, giving colorings with many monochromatic edges a larger
contribution to the partition function. The main algorithmic question we study is therefore to approximate
ZG(β ) for large β . The definition of ZG(β ) highlights an essential entropy-energy trade-off that informs
the phase transition: colorings with mG(ω) large have larger contribution to the partition function, but only
when β is large compared to q and |E(G)| does this overpower the sheer number q|V (G)| of q-colorings.

We can now identify an obstacle to extending the approach of Jenssen, Keevash and Perkins [17] to a
low-temperature algorithm for a broader class of graphs than expanders. Consider a graph that is formed
from the disjoint union of two expanders (of equal size) with a small number of edges, e.g. a matching,
added between them. For large β it is not the case that all ‘important’ states are close to ground states:
if ω is such that one of the expanders is colored red and the other blue then a high proportion of the
edges are monochromatic (and so eβmG(ω) is large), but the coloring is very far from a true ground state (a
monochromatic coloring). Our main innovation is to overcome this obstacle and design an algorithm that
works for graphs such as this near-disjoint union of two expanders. It turns out that this type of graph is
rather natural, and emerges from a weakening of expansion known as small-set expansion that one can
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arrive at spectrally or combinatorially. We thus prove a kind of structure theorem for the Potts model on
graphs with small-set expansion, stating that the graph admits a partition such that ZG(β ) is dominated
by the contribution from colorings such that each piece of the partition is near-monochromatic.

1.1 Connections to Unique Games

The main reason to study small-set expansion and the ferromagnetic Potts model is rather broad. There is
a natural counting problem known as #BIS, which is to approximately count the number of independent
sets in bipartite graphs. The complexity of #BIS is unknown: there is no known general polynomial-
time approximation algorithm with small constant approximation ratio, but also no proof of hardness
connecting #BIS to a canonical ‘hard’ approximate counting problem such as #SAT. There is an entire
complexity class associated to #BIS, and a theory of approximation-preserving reductions under which
we wish to know the complexity of problems in the class [8]. The relevance of #BIS to this work is that
approximating the Potts partition function is #BIS-hard in the low-temperature regime [13, 11].

There is a superficial similarity between #BIS and the well-known ‘Unique Games Problem’ from
combinatorial optimization, despite appearing in somewhat distinct settings. Unique Games is a decision
problem on graphs related to MAX-CUT, and although it is conjectured to be NP-hard [20], no proof of
this is known. Our approach starts with the observation that recent advances show the combinatorial notion
of expansion makes both Unique Games [3, 26] and several #BIS-hard problems [17] easy in the sense
of admitting a polynomial-time solution. In the context of Unique Games, subsequent research [21, 2]
showed that a more refined and algebraic view on expansion is highly relevant to the problem, and
in particular these works give algorithms that tackle the subspace spanned by certain eigenvalues of
the graph. This led to a key discovery separating Unique Games from typical NP-hard problems: the
subexponential-time algorithm for general instances of Arora, Barak and Steurer [2] The techniques of
Arora, Barak and Steurer [2] also highlight the importance of small-set expansion and the related spectral
notion of threshold rank. In this work we show that small-set expansion can be exploited in approximate
counting, and give an algorithm for the Potts model which requires a small-set expansion condition, or
(somewhat equivalently) a suitably large gap in the spectrum of the graph. This generalizes previous
work that relied on the usual notion of expansion [17], and our results hint at deep connections between
the complexity of #BIS and recent advances in our understanding of the Unique Games Problem. In [7] it
was shown that a hypothetical algorithm able to approximate suitable low-temperature Potts-like partition
functions in some parameter range would refute the Unique Games Conjecture. This work goes in the
other direction, attempting to put ideas that led to algorithms for Unique Games to use approximating the
Potts partition function.

The main motivation for this work is the pursuit of a subexponential-time algorithm for approximating
the partition function of the ferromagnetic Potts model, and thus for #BIS.

The graphs studied in this paper represent a departure from existing trends in approximate counting.
Typically, the partition functions studied are motivated by problems in physics and this guides the choice
of graph instances too: lattices and random (regular) graphs are natural graphical models of physical
space. Since random graphs are expanders with high probability, the study of expansion is motivated
by these graphs—as well as by the study of the average-case complexity of approximating the partition
function. Small-set expansion and spectral partitioning have been used successfully in the design of
approximation algorithms for constraint satisfaction problems, and our work demonstrates that these
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techniques belong in approximate counting too.

1.2 Preliminaries

The partition function of the ferromagnetic Potts model on a graph G = (V,E) is the function

ZG(β ) = ∑
ω:V→[q]

eβmG(ω) ,

where β > 0 is a parameter related to the physical notion of temperature. The sum runs over functions ω

from V (G) to a set [q] of q colors (also known as spins), and mG(ω) is the number of monochromatic
edges of G under the coloring ω . Galanis, Štefankovič, Vigoda, and Yang [11] showed that for q ≥ 3
and β > βo(q,∆) it is #BIS-hard to approximate ZG(β ) on graphs of maximum degree ∆, where βo is a
natural physical threshold known as the order-disorder threshold. In fact, they proved this for bipartite
graphs though we will not restrict our attention to this class. We note that βo ∼ 2log(q)/∆ for fixed q
as ∆→ ∞, and refer the reader to [11] for the precise definition of βo and a discussion of its physical
significance.

We are interested in relative approximation of real numbers, where we say that ẑ is a relative ε-
approximation of z if e−ε ≤ z/ẑ≤ eε . An FPTAS for an approximate counting problem is an algorithm
that for any ε > 0 produces a relative ε-approximation to the desired function (e.g. ZG(β ) as above) in
time polynomial in the size of the input and 1/ε . Our main result is an FPTAS for ZG(β ) subject to the
conditions that G has maximum degree ∆ and a small-set expansion condition that we discuss below, and
that β is large enough. This results in an efficient algorithm for a restricted version of the #BIS-hard
approximate counting problem because we require the expansion condition on G, but our algorithm works
for large enough β inside the relevant parameter range.

To state our results we must first discuss expansion and related spectral concepts. Given a graph
G = (V,E), the boundary ∂ (S) of a set S⊂V is the set of edges with exactly one endpoint in S. Similarly,
the closure ∇(S) of a set S ⊂V is the set of edges with at least one endpoint in S. We say that G is an
α-expander if every S⊂V with |S| ≤ |V |/2 has |∂ (S)| ≥ α|S|. We also work with a related notion of edge
expansion that is more sensitive to the volume of a set of vertices than its size. Let µG(S) = ∑v∈S degG(v)
be the volume of S, and define the conductance of a set S⊂V (G) to be

ϕG(S) :=
|∂ (S)|
µG(S)

,

and the conductance of the graph G itself to be

ϕ(G) := min
S:µ(S)≤µ(V )/2

ϕG(S) .

We write µ(u) for the degree of the vertex u, since this is consistent with the definition of µ({u}). Finally,
we define the expansion profile [25, 27] of G to be the function given by

ϕG(γ) := min
S:µ(S)≤γ

ϕG(S) ,
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so that the expansion profile evaluated at γ = µ(V )/2 is the conductance of G. The usual notion of an
expander is a graph for which ϕ(G) is at least some constant, and a small-set expander is a graph for
which ϕG(δ µ(V )) is at least some constant for some small δ ∈ (0,1). This definition leaves open the
possibility that sets of large volume have small boundary, but enforces that sets of small volume have
large boundary.

There is a wealth of literature on the relation between the spectrum of matrices associated with G
and expansion of G, e.g. [24, 28, 23], and we let 0 = λ1 ≤ λ2 ≤ ·· · ≤ λn ≤ 2 be the eigenvalues of the
normalized Laplacian of G. Briefly, an expander has an eigenvalue gap between λ1 = 0 and λ2, and a
natural expansion condition is simply λ2 ≥Ω(1). Our results essentially require a more general condition
which corresponds to an eigenvalue gap between λk−1 and λk for some constant k.

1.3 Our results

Recall that the primary motivation in this work is to develop for the #BIS-hard problem of approximating
ZG(β ) results that parallel the advances in algorithms for the Unique Games Problem. Accordingly, we
state results that require small-set expansion conditions which generalize the λ2 ≥ Ω(1) definition of
expansion.

Theorem 1.1. Let G = (V,E) be a ∆-regular graph on n vertices. There is an absolute constant C such
that the following holds. Suppose that for some integer k ≥ 2, we have the small-set expansion condition
that

|∂ (S)| ≥C∆k6
√

λk−1|S|

for all sets S⊂V (G) of size at most n/k. Then for the q-color ferromagnetic Potts model with

β ≥Ck6 · 4+2log(q∆)

λ 2
k ∆

,

there is a deterministic algorithm that produces a relative ε-approximation to ZG(β ) in time polynomial
in n, 1/ε and 2k provided q and ∆ are constant. For constant k this gives an FPTAS.

For k = 2 the small-set expansion condition is trivially true, and the above result is essentially the same
as an algorithm in [17]. Perhaps the weakest natural small-set expansion condition for larger k is a
generalization of α-expansion that would say for some constant k ≥ 2 that sets S of size at most n/k have
|∂ (S)| ≥ α|S|. The condition above is a slight strengthening of this that requires α to be at least some
function of k, λk−1, ∆.

