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Abstract: We give a new presentation of the main result of Arunachalam, Briët and
Palazuelos (SICOMP’19) and show that quantum query algorithms are characterized by
a new class of polynomials which we call Fourier completely bounded polynomials. We
conjecture that all such polynomials have an influential variable. This conjecture is weaker
than the famous Aaronson–Ambainis (AA) conjecture (Theory of Computing’14), but has
the same implications for classical simulation of quantum query algorithms.

We prove a new case of the AA conjecture by showing that it holds for homogeneous
Fourier completely bounded polynomials. This implies that if the output of d-query quantum
algorithm is a homogeneous polynomial p of degree 2d, then it has a variable with influence
at least Var[p]2.

In addition, we give an alternative proof of the results of Bansal, Sinha and de Wolf
(CCC’22 and QIP’23) showing that block-multilinear completely bounded polynomials
have influential variables. Our proof is simpler, obtains better constants and does not use
randomness.

1 Introduction

Understanding the quantum query complexity of Boolean functions f : D→{−1,1}, where D is a subset
of {−1,1}n, has been a crucial task in quantum information science [5]. Query complexity is a model of
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computing where rigorous upper and lower bounds can be proven, which allows one to compare the power
of quantum computers with classical ones. Many celebrated quantum algorithms show an advantage
in terms of query complexity, for example in unstructured search [18], period finding [30], Simon’s
problem [31], NAND-tree evaluation [16] and element distinctness [4]. However, these query complexity
advantages are limited to being polynomial in the case of total functions (for functions D = {−1,1}n

quantum and classical query complexity are polynomially related), while it can be exponential for highly
structured problems (for functions with |D| = o(2n) classical query complexity can be exponentially
larger than quantum query complexity), such as for Simon’s problem [31], period finding [30] or k-fold
forrelation [2, 32, 8, 29]. It is widely believed that a lot of structure is necessary for superpolynomial
speedups.1 The following folklore conjecture, which has circulated since the late 90s, but was first
formally posed by Aaronson and Ambainis [1], formalizes this idea.

Conjecture 1.1 (Folklore). The output of d-query quantum algorithms can be simulated with error at
most ε on at least a (1−δ )-fraction of the inputs using poly(d,1/ε,1/δ ) classical queries.

In other words, it is believed that quantum query algorithms can be approximated almost everywhere
by classical query algorithms with only a polynomial overhead.

In this work we will interpret quantum query algorithms as polynomials, which can be done thanks to
a result by Beals et al. [10]. They proved that the output of a d-query quantum algorithm is a bounded
polynomial p : {−1,1}n→ R of degree at most 2d.2 Here, bounded means that its infinity norm

‖p‖∞ = sup
x∈{−1,1}n

|p(x)| (1.1)

is at most 1. Based on this observation, Aaronson and Ambainis conjectured that every bounded
polynomial of bounded degree has an influential variable, which would imply Theorem 1.1 [1].

Conjecture 1.2 (Aaronson-Ambainis (AA)). Let p : {−1,1}n→ R be a polynomial of degree at most d
with ‖p‖∞ ≤ 1. Then, p has a variable with influence at least poly(Var[p],1/d).

The argument to show that Theorem 1.2 would imply Theorem 1.1 works as follows [1, Theorem 7].
Let p be the bounded polynomial of degree at most 2d that represents the output of d-query quantum
algorithm. Say that we want to approximate p(y) for some y ∈ {−1,1}n. First, we query the most
influential variable i of y. Then, the restricted polynomial p|x(i)=y(i) would also be a bounded polynomial
of degree at most 2d. We query again the most influential variable and repeat the process a polynomial (in
d) number of times. Given that the influences of these variables are inverse polynomially big (in d), after
a polynomially small (in d) number of queries, the remaining restriction of p would have a low variance,
so if we output its expectation it would be close to p(y) with high probability.

Despite capturing the attention of a wide range of areas, little is known about Conjecture 1.2. In fact,
it was motivated by a similar result from analysis of Boolean functions, which proves a weaker version of

1Recently, Yamakawa and Zhandry showed that superpolynomial speedups can be attained in unstructured search problems.
However, that does not contradict the believe that structure is needed to achieve superpolynomial speedups for decision problems,
which are those modeled by Boolean functions [34].

2In this work we identify the output of quantum query algorithms on an input x ∈ {−1,1}n with the expectation of the
quantum query algorithm on x, namely the difference of probability of accepting and the probability of rejecting.
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the conjecture with inverse exponential dependence on the degree [15]. This weaker version was also
reproved from a functional analytic perspective, and in the same work the authors highlighted the relation
of AA conjecture with the Bohnenblust-Hille inequality [14]. A few reductions to other conjectures have
been made. The first one is that is sufficient to prove the conjecture for one-block decoupled polynomials
[27]. Very recently, Lovett and Zhang stated two conjectures related to fractional certificate complexity
that, if true, would imply the AA conjecture [22]. Also recently, Austrin et al. showed a connection of the
AA conjecture with cryptography: they proved that if the AA conjecture is false, then there is a secure
key agreement in the quantum random oracle model that cannot be broken classically [7]. The most
recent work in this line of research is the one by Bhattacharya, who showed that the conjecture is true
for random restrictions of the polynomial [11]. Regarding particular cases, it is only known to be true in
a few scenarios: Boolean functions f : {−1,1}n→ {−1,1} [23, 26, 20], symmetric polynomials [19],
multilinear forms whose Fourier coefficients are all equal in absolute value [24] and block-multilinear
completely bounded polynomials [9].

The last result is relevant in this context because Arunachalam, Briët and Palazuelos showed that
quantum query algorithms output polynomials that are not only bounded, but also completely bounded [6].
This is a more restricted normalization condition, which can be informally understood as the polynomial
taking bounded values when evaluated not only on bounded scalars, but also on bounded matrix inputs.
This way, one could try to use this extra condition to prove results about quantum query algorithms.

This idea was first put in practice by Bansal, Sinha and de Wolf [9]. They showed that the AA
conjecture holds for completely bounded block-multilinear forms, which implies an almost everywhere
classical simulation result, similar to Theorem 1.1, for the amplitudes of certain quantum query algorithms.
These algorithms query different bit strings on every query, while Conjecture 1.1 concerns algorithms
that query the same controlled bit string on every query.

1.1 Our results

We follow that line of work and use the characterization of Arunachalam et al. to design a route towards
Theorem 1.1. Our first result is a new characterization of quantum query algorithms, that is similar to
the one Arunachalam et al., but more convenient for our purposes. To do this we introduce the Fourier
completely bounded d-norms (‖ ·‖fcb,d). These norms are defined in a similar way to the infinity norm, by
taking the supremum of the polynomial over some set. In the case of the infinity norm this set consists of
the Boolean strings. By contrast, in the Fourier completely bounded norms the set also includes matrix
inputs that behave like Boolean strings. We will not include formal definitions in the introduction, but
we illustrate the concept of having Boolean behavior of degree d with an example. Consider d = 4 and
n = 6, and let m be a natural number. If a given pair of vectors u,v ∈ Rm and a given string of matrices
A ∈ (Mm)

6 (where Mm is the space of m×m real matrices) have Boolean behavior of degree 4, then they
will satisfy the same relations as the products of 4 entries of a Boolean string. For instance, it will hold
that

〈u,A(1)A(1)A(2)A(3)v〉= 〈u,A(5)A(2)A(3)A(5)v〉,

because they should simulate the relation x(1)x(1)x(2)x(3) = x(5)x(2)x(3)x(5), satisfied by any x ∈
{−1,1}6.

Using the Fourier expansion of polynomials defined on the Boolean hypercube we will introduce a
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natural way of evaluating polynomial on matrix inputs that have Boolean behavior, which allows us to
introduce the Fourier completely bounded d-norm.

Definition 1.3. (Informal version of Theorem 2.2) Let p : {−1,1}n→ R be a polynomial of degree at
most d. Its Fourier completely bounded d-norm is given by

‖p‖fcb,d := sup |p(u,v,A)| (1.2)

where the supremum is taken over all (u,v,A) that have Boolean behavior of degree d.

Motivated by the characterization by Aruchalam et al., Gribling and Laurent proposed a semidefinite
program to compute the completely bounded norm of a tensor, and thus gave a characterization of
quantum query algorithms in terms of semidefinite programs [6, 17]. We reinterpret these programs to
show that the Fourier completely bounded d-norms characterize quantum query algorithms.

Theorem 1.4. Let p : {−1,1}n→ R. Then, p is the output of a d-query quantum algorithm if and only if
its degree is at most 2d and ‖p‖fcb,2d ≤ 1.