The above result is an immediate corollary of the following more general form that dispenses with
the regularity assumption.

Theorem 1.2. Let G = (V,E) be a graph on n vertices with maximum degree ∆ and minimum degree δ .
There is an absolute constant C such that the following holds. Suppose that for some integer k ≥ 2,

ϕG

(
∆

δ

µ(V )

k

)
≥Ck6

√
λk−1 .
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Then for the q-color ferromagnetic Potts model with

β ≥Ck6 · 4+2log(q∆)

λ 2
k δ

, (1.1)

there is a deterministic algorithm that produces a relative ε-approximation to ZG(β ) in time polynomial
in n, 1/ε and 2k provided q and ∆ are constant. For constant k this gives an FPTAS.

We can obtain improved running times at the expense of requiring randomness in these approximation
algorithms by swapping our main tool, the cluster expansion, for a Markov chain. The details of this idea
are given in [6], and how they apply to the similar algorithms presented in [17]. It is routine to verify
that the conditions required for the methods of [6] are implied by our work here, and so we immediately
obtain more efficient, randomized versions of our algorithms with those methods. We do not discuss this
in detail here.

Our methods for approximating ZG(β ) require a partition of V (G) such that (i) each part induces
an expander with large minimum degree, (ii) few edges lie between parts, and (iii) no part is too small.
Our main algorithmic result exploits a partition with a guarantee on the size of the smallest part. The
following technical result is used to prove both Theorems 1.1 and 1.2. We say that a partition P1, . . . , P̀
of V (G) is a (ϕin,ϕout,τδ )-partition if for all i ∈ [`] we have ϕ(G[Pi])≥ ϕin, ϕG(Pi)≤ ϕout and G[Pi] has
minimum degree at least τδ .

Theorem 1.3. Suppose that we have a graph G= (V,E) on n vertices of maximum degree ∆. Suppose also
that for some `≥ 1 we have sets P1, . . . , P̀ that form a (ϕin,ϕout,τδ )-partition of V such that |Pi| ≥ ηn
for all i ∈ [`]. Then for the q-color ferromagnetic Potts model on G with

β ≥ 2+4log(q∆)

ϕinτδη
,

there is a deterministic algorithm that produces a relative ξ -approximation to ZG(β ) in time at most

O
(
q`∆n(2n/ξ )O(log(q∆))

)
.

Note that we do not make use of ϕout in the conclusion of the theorem. While (a function of) ϕout gives
an upper bound on the number of edges leaving each part, so does the minimum degree condition inside
each part and this is the bottleneck for our methods.

To derive Theorems 1.1 and 1.2 from this result we develop a mild strengthening of a spectral
partitioning result of Oveis Gharan and Trevisan [28] that yields a partition of a graph into expanders
with control on the number of edges between the parts. The following theorem is an extension of the
main algorithmic result in [28] which, subject to an eigenvalue gap λk� λk−1, gives a partition of the
type required for our results. In the case that G has minimum degree δ , we add the minimum degree
condition parametrized by τδ to the partition with the guarantee that τ ≥Ω(1/k).

Theorem 1.4. Let G = (V,E) be a graph on n vertices of minimum degree δ . Given k ≥ 2 such that
λk > 0 there is an algorithm that runs in time O(kn2|E|2) which yields a partition P1, . . . , P̀ of V into
` < k pieces that forms a (ϕin,ϕout,τδ )-partition where

ϕin ≥Ω(λ 2
k /k4) , ϕout ≤ O

(
k6
√

λk−1

)
, τ ≥Ω(1/k) .
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In fact, we can ensure the mildly stronger property that for all i ∈ [`] and for all v ∈ Pi we have µG[Pi]
(v)≥

τ µG(v), but the definitions given above are more convenient in our application.
One of the main reasons to be interested in expansion is that random graphs typically have excellent

expansion properties. But any random graph model with strong anisotropy could fail to have expansion,
while still having readily exploitable structure. To further motivate our work, we show how Theorem 1.3
applies to the regular stochastic block model, or RSBM, as defined in e.g. [19] and motivated therein as a
natural model of a clustered network.

The RSBM is defined by positive integers d, k, n, and a k× k symmetric matrix of strictly positive
integers A whose row sums are all equal to d (and often whose diagonal entries are at least 3, meaning
d ≥ 3 also). Then n vertices are divided into k equal-sized communities P1, . . . ,Pk where for each 1≤ i≤ k
the community Pi is a random Ai,i-regular graph and for each 1≤ i < j ≤ k we put a random Ai, j-regular
bipartite graph on (Pi,Pj). The resulting graph G is d-regular, but the distribution need not be close to the
random d-regular graph, for example when the diagonal entries dominate the off-diagonal entries in A
the graph resembles k random graphs which are loosely connected. This gives a natural model with k
equal-sized communities that form connections inside their communities much more readily than between
communities. We use the regular variant of the stochastic block model for convenience, a similar result
holds for the usual definition of the model.

Theorem 1.5. Let d,k,n be positive integers such that n is a multiple of k and dn is even. Suppose that
for fixed ε ∈ [0,1/2), d is sufficiently large and we have a k× k symmetric matrix of strictly positive
integers A whose row sums are all equal to d such that the diagonal entries are all at least (1− ε)d. Let
G be an instance of the regular stochastic block model defined by d,k,n,A. Then, given the community
identities, for any fixed ζ > 0, with probability 1−o(1) as n→ ∞, for all

β ≥ 16k
1+2log(qd)

d

there is an algorithm that produces a relative ξ -approximation to ZG(β ) in time

O(qkdn(2n/ξ )O(qd)).

For k,q,d constant this gives an FPTAS.

Although this algorithm requires the community identities to proceed, spectral properties of the matrix
A can be used to efficiently, approximately recover the identities in the sense of weak recovery, see [19,
Theorem 4.2]. We avoid getting into the details here, but the algorithm of [19] together with Theorem 1.5
implies that there is a natural spectral condition on A one can add to Theorem 1.5 that obviates the need
to know community identities, and still gives an FPTAS when k,q,d are constant.

Note that the statement of Theorem 1.2 specialized to regular graphs is precisely Theorem 1.1,
so to prove both these theorems we can focus on Theorem 1.2. The expansion profile assumption
means that with η = 1/k, every part in the partition guaranteed by Theorem 1.4 must have size at least
ηn, as we now justify. The partition guarantee in Theorem 1.4 states that the resulting P1, . . . , P̀ has
ϕ(Pi)≤ ϕout =O(k6

√
λk−1). Suppose that ϕout > 0. Now an assumption ϕ(∆ µ(V )/(kδ ))≥ 2ϕout means

that any S ⊂ V with |S| ≤ n/k, and hence µ(S) ≤ ∆ µ(V )/(kδ ), has ϕ(S) ≥ 2ϕout. Thus, every Pi has
|Pi| ≥ ηn with η = 1/k. Theorem 1.2 now follows from Theorems 1.4 and 1.3.
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Proving Theorem 1.5 is a simple matter of using the properties of random regular graphs. Using
Cheeger’s inequality in the form ϕ(G)≥ λ2/2 and a result of Friedman [9], we know that the random
d-regular graph G has with probability 1−o(1) as the number of vertices tends to infinity,

ϕ(G)≥ 1
2
−
√

d−1
d
− ε

d
.

Then the assumptions of Theorem 1.5 give that with probability 1−o(1), the partition P1, . . . ,Pk given
by the communities, which are of size n/k, has ϕG[Pi] ≥ (1− ε)/2 for each i (where we use that d is
sufficiently large). Each G[Pi] also has minimum degree at least (1−ε)d, which allows a direct application
of Theorem 1.3. These simple derivations mean that it now suffices to prove Theorems 1.3 and 1.4.

1.4 Technical overview

Our main proof technique is based on the natural idea from physics that systems at low temperatures are
typically characterized by their ground states and small deviations from them. In our setting, a ground
state is a coloring ω ∈ [q]V (G) which maximizes the number mG(ω) of monochromatic edges, and so has
a maximum contribution to the partition function ZG(β ) over all possible colorings. A deviation from a
fixed ground state is represented by a set of connected induced subgraph with colorings that differ from
the ground state coloring. We will show that one only has to consider deviations of a bounded size using
a standard tool known as the cluster expansion of a carefully constructed abstract polymer model. An
abstract polymer model is an auxiliary physical model that considers assignments to polymers in the
graph instead of just vertices. We will use connected induced subgraphs as our polymers. The cluster
expansion of this model is an infinite series for the logarithm of the partition function of this model. We
appeal to a general convergence criterion [22] for this series and evaluate a truncation of the series to
approximate the partition function. The remaining task is then to show that the sum over colorings that
constitutes our function ZG(β ) of interest can be broken up into pieces that are (approximately) disjoint
and well-approximated by carefully chosen abstract polymer models.