Theorem 1.4 is a new presentation of the main result of Arunachalam et al. that is more compact than
the original one [6]. It is presented directly in terms of polynomials of the Boolean hypercube, does not
involve a minimization over possible completely bounded extensions of p, and eludes the use of tensors.

It is (implicitly) known the Fourier completely bounded norm can be much bigger than the infinity
norm,3 so Theorem 1.4 suggests that Conjecture 1.2 may be more general than necessary for the
application to quantum computing. Hence, we propose the following weaker conjecture, that would also
imply Conjecture 1.1.

Conjecture 1.5. Let p : {−1,1}n→ R be a polynomial of degree at most d with ‖p‖fcb,d ≤ 1. Then, p
has a variable with influence at least poly(Var[p],1/d).

We can prove a particular case of Theorem 1.2.

Theorem 1.6. Let d ∈ N. Let p : {−1,1}n → R be a homogeneous polynomial of degree d and with
‖p‖fcb,d ≤ 1. Then, the maximum influence of p is at least Var[p]2.

The proof of Theorem 1.6 is based on a generalization of the construction used by Varopoulos to rule
out a von Neumann’s inequality for degree-3 polynomials [33]. Sadly, the proof of the homogeneous
case does not generalize in a straightforward manner (see Theorem 4.3), but it suggests a way to solve
the general case (see Theorem 4.4). In particular, we propose Question 4.5 (with some flavour of tensor
networks and almost-quantum correlations, as explained in Theorem 4.4), which if answered affirmatively
would imply Theorem 1.5.

Theorem 1.6 is the first known particular case of the AA conjecture were the lower bound for the
maximum influence is independent of the degree (to prove Theorem 1.1 we could afford a polynomial
dependence on the degree). Also, it requires considerably fewer algebraic constraints than the other
particular cases for which we know that AA conjecture holds. In addition, thanks to Theorem 1.4, it can
be interpreted directly in terms of quantum query algorithms.

3From the results of Briët and Palazuelos it can be inferred that there is a sequence of polynomials pn of degree-3 such that
‖pn‖fcb,3/‖pn‖∞→n ∞ [12].
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Corollary 1.7. Let d ∈ N. Let A be a d-query quantum algorithm whose output is a homogeneous
polynomial p : {−1,1}n→ R of degree 2d. Then, the maximum influence of p is at least Var[p]2.

With a similar construction as the one we used for Theorem 1.6, we can reprove the results of
Bansal et al. regarding the influence of block-multilinear completely bounded polynomials [9]. These
polynomials have a particular algebraic structure and also a normalization condition when evaluated on
matrix inputs (see Section 4.1 below).

Theorem 1.8. Let d ∈ N. Let p : {−1,1}n×d → R be a block-multilinear degree d polynomial with
‖p‖cb ≤ 1. Then, p has a variable of influence at least (Var[p]/d)2. In addition, if p is homogeneous of
degree d, then it has a variable of influence at least Var[p]2.

Theorem 1.8 corresponds to [9, Theorem 1.4], where Bansal et al. proved the same result but with
influences at least Var[p]2/[e(d +1)4] in the general case and with Var[p]2/(d +1)2 in the homogeneous
degree d case. Their proofs involve evaluating p in random infinite dimensional matrix inputs, which they
can control using ideas of free probability. However, our proof evaluates p in explicit finite dimensional
matrix inputs, is shorter and obtains better constants. In particular, our constant for the homogeneous
case is optimal.

1.2 Some notation

Given n ∈ N, [n] denotes the set {1, . . . ,n}, [n]0 the set {0,1, . . . ,n}, Mn the space of n×n real matrices,
Bn ⊆ Mn the space of n× n real matrices with operator norm (largest singular value) at most 1, and
Sn−1 ⊆ Rn the set of vectors with euclidean norm 1. Given, d,n ∈ N, we use i to denote a multi-index in
[n]d .

2 The Fourier completely bounded d-norms

There is a vast theory concerning the properties of multilinear maps T : Rn× ·· ·×Rn → R that are
completely bounded, i.e., bounded when they are extended to matrix domains [28]. Here, we propose
a notion of completely bounded norm for polynomials p : {−1,1}n→ R. First, we introduce a matrix
notion of behaving like a Boolean string. Then, using the Fourier expansion of these polynomials we
define the evaluation of the polynomials on these matrix inputs thatbehave like Boolean strings. Finally,
we define the Fourier completely bounded d-norms and prove a few of their properties.