This approach has its roots in statistical physics, and the fact that the cluster expansion yields
approximation algorithms was first explored in [15]. Amongst several notable subsequent applications,
the method was used to great effect in [17, 6] where an FPTAS and an FPRAS (a randomized version of
an FPTAS) for ZG(β ) and related partition functions were given for expander graphs. Our work is an
extension of the relevant ideas in the following way. Some ground states for ZG(β ) are trivial to compute
and work with, as they are simply the colorings that give every vertex the same color. But when the graph
has low conductance (i.e. is nearly disconnected) there may be non-monochromatic colorings that are
very close to being a ground state, and very far from the actual ground states. This presents a genuine
obstruction to the approach of [17], which we overcome here. Our main idea is to partition the sum over
colorings in ZG(β ) into contributions from states that we call pseudo-ground states and devise a polymer
model for each one, rather that relying only on true ground states. The main task one must solve to apply
our method is therefore a decomposition of the desired state space based on pseudo-ground states that can
be handled with the cluster expansion (or related tools such as the Markov chains in [6]). Here, we show
that spectral properties of the input graph can be exploited efficiently to give a decomposition into parts
such that the set of pseudo-ground states given by colorings that make each part monochromatic, but
allow different parts to be different colors, suffices to approximate ZG(β ). To achieve this we use tools
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from spectral graph theory developed for other purposes in theoretical computer science [28], refined for
our purposes of approximating partition functions.

1.5 Related work

Galanis, Goldberg and Stewart [10] have generalized the approach of [17] in a different direction,
giving faster algorithms for general spin systems on regular bipartite expanders. Our work shows that a
sophisticated understanding of the spectrum of the underlying graph can be exploited in approximate
counting problems such as the Potts model. We remark that spectral considerations are used extensively
in approximate counting as Markov chains are important tools in the area, and bounding their mixing
time can be done via spectral properties of the transition matrix. Our work does not rely on Markov
chains and so is rather different from work of this kind, a notable exception being a result of Alev and
Lau [1] which gives an algorithm for approximately counting the number of independent sets of a given
size which exploits the absolute value of the smallest eigenvalue of a graph.

In a very recent development, Jenssen, Perkins, and Potukuchi [18] significantly improved the
algorithmic approach of [17] for counting independent sets in bipartite graphs and weakened the nec-
essary expansion condition. As an interesting application, they gave an algorithm for #BIS on regular
graphs (with a polynomial approximation ratio) that runs in subexponential time when the degree of
the graph grows with the number of vertices. This result is substantial evidence in support of a general
subexponential-time algorithm for #BIS.

So far we have discussed our work in the context of several recent advances in algorithms using the
cluster expansion from statistical physics, but here we give a broader picture of the literature. Recently,
the cluster expansion has been used to give an approximation algorithm for the ferromagnetic Potts
model on integer lattice graphs at all temperatures (i.e. for all β > 0) [5]. Since the present work
first appeared as a preprint, Helmuth, Jenssen, and Perkins [14] studied a generalization of the Potts
model known as the random cluster model and gave a detailed picture of the model on the class of
bounded-degree graphs with both an expansion and a small-set expansion condition. They focus on the
condition that for δ ∈ (0,1/2) and ∆≥ 3, G is of maximum degree ∆ and the expansion profile satisfies
ϕG(1/2)≥ 1/10 and ϕG(δ )≥ 5/9 (though the precise constants can essentially be anything Ω(1) and
1/2+Ω(1) respectively). Amongst several results characterizing the physical properties of the model,
they give an FPTAS for ZG(β ) when G satisfies the above condition, for all β > 0 when q is large enough
compared to δ and ∆. This result is not directly comparable to our Theorem 1.2 because we dispense
with the rather strong assumption ϕG(1/2)≥Ω(1), which means our algorithm applies to a very different
class of graphs. In short, for reasons related to work on Unique Games we wish to exploit a gap in
spectrum of the graph wherever it may appear, whereas in [14] the authors study an expansion condition
met by the random regular graph. The random regular graph is a natural object to develop algorithms for,
typically studied in physics due to its connections to the Bethe lattice (also known as the infinite regular
tree).

1.6 Further questions

Our work hints at several further problems in approximate counting. It would be interesting to adapt
our methods to counting independent sets in bipartite graphs directly, or rather approximation of the
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partition function of the hard-core model at low temperatures on bipartite graphs. The authors of [17]
show how to do this for expanders, but generalizing the methods to small-set expanders and the output of
our Theorem 1.4 is a natural next step.

Our methods also present a challenge to spectral partitioning techniques for irregular graphs. On
regular graphs the notions of α-expansion and conductance coincide nicely, but some loss related to such
a translation in irregular graphs is unfortunate in this work. The spectral partitioning techniques that
proceed via the normalized Laplacian naturally feature volume and conductance instead of set size in the
relevant places, and adapting these methods to fit together better is certainly desirable for our applications.

It would be very interesting to extend our techniques and attempt to give a general subexponential-
time algorithm for a #BIS-hard problem, along the lines of the aforementioned work for Unique Games.
Our techniques are a step towards this goal that show the spectrum and partitioning into expanders can be
exploited in approximate counting. The main limitation of our method is that we require some properties
of the partition that are hard to ensure in general: that there are no small parts and that the minimum
degree inside parts is large. We suspect that a general method for handling ‘problematic’ edges between
parts in approximate counting problems can overcome the first of these limitations, and hope that our
work motivates further research on this topic. In the case of Unique Games, ‘problematic’ edges can be
omitted without catastrophic effects. A more sophisticated approach seems to be necessary for the Potts
model and other approximate counting problems.

1.7 Organisation

In Section 2 we present an overview of our method, then give the details and show how Theorems 1.1
and 1.2 follow from the method and Theorem 1.4. In Section 3 we prove Theorem 1.4, which completes
the proofs of our main results.

2 Approximating Potts partition functions

In this section we prove Theorem 1.3, and we choose to remove the restriction on part sizes by removing
any edges that leave small parts. That is, we develop the following generalization of Theorem 1.3.

Theorem 2.1. Suppose that we have a graph G = (V,E) on n vertices, of maximum degree ∆ and of
minimum degree δ . Suppose also that for some `≥ 1 we have sets P1, . . . , P̀ that form a (ϕin,ϕout,τδ )-
partition of V such that for some 0≤ s≤ ` we have |Pi|< ηn for 1≤ i≤ s, and |Pi| ≥ ηn for s+1≤ i≤ `.
Then for ξ > 0 and

β ≥ 4+2log(q∆)

ϕinτδη
,

there is a deterministic algorithm giving a relative ((s+1)ξ +β sϕout∆ηn/2)-approximation to ZG(β )
in time at most

O

((
sη

O(log(q∆))+q`−s
)

∆n
(

2n
ξ

)O(log(q∆))
)

.

We call the sets P1, . . . ,Ps which each contain less than ηn vertices bad parts, and the remaining sets
Ps+1, . . . , P̀ good parts. The details of why a small part is ‘bad’ emerge in the proof, but it essentially
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arises because of a tension in the needs for (a) the partition function to be dominated by the contribution
from colorings close to a pseudo-ground state, and for (b) a method of approximating this contribution for
each pseudo-ground state. If one relaxes the definition of ‘close’ then one needs stronger approximation
methods as there are more states that must be captured as close to a given pseudo-ground state. Here our
pseudo-ground states are those in which each part is monochromatic, and any state in which each part
has a majority color is close to the unique pseudo-ground state which uses only that majority color on
each part. The majority color definition simultaneously avoids any annoyances arising from colorings
being close to multiple pseudo-ground states, and more importantly allows us to exploit the expansion
assumption in each part of the partition. It is unclear how to improve these methods to capture, e.g. a
coloring which splits the colors red, blue, and green equally amongst vertices of the smallest part, colors
all the other parts red.

The proof proceeds as follows. For 1≤ i≤ s, we compute a relative ξ -approximation Ẑi to ZG[Pi](β ).
Since G[Pi] is an expander in the sense that ϕ(G[Pi]) ≥ ϕin, we can use the Potts model result of [17]
directly to achieve this efficiently.

Now let G′ be the subgraph of G graph induced by the good parts. We adapt the method of [17]
to work with G′ which is supplied with a (ϕin,ϕout,τδ )-partition Ps+1, . . . , P̀ , and such that each part
has size at least ηn. That is, we define a polymer model to represent the contribution to ZG′(β ) from
states close to a pseudo-ground state in which each Pi is monochromatic. We use the cluster expansion to
approximate the partition function of each polymer model, and show that an appropriate sum of these
yields a relative ξ -approximation Ẑ′ to ZG′(β ).

Putting the pieces together, we have an approximate partition function for the subgraph G′′ of G
obtained by removing from G the edges ∂ (Pi) for 1 ≤ i ≤ s. Since we have a ϕout guarantee for the
partition P1, . . . , P̀ we can bound the number of such edges, and then use

Ẑ := Ẑ′ · ∏
1≤i≤s

Ẑi

as an approximation of ZG(β ) that is good enough to prove Theorem 2.1.
The partition P1, . . . , P̀ that we assume for Theorem 2.1 has the guarantee that ϕ(G[Pi])≥ ϕin. It is

convenient to restate this in terms of a boundary condition akin to the one given in [17]. Recall that we
say the graph G is an α-expander if |∂ (S)| ≥ α|S| for all S with |S| ≤ |V (G)|/2, and note the following
fact to relate α-expansion and conductance.