Every p : {−1,1}n→ R can be written as

p(x) = ∑
S⊆[n]

p̂(S)∏
i∈S

x(i), (2.1)

where p̂(S) are the Fourier coefficients of p. We say that p has degree at most d if p̂(S) = 0 for every
|S|> d, where |S| denotes the cardinality of S.
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We will be interested on simulating the behavior of bit strings x ∈ {−1,1}n×{1} with one extra
frozen variable.4 Given d ∈ N and i, j ∈ [n+1]d we say that i∼ j, if

x(i1) . . .x(id) = x( j1) . . .x( jd) for every x ∈ {−1,1}n×{1}. (2.2)

In other words, if we define

Si := {k ∈ [n] : k occurs an odd number of times in i},

then i ∼ j if and only if Si = Sj. Note that n+ 1 does not belong to these sets Si. Given S ⊆ [n] with
|S| ≤ d, we write [iS] to denote the equivalence class of indices i such that Si = S.

Definition 2.1. Let n,d,m ∈ N. Let u,v ∈ Sm−1 and let A ∈ (Bm)
n+1. We say that (u,v,A) has Boolean

behavior of degree d if
〈u,A(i1) . . .A(id)v〉= 〈u,A( j1) . . .A( jd)v〉

for all i, j ∈ [n+1]d such that i∼ j. We call BBd to the set of (u,v,A) with Boolean behavior of degree
d.

Informally, having Boolean behavior of degree d means that the relations of Eq. (2.2) and some
normalization conditions are satisfied. In particular, for any bit string x ∈ {−1,1}n×{1} and any d ∈ N,
we have that (1,1,x) has Boolean behavior of degree d. Also note that the (n+1)-th matrix in Theorem 2.1
behaves as an identity, but the rest resemble to matrices that square to identity.

Also note that given d ∈ N, for every S ∈ [n] with |S| ≤ d there is at least one i ∈ [n+1]d such that
Si = S. Thus, given (u,v,A) with Boolean behavior of degree d, for every |S| ≤ d the product ∏i∈S x(i) can
be simulated (in a unique manner) by 〈u,A(iS1) . . .A(iSd)v〉. In particular, this means that for a polynomial
p of degree at most d, we can define through Eq. (2.1) an evaluation of p on every (u,v,A) that has
Boolean behavior of degree d, which leads to the definition of Fourier completely bouded d-norm.

Definition 2.2. Let p : {−1,1}n→ R be a polynomial of degree at most d. Then, its Fourier completely
bounded d-norm is defined by

‖p‖fcb,d = sup
(u,v,A)∈BBd

∑
S⊆[n],|S|≤d

p̂(S)〈u,A(iS1) . . .A(iSd)v〉.

The rest of the section is devoted to prove a few results concerning the Fourier completely bounded
d-norms. First of all we show that, indeed, they are norms.

Proposition 2.3. Let d ∈ N. Then, ‖ · ‖fcb,d is a norm in the space of polynomials p : {−1,1}n→ R of
degree at most d.

Proof: It clearly satisfies the triangle inequality and is homogeneous. Also, if p = 0 then ‖p‖fcb,d = 0,
and vice versa, because ‖p‖∞ ≤ ‖p‖fcb,d . 2

4The extra variable set to 1 is there because quantum query algorithms query a controlled bit string, and not a non-controlled
version, which would not require that extra variable.
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One nice property of these norms is that they can be computed as semidefinite programs (SDPs),
which are optimization problems involving linear positive semidefinite constraints whose value can be
efficiently approximated (see [21] for an introduction to SDPs and [17] for similar semidefinite programs
for computing the completely bounded norm of a tensor).

Proposition 2.4. Let p : {−1,1}n→R be a polynomial of degree at most d. Then, its Fourier completely
bounded d-norm can be written as the following SDP

‖p‖fcb,d =sup ∑
S∈[n],|S|≤d

p̂(S)〈u,viS〉, (2.3)

u,v,vi ∈ Rm, m ∈ N, i ∈ [n+1]s, s ∈ [d],

〈u,vi〉= 〈u,vj〉, if i∼ j, i, j ∈ [n+1]d , (2.4)

〈u,u〉= 〈v,v〉= 1, (2.5)

Gramj∈[n+1]s,
s∈[d−1]0

{vij}4 Gramj∈[n+1]s,
s∈[d−1]0

{vj}, for i ∈ [n+1], (2.6)

where by vj with j ∈ [n+1]0 we mean v, Gram denotes the gram matrix and the symbol ‘4’ the usual
matrix inequality, and ij is the concatenation of i and j.