Fact 2.2. Let G = (V,E) be a graph of minimum degree δ . Then G is an α-expander for α = δϕ(G).

Proof. Let |S| ≤ |V |/2, and note that this means |S| ≤ |V \S|. If µ(S)≤ µ(V )/2 then we have ϕ(S)≥
ϕ(G), and so

|∂ (S)|= ϕ(S)µ(S)≥ ϕ(G)δ |S| .

If instead we have µ(S)> µ(V )/2, then µ(V \S)≤ µ(V )/2. This means

|∂ (S)|= |∂ (V \S)| ≥ ϕ(G)δ |V \S| ≥ ϕ(G)δ |S| .

In the proof of Theorem 2.1 we can use this fact to show that each G[Pi] is an α-expander with
α = ϕinτδ , because G[Pi] has ϕ(G[Pi])≥ ϕin and minimum degree at least τδ .
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Our main tool (in addition to the partitioning result Theorem 1.4) is the cluster expansion for abstract
polymer models. An abstract polymer model is a collection of polymers γ , a weight wγ for each polymer,
and a compatibility relation on polymers. To be concrete, when approximating the Potts partition function
of a graph G our polymers are (special) connected subsets of vertices of G, polymers are compatible if
they are at distance greater than 1 in G, and the weight is some natural weighted sum over colorings of
the polymer. The partition function of an abstract polymer model is Ξ := ∑Γ ∏γ∈Γ wγ , where the sum is
over all finite sets Γ of mutually compatible polymers. The cluster expansion is the formal series in the
weights given by

logΞ = ∑
Γ′

φ(H(Γ′)) ∏
γ∈Γ′

wγ ,

where this time the sum is over clusters Γ′ which are ordered, finite lists of polymers whose graph formed
by the incompatibility relation is connected, and the term φ(H(Γ′)) is a combinatorial term depending on
the compatibility graph induced by the cluster. There are standard convergence criteria that guarantee
this series is convergent and does so rapidly, and our algorithms use these criteria to show that a suitably
truncated cluster expansion gives the desired relative approximation to Ξ. See e.g. [17] or [16] for more
details on the use of the cluster expansion to design algorithms. We will not require detailed knowledge
of the terms of the cluster expansion, it suffices to apply existing packaging of the necessary ideas from
e.g. [17].

2.1 Dealing with the bad parts

One of the main results of [17] is the following approximation algorithm for the low-temperature
ferromagnetic Potts model on α-expander graphs of bounded degree.

Theorem 2.3 (Jenssen, Keevash, and Perkins [17]). Let G be an α-expander on n vertices of maximum
degree ∆. Then for the q-color ferromagnetic Potts model on G with

β ≥ 4+2log(q∆)

α
,

there is a deterministic algorithm that produces a relative ξ -approximation to the partition function
ZG(β ) in time at most O

(
∆n(2n/ξ )O(log(q∆))

)
.

For 1≤ i≤ s, each G[Pi] is a ϕinτδ -expander on less than ηn vertices, and has maximum degree at
most ∆. Via the above result we can obtain a relative ξ -approximation Ẑi to ZG[Pi](β ) when

β ≥ 4+2log(q∆)

ϕinτδ
,

and to do this for 1≤ i≤ s takes total time at most

Tbad = O
(
s∆ηn(2ηn/ξ )O(log(q∆))

)
.
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2.2 Dealing with the good parts

Here we develop a generalization of the methods of [17] that were used to prove Theorem 2.3. In the
course of the proof we will see that the minimum size of a part in the partition affects the range of β for
which our argument works. To avoid defining separate notation for a graph and partition with no bad
parts, in this subsection we work with some graph G on n vertices with a partition P1, . . . , P̀ that has no
bad parts. Then when we apply the result below as a step in the proof of Theorem 2.1, we will apply it
with G = G′, ` = `′− s, some n′ ≤ n, and other changes in notation. That means this section yields a
direct proof of Theorem 1.3.

We say that a set U ⊂V is small if for all i ∈ [`] we have |U ∩Pi| ≤ |Pi|/2. Let α := ϕinτδ , so that
by Fact 2.2 we have that each G[Pi] is an α-expander. A small set has a convenient ‘partition expansion’
guarantee because the condition |U ∩Pi| ≤ |Pi|/2 implies that for all i we have |∂G[Pi](U ∩Pi)| ≥ α , where
we use a subscript on the ∂ to denote the graph in which we take the boundary. For brevity, we will write
Ui :=U ∩Pi, and ∂i for ∂G[Pi].

We say that a set U ⊂V is sparse if each of the connected components of G[U ] is small, noting that
any small set is necessarily sparse. When Γ is the set of connected components of G[U ], for all i ∈ [`] we
have,

∂i(Ui) =
⋃
γ∈Γ

∂i(γi) ,

where γi = γ ∩Pi and the union is disjoint since there are no edges of G between the sets γ . Then if U is
sparse we can count for each i the edges leaving U inside G[Pi],

|∂i(Ui)|= ∑
γ∈Γ

|∂i(γi)| ≥ α ∑
γ∈Γ

|γi|= α|Ui| ,

showing that sparse sets also have a convenient ‘partition expansion’ property.
Recall that the q-color ferromagnetic Potts model on G is given by the partition function

ZG(β ) = ∑
ω:[q]V

eβmG(ω) ,

where mG(ω) counts the number of monochromatic edges of G under the coloring ω . We refer to the
colorings ω as states, and note that the states giving all vertices of G the same color have the highest
possible contribution to the partition function, eβ |E|. A state with this maximum contribution is usually
called a ground state, but we are interested in a slightly more flexible notion of ground state. We consider
any coloring such that each Pi is monochromatic a ground state, and note that when there are few edges
crossing the partition these states all contribute to the partition function a term close to the maximum. We
hope the reader will allow this abuse of terminology, as writing pseudo-ground throughout this section
seems overly verbose.

Our goal is to show that ZG(β ) is well-approximated by the contribution from states close to a ground
state, and to show that we can efficiently approximate each such contribution with the cluster expansion.
Both of these steps inevitably require large β . It is simply false that the partition function is dominated by
states close to a ground state for small β , and we will use large β when appealing to a standard condition
that guarantees our series approximation via the cluster expansion is convergent.
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Let Ψ be the set of ground states, noting that |Ψ|= q`. When ψ : V → [q] is a ground state, i.e. when
|ψ(Pi)|= 1 for all i ∈ [`], we write ψi for the unique color such that ψ(Pi) = {ψi}. We say that a state ω

is close to ψ if, for all i ∈ [`] we have |ω−1(ψi)∩Pi|> |Pi|/2, and note that each ω is close to at most
one ground state. We write Ω := [q]V for the set of all states, Ωψ for the set of states close to ψ , and
Ω∗ :=

⋃
ψ∈Ψ Ωψ .

2.2.1 Approximation by states close to a ground state

Let Z∗G(β ) := ∑ω∈Ω∗ eβmG(ω) be the contribution to ZG(β ) from states close to any ground state, and for
a specific ground state ψ let Zψ

G (β ) := ∑ω∈Ωψ eβmG(ω) be the contribution from states close to ψ .
We show that Z∗G(β ) is close to ZG(β ) for large enough β . If ω ∈Ω\Ω∗ then there is some i ∈ [`]

such that for all colors c ∈ [q] we have ω−1(c)i ≤ |Pi|/2. Note that for every color c, ∂i(ω
−1(c)i) consists

entirely of bichromatic edges, and hence Pi contains at least

1
2 ∑

c∈[q]
|∂i(ω

−1(c)i)| ≥
1
2 ∑

c∈[q]
α|ω−1(c)i|=

1
2

α|Pi| ≥
αηn

2

bichromatic edges. Then eβmG(ω) ≤ eβ (|E|−αηn). This means

ZG(β )−Z∗G(β ) = ∑
ω∈Ω\Ω∗

eβmG(ω) ≤ qneβ (|E|−αηn) .

Then the fact that ZG(β )≥ qeβ |E| means that

0≤ 1−
Z∗G(β )
ZG(β )

≤ qn−1e−βαηn .

When β ≥ 2log(eq)/(αη) we have

ee−n
> 1≥

Z∗G(β )
ZG(β )

≥ 1− e−n/q≥ e−e−n
,

and hence Z∗G(β ) is a relative e−n-approximation to ZG(β ) (for the last inequality we need q ≥ 2 and
n≥ 1). Note that this step is making crucial use of the minimum part size guarantee. If the minimum
part size was o(n) (instead of ηn), then the lower bound on β would tend to infinity with n, which is
undesirable.

2.2.2 Approximation by a polymer model

Since Z∗G(β ) = ∑ψ∈Ψ Zψ

G (β ) is a good approximation to ZG(β ), it will suffice to obtain good approxima-
tions to each Zψ

G (β ) and take their sum. We do this with a polymer model and cluster expansion for each
ψ .

Let a polymer be a set γ ⊂V such that G[γ] is connected and γ is small, |γ ∩Pi| ≤ |Pi|/2 for all i. Two
polymers γ and γ ′ are compatible if they are disjoint sets of vertices such that ∂ (γ)∩∂ (γ ′) = /0. We write
C for the set of polymers and G for the family of sets of mutually compatible polymers.
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Now fix a ground state ψ . For a set U ⊂V , let Ω(U,ψ) be the set of states ω ∈Ω such that for all
v ∈U we have ω(v) 6= ψ(v) and for all v ∈V \U we have ω(v) = ψ(v). That is, for ω ∈Ω(U,ψ) the set
U encodes the places where ω and ψ differ. We also write Λ(U,ψ) for the set of colorings λ : U → [q]
such that for all v ∈U we have λ (v) 6= ψ(v). We change letters for this definition to signify that λ is a
coloring of U alone, and not all of V .

Then for λ ∈ Λ(U,ψ) let mG(ψ,U,λ ) be the number of edges in G which have at least one endpoint
in U that are monochromatic when U is colored by λ and any vertex at graph distance exactly one from
U is colored by ψ . We write

Rψ(U,β ) := ∑
λ∈Λ(U,ψ)

eβmG(ψ,U,λ )

for the restricted partition function of U with boundary conditions specified by ψ . Note that when Γ is
the set of connected components of G[U ] we have

e−β |∇(U)|Rψ(U,β ) = ∏
γ∈Γ

e−β |∇(γ)|Rψ(γ,β ) ,

by the fact that there are no edges between the sets in Γ. This lack of edges between the γ ∈ Γ also
permits the simultaneous imposition of boundary conditions for each γ without conflict. The key point of
these definitions is that with weights

wγ := e−β |∇(γ)|Rψ(γ,β ) ,

and the polymer model partition function Ξψ := ∑Γ∈G ∏γ∈Γ wγ we will be able to show that

Z̃ψ

G (β ) := eβmG(ψ)
Ξ

ψ

is a good approximation of Zψ

G (β ).
Fix an arbitrary subset U ⊂V , a state ω ∈Ω(U,ψ), and let Γ be the set of connected components of

G[U ]. Then every edge that does not intersect U is colored the same under ω and ψ , so

mG(ω) = mG(ψ)−|∇(U)|+mG(ψ,U,ω|U)
= mG(ψ)−∑

γ∈Γ

|∇(γ)|+ ∑
γ∈Γ

mG(ψ,γ,ω|γ) . (2.1)

In the case that U is sparse, each component of U is small and hence forms a polymer. Then there is a
one-to-one correspondence between sparse subsets U ⊂V and Γ ∈ G (given by U =

⋃
γ∈Γ γ) and so

Z̃ψ

G (β ) = eβmG(ψ)
∑
Γ∈G

∏
γ∈Γ

e−β |∇(γ)|Rψ(γ,β ) = ∑
U sparse

∑
ω∈Ω(U,ψ)

eβmG(ω) .

But we also have
Zψ

G (β ) = ∑
U small

∑
ω∈Ω(U,ψ)

eβmG(ω) ,

because ω being close to ψ means that the set U where ω and ψ differ satisfies |Ui| ≤ |Pi|/2 for all i ∈ [`],
i.e. U is small. Recall that a small set is sparse, which means

Z̃ψ

G (β )−Zψ

G (β ) = ∑
U sparse,
not small

∑
ω∈Ω(U,ψ)

eβmG(ω) . (2.2)
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Hence, if U is sparse we have for each index i that |∂i(Ui)| ≥ α|Ui|, and hence for all pairs (U,ω)
appearing in the double-sum in (2.2), and for and any index i ∈ [`], there are at least α|Ui| bichromatic
edges inside Pi under ω . But every U in the sum in (2.2) is not small and hence there is some index i ∈ [`]
such that |Ui|> |Pi|/2. This means there are more than

α|Pi|/2≥ αηn/2

bichromatic edges in ∇(U) under ω . That is, for all pairs (U,ω) appearing in the double-sum in (2.2),

mG(ψ,U,ω|U)< |∇(U)|−αηn/2 ,

and hence via (2.1) we have mG(ω)< mG(ψ)−αηn/2. Returning to (2.2) this means

0≤ Z̃ψ

G (β )−Zψ

G (β )≤ qneβ

(
mG(ψ)−αηn/2

)
,

because the number of ω that are in Ω(U,ψ) for some sparse, not small U is (crudely) at most qn. We
also have that Zψ

G (β )≥ eβmG(ψ) so that

1≤
Z̃ψ

G (β )

Zψ

G (β )
≤ 1+qne−βαηn/2 ≤ 1+ e−n ≤ ee−n

when β ≥ 2log(eq)/(αη).

2.2.3 Convergence of the cluster expansion

We seek to apply the following theorem stated by Jenssen, Keevash, and Perkins [17], with many
variations used elsewhere, e.g., [5] and the earlier [16]. The theorem concerns a surprisingly useful
special case of abstract polymer models that appears in statistical physics and counting algorithms. The
setting is that we have an ambient graph G, polymers are vertex subsets of G which induce connected
graphs, and the polymer compatibility relation is given by graph distance in G. Our application of abstract
polymer models fits this special case, which is sometimes called a subset gas or subset polymer model.

Theorem 2.4. Suppose that G = (V,E) is a graph on n vertices of maximum degree ∆, and that the
following hold for a polymer model associated to G and some decay function g(·) on polymers, such that
polymers are subsets of V that induce connected subgraphs and polymers are compatible when they are
at graph distance at least two.

1. Given set γ ⊂V with G[γ] connected, determining whether γ is a polymer and computing wγ can
be done in time eO(|γ|),

2. there exists ρ > 0 so that for every polymer γ , g(γ)≥ ρ|γ|, and

3. the Kotecký–Preiss condition holds with the given function g(·) in the sense that for all polymers γ ,

∑
γ ′:dG(γ,γ ′)≤1

|wγ ′ |e|γ
′|+g(γ ′) ≤ |γ| .
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Then there is a deterministic algorithm that gives a relative ξ -approximation to Ξ in time

O
(

n · (n/ε)O(log∆/ρ)
)
.

The first condition is straightforward for our polymer models. Given a set γ ⊂ V that induces a
connected subgraph, we have to count the size of each γi to decide whether γ is a polymer. This can be
done in time O(|γ|). To compute the weight wγ we sum over the (q−1)|γ| colorings of γ that appear in the
sum giving Rψ(γ,β ) and count monochromatic edges. This takes time at most (q−1)∆ ·∆|γ|= eO(∆|γ| logq).
We will take g(γ) = |γ| so the second condition is satisfied with ρ = 1. For the final condition we exploit
the fact that every polymer γ is small and hence expands in each G[Pi], and that every edge in ∂i(γi) is
bichromatic for any coloring λ considered in the sum giving Rψ(γ,β ). Then

wγ ≤ (q−1)|γ|e−βα|γ| ,

so it suffices to show that
∑

γ ′:d(γ,γ ′)≤1
e(2−βα+log(q−1))|γ ′| ≤ |γ| . (2.3)

We would be done if we could prove that for each v ∈V we have

∑
γ ′∈C :v∈γ ′

e(2−βα+log(q−1))|γ ′| ≤ 1
∆+1

,

because by summing this inequality over all vertices v at distance at most 1 from γ , of which there are at
most (∆+1)|γ|, we have (2.3). For this argument we use that fact [12, Lemma 2.1] that there are at most
(e∆)t connected, induced subgraphs of G on t vertices that contain any fixed v ∈V . Then

∑
γ ′∈C:v∈γ ′

e(2−βα+log(q−1))|γ ′| ≤
∞

∑
t=1

e(3−βα+log(q−1)+log∆)t =
ea

1− ea ,

where a := 3−βα + log(q−1)+ log∆. Then the above sum is at most 1/(∆+1) when a≤− log(∆+2),
which holds e.g. when β ≥ (4+2log(q∆))/α . For such β we have via Theorem 2.4 an FPTAS for Z̃ψ

G (β )
that yields a relative ξ -approximation Ẑψ

G to Z̃ψ

G (β ) in time

O
(

n · (n/ξ )O(log∆)
)
.

2.2.4 Finishing the argument for good parts

In the pursuit of Theorem 1.3, we have shown that when

β ≥ 2log(eq)
αη

,

the function Z∗G(β ) is a relative e−n-approximation of ZG(β ). Recall that Z∗G(β ) is the sum of q` terms
Zψ

G (β ), and for the same condition on β we have for each ψ ∈Ψ the function Z̃ψ

G (β ) which is a relative
e−n-approximation of Zψ

G (β ). Finally, when

β ≥ 4+2log(q∆)

α
,
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we have an algorithm to approximate each Z̃ψ

G (β ).
We now turn to the algorithm for approximating ZG(β ) when

β ≥ 4+2log(q∆)

ηα
,

as in Theorem 1.3, and so β satisfies both of these conditions. We want a relative ξ -approximation, and
if ξ ≤ e−n/2 then 1/ξ ≥ en/2 and so we have time to compute via brute force. We can compute ZG(β )
in time O(qn ·∆n) = O((1/ξ )2logq ·∆n), which a polynomial in 1/ε and n. Otherwise, for ζ = ξ/2,
we compute for each ψ ∈Ψ a relative ζ -approximation Ẑψ

G to Z̃ψ

G (β ) via the cluster expansion and the
method described in previous subsections. This takes time

O
(

q` ·n(n/ζ )O(log∆)
)
.

Let ẐG = ∑ψ∈Ψ Ẑψ

G be the sum of these approximations. Then we have for each ψ ∈Ψ,

e−ζ Ẑψ

G ≤ Z̃ψ

G (β )≤ eζ Ẑψ

G ,

and so summing over ψ ∈Ψ gives

e−ζ ẐG′ ≤ ∑
ψ∈Ψ

Z̃ψ

G (β )≤ eζ ẐG′ .

But we also have
e−e−n

Z̃ψ

G (β )≤ Zψ

G (β )≤ ee−n
Z̃ψ

G (β ) ,

and so
e−(ζ+e−n)ẐG ≤ ∑

ψ∈Ψ

Zψ

G (β ) = Z∗G(β )≤ eζ+e−n
ẐG .

Finally, we have
e−e−n

Z∗G′(β )≤ ZG(β )≤ ee−n
Z∗G(β ) ,

and so
e−(ζ+2e−n)ẐG ≤ ZG(β )≤ eζ+2e−n

Zalg .

Then since ξ > e−n/2 we have that ẐG is a relative (ζ +2ξ 2)-approximation to ZG(β ). Without loss of
generality let ξ ≤ 1/4 so that ζ = ξ/2 satisfies ζ ≤ ξ −2ξ 2, and we have a relative ξ -approximation
as required. To complete the proof of Theorem 1.3, we reiterate that the running time of this algorithm,
assuming we are supplied with the required partition P1, . . . , P̀ , is

O
(

q`n · (2n/ξ )O(log∆)
)
.

An upper bound on the running time in either case ξ ≤ e−n/2 and ξ > e−n/2 is then

Tgood = O
(
q`∆n(2n/ξ )O(log(q∆))

)
.

This concludes the proof of Theorem 1.3.
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2.3 Proof of Theorem 2.1

With the results collected in the previous subsections we can make precise the sketch of the proof given
at the start of Section 2. Suppose that the graph G satisfies the assumptions of Theorem 2.1, which means
G is on n vertices, has maximum degree ∆ and minimum degree δ , and is supplied with a (ϕin,ϕout,τδ )-
partition P1, . . . , P̀ such that ` < k and for some η > 0 and 0≤ s≤ ` we have |Pi|< ηn for all 1≤ i≤ s
and |Pi| ≥ ηn for s+1≤ i≤ `. We are given ξ > 0 in the statement of Theorem 2.1.

By Theorem 2.3 we can compute a relative ξ -approximation Zi to each ZG[Pi](β ) for 1≤ i≤ s in time

Tbad = O
(
s∆ηn(2ηn/ξ )O(log(q∆))

)
,

provided β ≥ (4+ 2log(q∆))/(ϕinτδ ). Let V ′ =
⋃`

i=s+1 Pi and G′ = G[V ′], and observe that G′ has
maximum degree ∆ and Ps+1, . . . , P̀ is a (ϕin,ϕout,τδ )-partition of V ′ into `− s parts such that each part
has size at least η ′|V ′| with η ′ = ηn/|V ′| ≥ η . Note that the minimum degree of G′ can be less than the
minimum degree of G, but since we did not remove any edges from inside a good part, G′[Pi] inherits
minimum degree τδ . Then by Theorem 1.3 we can compute a relative ξ -approximation to ZG′(β ) in time

Tgood = O
(
q`−s

∆n(2n/ξ )O(log(q∆))
)
,

provided β ≥ (4+2log(q∆))/(ϕinτδη ′), which is implied by β ≥ (4+2log(q∆))/(ϕinτδη).
Let G′′ be the disjoint union of G′ and G[Pi] for 1≤ i≤ s. Then G′′ is obtained from G by removing

all edge sets ∂ (Pi) for 1≤ i≤ s, which means removing X ≤ sϕout∆ηn edges in total. This means that
for any coloring ω : V → [q] we have

mG(ω)≥ mG′′(ω)≥ mG(ω)−X ,

and so

e−βX ZG(β )≤ ZG′′(β )≤ ZG(β ) ,

meaning eβX/2ZG′′(β ) is a relative βX/2-approximation to ZG(β ). But we also have ZG′′(β ) = ZG′(β ) ·
∏

s
i=1 ZG[Pi](β ) and so via the separate relative ξ -approximations to each term of the product computed

above we have that eβX/2Ẑ′ ·∏s
i=1 Ẑi is a relative (s+ 1)ξ -approximation to eβX/2ZG′′(β ) and hence a

relative approximation to ZG(β ) with accuracy

(s+1)ξ +βX/2≤ (s+1)ξ +β sϕout∆ηn/2 ,

as required accuracy for Theorem 2.1. To complete the proof it suffices to observe that

Tbad +Tgood = O
(
s∆ηn(2ηn/ξ )O(log(q∆))

)
+O

(
q`−s

∆n(2n/ξ )O(log(q∆))
)

= O

((
sη

O(log(q∆))+q`−s
)

∆n
(

2n
ξ

)O(log(q∆))
)

.
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3 Spectral partitioning with a minimum degree condition

In this section we extend the method of [28] to give a minimum degree condition in the partitions found
algorithmically, and the necessary modifications are fairly straightforward. This approach relies heavily
on a result of Lee, Oveis Gharan, and Trevisan [24] that generalizes the well-known Cheeger inequality
to higher eigenvalues. We write

ρG(k) := min
A1,...,Ak
disjoint

max{ϕG(Ai) : i ∈ [k]} ,

for the k-way expansion of a graph G, and note that the main result of [24] is the following higher-order
Cheeger inequality.

Theorem 3.1 (Lee, Oveis Gharan and Trevisan [24]). For any graph G and k ≥ 2,

λk

2
≤ ρG(k)≤ O(k2)

√
λk .

This result implies a partition of V into P1, . . . , P̀ such that ϕ(P̀ ) is bounded above in terms of `
and λ`, but we are interested in extra properties of the induced subgraphs G[Pi] related to expansion
and minimum degree. The main result of [28] shows that one can obtain a partition as above with a
lower bound on ϕ(G[Pi]) controlled by λk, and we develop a strengthening that adds a minimum degree
condition.

Throughout this section we assume that G = (V,E) is a graph on n vertices. We write w(u,v) = 1 if
uv is an edge of G, and w(u,v) = 0 otherwise. This notation carries over from [28] where they work with
the extra generality of edge-weighted graphs. Here we restrict our attention to usual graphs, but keep
the notation of [28] for easy comparison. For convenience, we assume that G has no isolated vertices,
which can easily be verified in O(n) time. This prevents ϕ(S) being undefined when S is a non-empty set
of degree-zero vertices. The interesting case for these results is a graph with no isolated vertices, and
many authors tacitly assume this fact. Before we give the algorithm, we collect some necessary results
from [28].

Lemma 3.2 (Oveis Gharan and Trevisan [28, Lemma 1.13], see also [23, 24]). There is a universal
constant C > 0 such that for any integer k ≥ 2 and any partitioning of V into ` < k pieces P1, . . . , P̀ we
have

min
i∈[`]

λ2(G[Pi])≤ 2Ck6
λk(G) .

For S,T ⊂V we define
w(S→ T ) := ∑

u∈S,v∈T−S
w(u,v) ,

noting that w(S→ T ) = w(T → S) when T ∩S = /0, but in general the terms w(S→ T ) and w(T → S)
are not equal. We also have for S⊂V that

|∂ (S)|= w(S→V \S) = w(S→V ) .
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For S⊂ Bi ⊂V we define

ϕ(S,Bi) :=
w(S→ Bi)

µ(Bi\S)
µ(Bi)

·w(S→V \Bi)
.

Lemma 3.3 (Oveis Gharan and Trevisan [28, Lemma 2.2]). For any sets S ( B⊂V , if ϕ(S,B)≤ ε/3
and

max{ϕ(S),ϕ(B\S)} ≥ (1+ ε)ϕ(B) ,

then min{ϕ(S),ϕ(B\S)} ≤ ϕ(B).

In our modification of the method of [28] we use a sharper version of this result for singleton sets S
given as the following claim.

Claim 3.4. Consider a vertex u and subset B such that u∈ B⊂V , and write dV := µG(u), dB := µG[B](u).
If µ(B)> dV (i.e. if B\{u} contains a vertex with positive degree) then ϕ(B−u)≤ ϕ(B) if and only if
dB ≤ (1−ϕ(B))dV/2.

Proof. This follows easily from the definitions of ϕ and µ which give

ϕ(B−u) =
µ(B)

µ(B)−dV
ϕ(B)− dV −2dB

µ(B)−dV
,

from which the result is immediate.

Lemma 3.5 (Oveis Gharan and Trevisan [28, Lemma 2.3]). Let SB ⊂ Bi ⊂V and write SB = S∩Bi. If
we have µ(SB)≤ µ(Bi)/2 and

min{ϕ(SB,Bi), ϕ(SB,Bi)} ≥ ε/3

for some 0≤ ε ≤ 1, then

ϕG[Bi](SB)≥
w(SB→ Bi)

µ(SB)
≥ ε

7
max{ϕ(SB), ϕ(SB)} .

Note that in the above result we are careful to take ϕ and µ without subscripts in the graph G, and
where we are interested in G[Bi] we use a subscript.

Lemma 3.6 (Oveis Gharan and Trevisan [28, Lemma 2.5]). Suppose that P1, . . . , P̀ form a partition of V ,
and for each i ∈ [`] we have Bi ⊂ Pi such that w(Pi \Bi→ Pi)≥ w(Pi \Bi→V )/`. Then for all i ∈ [`] we
have ϕ(Pi)≤ `ϕ(Bi).

Proof. Write S = Pi \Bi and note that because Bi ⊂ Pi the assumption gives

w(S→ Pi) = w(S→ Bi)≥ w(S→V )/`. (3.1)

Then

w(Pi→V ) = w(Bi→V )−w(Bi→ S)+w(S→V \Pi)

≤ w(Bi→V )−w(S→ Bi)+w(S→V )

≤ w(Bi→V )+(`−1)w(S→ Bi) ,
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where the first inequality is because S∩Bi = /0 and w(S→V \Pi)≤ w(S→V ), and the second inequality
follows from (3.1). This gives

ϕ(Pi) =
w(Pi→V )

µ(Pi)
≤ w(Bi→V )+(`−1)w(S→ Bi)

µ(Bi)

= ϕ(Bi)+
(`−1)w(Bi→ S)

µ(Bi)
≤ `ϕ(Bi) ,

where we use S∩Bi = /0 again, and w(Bi→ S)≤ w(Bi→V ).

In the following lemma we have Bi ⊂ Pi ⊂V and S⊂ Pi with the notation

SB := Bi∩S , SB := Bi∩S ,

SP := S\Bi , SP := S\Bi .

Lemma 3.7 (Oveis Gharan and Trevisan [28, Lemma 2.6]). Suppose that Bi ⊂ Pi ⊂V , and let S⊂ Pi be
such that µ(SB)≤ µ(Bi)/2. Let ξ be given such that ξ ≤ ϕ(SP) and ξ ≤max{ϕ(SB), ϕ(SB)}. Suppose
also that the following conditions hold for some `≥ 1 and 0 < ε < 1,

1. If SP 6= /0 then w(SP→ Pi)≥ w(SP→V )/`,

2. If SB 6= /0 then min{ϕ(SB,Bi), ϕ(SB,Bi)} ≥ ε/3.

Then

ϕ(S)≥ ϕG[Pi](S)≥
εξ

14`
.

Proof. Simply because S⊂ Pi we have

ϕ(S) =
w(S→V )

µ(S)
=

w(S→ Pi)+w(S→V \Pi)

µG[Pi]
(S)+w(S→V \Pi)

≥ w(S→ Pi)

µG[Pi]
(S)

= ϕG[Pi](S) ,

where we use that (a+ x)/(b+ x) ≥ a/b when b ≥ a ≥ 0, b > 0 and x ≥ 0. Then it suffices to lower
bound ϕG[Pi](S).

First suppose that µ(SB)≥ µ(SP), and hence µ(S)≤ 2 µ(SB). We then have

ϕG[Pi](S)≥
w(S→ Pi)

µ(S)
≥ w(SB→ Bi)

2 µ(SB)
.

Because of assumption 2 and µ(SB)≤ µ(Bi)/2 we may apply Lemma 3.5 to obtain

w(SB→ Bi)

µ(SB)
≥ ε

7
max{ϕ(SB), ϕ(SB)} ≥

εξ

7
,

and hence ϕG[Pi](S)≥ εξ/14, which is stronger than required.
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Suppose instead that µ(SP) > µ(SB). Now we use the assumptions ϕ(SB,Bi) ≥ ε/3 and µ(SB) ≤
µ(Bi)/2 to obtain

w(SB→ Bi)≥
µ(SB)

µ(Bi)
w(SB→V \Bi)

ε

3
≥ w(SB→ SP)

ε

6
. (3.2)

Then we have

ϕG[Pi](S)≥
w(S→ Pi)

µ(S)
≥ w(SP→ Pi \S)+w(SB→ Bi)

2 µ(SP)

≥ w(SP→ Pi \S)+w(SB→ SP)ε/6
2 µ(SP)

.

Using the observations that

w(SP→ Pi) = w(SP→ Pi \S)+w(SP→ SB)

= w(SP→ Pi \S)+w(SB→ SP) ,

and ε/6≤ 1 we continue from above,

ϕG[Pi](S)≥
ε

12
w(SP→ Pi)

µ(SP)
≥ ε

12`
w(SP→V )

µ(SP)
=

ε

12`
ϕ(SP)≥

εξ

12`
,

using the assumptions 1 and ϕ(SP)≥ ξ in turn.

We also rely on the well-known SPECTRAL PARTITIONING algorithm which efficiently finds a set of
close to maximal conductance, see e.g. [28].

Theorem 3.8. There is a near-linear time algorithm SPECTRAL PARTITIONING that, given a graph
G = (V,E) finds a set S⊂V such that µ(S)≤ µ(V )/2 and ϕ(S)≤ 4

√
ϕ(G).

We now give a simple modification of the algorithm from [28] and prove Theorem 1.4. We add some
simple steps that ensure the required minimum degree conditions. Let

ρ
∗ := min

{
λk/10,30Ck5

√
λk−1

}
,

where C is the constant from Lemma 3.2, and write

ϕin :=
λk

140k2 , ϕout := 90Ck6
√

λk−1 , τ =
1

5(k−1)
.

We note that lines 1 to 19 of Algorithm 1 are identical to [28, Algorithm 3] except for the trivial
modification that the goto statements jump to our new steps, the while loops at lines 20–25, instead of to
line 2. That is, we have simply added some extra work to the end of each iteration of the main while loop
in [28, Algorithm 3]. This extra work moves vertices that have small degree inside the relevant sets to
other sets. At the termination of the algorithm we have µG[Bi](v)≥ µG(v)/5 for all v ∈ Bi, a strong bound
independent of `, but for v ∈ Pi \Bi we will have µG[Pi](v)≥ µG(v)/`. For convenience, we work with the
stated τ = 1/(5(k−1)) instead of τ = min{1/5, 1/`} that our proof actually gives.
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Algorithm 1 A polynomial time algorithm for partitioning G into k expanders.
Input: k > 1 such that λk > 0.
Output: Sets P1, . . . , P̀ that form a (ϕ2

in/4,ϕout,τ) partitioning of G for some 1≤ ` < k.
1: Let `= 1, P1 = B1 =V .
2: while ∃ i ∈ ` such that w(Pi \Bi→ Bi) < w(Pi \Bi→ Pj) for j 6= i, or Spectral Partitioning finds

S⊆ Pi such that max{ϕG[Pi](S), ϕG[Pi](Pi \S)}< ϕin do
3: Assume (after renaming) that µ(S∩Bi)≤ µ(Bi)/2.
4: Let SB = S∩Bi,SB = Bi∩S,SP = (Pi \Bi)∩S and SP = (Pi \Bi)∩S.
5: if max{ϕ(SB),ϕ(SB)} ≤ ρ∗(1+1/k)`+1 then
6: Let Bi = SB, P̀ +1 = B`+1 = SB and Pi = Pi \SB. Set `← `+1 and goto step 20.
7: end if
8: if max{ϕ(SB,Bi),ϕ(SB,Bi)} ≤ 1/(3k), then
9: Update Bi to either of SB or SB with the smallest conductance, and goto step 20.

10: end if
11: if ϕ(SP)≤ ρ∗(1+1/k)`+1 then
12: Let P̀ +1 = B`+1 = SP, and update Pi = Pi \SP. Set `← `+1 and goto step 20.
13: end if
14: if w(Pi \Bi→ Pi)< w(Pi \Bi→ B j) for j 6= i then
15: Update Pj = Pj ∪ (Pi \Bi), and Pi = Bi and goto step 20.
16: end if
17: if w(SP→ Pi)< w(SP→ Pj) for j 6= i, then
18: Update Pi = Pi−SP and merge SP with argmaxPj

w(SP→ Pj).
19: end if
20: while ∃ i ∈ [`] and v ∈ Bi such that µG[Bi]

(v)< µG(v)/5 do
21: Update Bi = Bi \{v}.
22: end while
23: while ∃ i ∈ [`] and v ∈ Pi \Bi such that w(v→ Pi)< w(v→ Pj) for j 6= i do
24: Update Pi = Pi \{v} and insert v into argmaxPj

w(v→ Pj) .
25: end while
26: end while
return P1, . . . , P̀ .
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During the entire run of the algorithm B1, . . . ,B` are disjoint, Bi ⊂ Pi for all i ∈ [`], and P1, . . . , P̀
form a partitioning of V . We will prove that the algorithm terminates with ` < k, but the following
claim contains ` < k as a hypothesis for convenience. Once we have proved that ` < k throughout, this
assumption is seen to be automatically satisfied.

Claim 3.9. Throughout the execution of the algorithm, provided ` < k we have

max
i∈[`]
{ϕ(Bi)} ≤ ρ

∗(1+1/k)` .

Proof. At the start we have `= 1 and Bi =V so ϕ(Bi) = 0. We prove the claim inductively from here,
noting that the only steps in which some Bi is modified are lines 6, 9, 12, and 21.

Both steps 6 and 12 are designed specifically to maintain the induction hypothesis; before incrementing
` on those lines we obtain `+1 sets such that

max
i∈[`]
{ϕ(Bi)} ≤ ρ

∗(1+1/k)`+1 ,

as required.
If step 9 is executed then the condition on line 5 is not satisfied, giving

max{ϕ(SB),ϕ(SB)}> (1+1/k)`+1
ρ
∗ ≥ (1+1/k)ϕ(Bi)

by the induction hypothesis. But if step 9 is executed we must also satisfy the condition on line 8, giving

max{ϕ(SB,Bi),ϕ(SB,Bi)} ≤
1
3k

.

Then by Lemma 3.3 with ε = 1/k and S = SB and the induction hypothesis we have

min{ϕ(SB),ϕ(SB)} ≤ ϕ(Bi)≤ ρ
∗(1+1/k)` ,

so making whichever of SB and SB has smaller conductance the new B`+1 satisfies the required bound.
The above arguments are exactly as in [28], and for our modification we have to analyze step 21. By

the induction hypothesis ϕ(Bi)≤ ρ∗(1+1/k)` it suffices to show that whenever v ∈ Bi has µG[Bi]
(v)<

µG(v)/5, we have ϕ(Bi \{v})≤ ϕ(Bi). To see this, note that the induction hypothesis, the assumption
that ` < k, and the definition of ρ∗ (in which we use λk ≤ 2) together mean that ϕ(Bi)≤ 2e/10, and hence
that |Bi| ≥ 2. This is because any singleton set (containing a vertex of positive degree) has conductance 1.
So we may apply Claim 3.4, and hence it suffices to show that

µG[Bi]
(v)≤ (1−ϕ(Bi))µG(v)/2 .

But by the induction hypothesis we have (1−ϕ(Bi))/2 ≥ (1− 2e/10)/2 ≥ 1/5, so the condition in
step 20 gives the required bound. We note for use below that we only needed the assumption ` < k to
analyze step 21.

Claim 3.10. During the execution of the algorithm we always have ` < k.
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Proof. We start with ` = 1 and ` is only ever incremented by 1 at a time, so it suffices to show that a
step which increments ` will never be executed when `= k−1. The relevant steps are in lines 6 and 12,
and supposing that one of these steps causes ` to be incremented to k we analyze the sets B1, . . . ,Bk
that exist immediately after this step, and hence before the jump goto step 20 completes. By the proof
of the above claim, in which ` < k was only needed for the step 21, any such B1, . . . ,Bk must have
ϕ(Bi)≤ ρ∗(1+1/k)` < eρ∗ for all i ∈ [`]. But then we have disjoint sets B1, . . . ,Bk such that

max
i∈[`]
{ϕ(Bi)}< eρ

∗ < λk/2

by the definition of ρ∗. But this implies ρ(k)< λk/2, contradicting Theorem 3.1.

Before proving that our minimum degree condition holds, we note that for v ∈U ⊂V we have by
definition that w(v→U) = µG[U ](v).

Claim 3.11. Whenever the algorithm checks the condition in line 2 to determine if execution continues,
we have for all i ∈ [`] and v ∈ Pi that µG[Pi]

(v)≥ τ µG(v).

Proof. This is a simple consequence of the loops at lines 20–25. They ensure that for all i ∈ [`] and v ∈ Bi

we have the stronger condition µG[Bi]
(v)≥ µG(v)/5. We also have that any v ∈V \

⋃
i∈[`] Bi is in Pi such

that for all j ∈ [`].
w(v→ Pi)≥ w(v→ Pj) .

But since the sets P1, . . . , P̀ form a partition of V we have

µG(v) = ∑
j∈[`]

w(v→ Pj) ,

and hence µG[Pi]
(v) = w(v→ Pi)≥ µG(v)/`. With the facts that ` < k and τ = 1/(5(k−1)) we have the

required degree conditions.

Claim 3.12. If the algorithm terminates then the sets P1, . . . , P̀ form a (ϕ2
in/4,ϕout,τδ )-partition of V .

Proof. Suppose that the algorithm terminates with some ` < k and sets B1 . . . ,B` and P1, . . . , P̀ . By the
above claim we have the required degree conditions, and hence it suffices to show that ϕ(G[Pi])≥ ϕ2

in/2
and ϕ(Pi)≤ ϕout for all i ∈ [`].

By the condition in line 2 and the performance of the SPECTRAL PARTITIONING algorithm we have
ϕ(G[Pi])≥ ϕ2

in/4 as required.
Moreover, by the same condition in line 2 we have for each i ∈ [`] that

w(Pi \Bi→ Bi)≥ w(Pi \Bi→V )/`,

and by Lemma 3.6, Claim 3.9 and the fact that ` < k we have

ϕ(Pi)≤ `ϕ(Bi)≤ `eρ
∗ ≤ 90Ck6

√
λk−1 ,

as required.
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Then it remains to show that the algorithm terminates and bound its running time.

Claim 3.13. In each iteration of the main loop starting at line 2, at least one of the conditions in lines 5,
8, 11, and 14 holds.

Proof. We use Lemma 3.7 to show that if none of the conditions in lines 5, 8, 11, and 14 holds then
ϕG[Pi](S)≥ ϕin, which is a contradiction. Then we suppose that none of the conditions hold.

Since the conditions in lines 8 and 17 do not hold, assumptions 1 and 2 of Lemma 3.7 are satisfied
with ε = 1/k. And since condition in lines 5 and 11 do not hold we have the following facts which use
the definition of ρ(`+1) as the (`+1)-way expansion of G, and Claim 3.9:

max{ϕ(SB,SB)}
= max{ϕ(B1), . . . ,ϕ(Bi−1),ϕ(SB),ϕ(SB),ϕ(Bi+1), . . . ,ϕ(B`)}
≥max{ρ∗,ρ(`+1)} ,

and

ϕ(SP) = max{ϕ(B1), . . . ,ϕ(B`),ϕ(SP)} ≥max{ρ∗,ρ(`+1)} .

So with ρ = ρ∗ and ε = 1/k, by Lemma 3.7 we have

ϕ(S)≥ ερ

14k
=

max{ρ∗,ρ(`+1)}
14k2 , (3.3)

where we use Theorem 3.1 for the final equality. Now, if `= k−1, then by Theorem 3.1 we have

ϕ(S)≥ ρ(k)
14k2 ≥

λk

28k2 ≥ ϕin ,

which is a contradiction, so we are done. Otherwise, we must have ` < k−1 and so by Lemma 3.3,

ϕ(S)≤min
i∈[`]

√
2λ2(G[Pi])≤

√
4Ck6λk−1, (3.4)

where the first inequality follows from Cheeger’s inequality ϕ(G) ≤
√

2λ2. Putting (3.3) and (3.4)
together we have

ρ
∗ ≤ 14k2

√
4Ck6λk−1 .

But then by definition of ρ∗ we must have ρ∗ = λk/10, so by (3.3) we have the desired contradiction

ϕ(S)≥ λk

140k2 = ϕin .

We can easily bound the running time of this algorithm in terms of the running time of [28, Algorithm
3] by bounding the amount of extra work in lines 20–25 that we add to each iteration.

Claim 3.14. The algorithm terminates in at most O(kn|E|) iterations of the main loop, and each iteration
takes time at most O(n|E|), yielding a running time of at most O(kn2|E|2).
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Proof. In each iteration of the main loop at least one of conditions in lines 5, 8, 11, 14, 17 is satisfied. By
Claim 3.10, lines 5 and 11 can be satisfied at most k−1 times combined. Line 8 can be satisfied at most
n times because each time the size of some Bi decreases by at least one. For a fixed ` and B1, . . . ,B` the
conditions in lines 14 and 17 can hold at most O(|E|) times combined because each time the number of
edges between P1, . . . , P̀ decreases by at least one. This shows that the main loop can execute at most
O(kn|E|) times, as in the proof of Oveis Gharan and Trevisan [28]. The additional work of the loop at
line 20 takes time O(n) because the size of some Bi decreases by one each iteration, and the additional
work of the loop at line 23 takes time O(|E|) because the number of edges between the Pi decreases by at
least one each iteration. This completes the proof of a running time bound of O(kn2|E|2).
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