To gain some intuition about Theorem 2.4, one should think of vi as A(i1) . . .A(id)v, of Eq. (2.4) as
the conditions that encode the Boolean Behaviour, while Eq. (2.6) encodes that A(i) are contractions.

Proof: Let |||p||| be the expression on the right-hand side of Eq. (2.3). Note that Eq. (2.4) represents the
relations of bit strings of Eq. (2.2), while Eqs. (2.5) and (2.6) encode normalization conditions.

On the one hand, every (u,v,A) ∈BBd defines a feasible instance for |||p||| through

vi := A(i1) . . .A(is)v

for every i ∈ [n+1]s and every s ∈ [d]. Given that the value of this instance is

∑
S⊆[n],|S|≤d

p̂(S)〈u,A(iS1) . . .A(iSd)v〉

we have that |||p||| ≥ ‖p‖fcb,d .
On the other hand, let u,v,vi ∈ Rm be a feasible instance of |||p|||. For i ∈ [n+1] define A(i) ∈Mm as

the linear map from Rm to Rm that takes vj to vij for every j ∈ [n+1]s and every s ∈ [d−1]0, and it is
extended to the orthogonal complement as 0. First of all, we should check that this is a correct definition,
meaning that for every λ ∈ Rm, with m = (n+1)d−1 + · · ·+(n+1)0, we have that

∑
j

λjvj = 0 =⇒ ∑
j

λjvij = 0.

Indeed, we can prove something stronger:

(∑
j

λjvij)
T
∑
j′

λj′vij′ = λ
T Gramj∈[n+1]s,

s∈[d−1]0

{vij}λ ≤ λ
T Gramj∈[n+1]s,

s∈[d−1]0

{vj}λ

= (∑
j

λjvj)
T
∑
j′

λj′vj′ .
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The above calculation also proves that the A(i)’s are contractions, and thanks to Eq. (2.4) it follows that
(u,v,A) has Boolean behavior of degree d. Finally, note that the value of this (u,v,A) for ‖p‖fcb,d is the
same as the value of (u,v,vj) for |||p|||, so ‖p‖fcb,d ≥ |||p|||. 2

Given d,d′ ∈ N with d′ > d and a polynomial p : {−1,1}n→ R of degree at most d, ‖p‖fcb,d and
‖p‖fcb,d′ have different definitions, but they are comparable. In particular, we prove that the Fourier
completely bounded d-norms are not increasing.

Proposition 2.5. Let p : {−1,1}n→ R be a polynomial of degree at most d. Then,

‖p‖fcb,d+1 ≤ ‖p‖fcb,d .

Remark 2.6. Theorem 2.5 is coherent with Theorem 1.4 (proved below), because allowing more queries
to quantum algorithms only increases their power. Theorem 1.4 also suggests that ‖p‖fcb,n = ‖p‖∞ should
hold, because n quantum queries should be enough to evaluate any bounded polynomial. If true, alongside
Theorems 2.4 and 2.5, it would mean that (‖p‖fcb,d)d∈[n] is a decreasing hierarchy of SDPs that tend to
‖p‖∞.

Proof of Theorem 2.5: Let (u,v,A) have Boolean behavior of degree d +1. Then,

(ũ, ṽ, Ã) = (u,
A(n+1)v
‖A(n+1)v‖

,A) (2.7)

has Boolean behavior of degree d. Also, given that d+1 > d, we have that for every S⊆ [n] with |S| ≤ d,
there exists i ∈ [n+1]d+1 such that Si = S, id+1 = n+1, and

〈u,A(i1) . . .A(id+1)v〉= ‖A(n+1)v‖〈ũ, Ã(i1) . . . Ã(id)ṽ〉. (2.8)

This way,

‖p‖fcb,d+1 = sup
(u,v,A)∈BBd+1

∑
S⊆[n],|S|≤d

p̂(S)〈u,A(iS1) . . .A(iSd+1)v〉

= sup
(u,v,A)∈BBd+1

‖A(n+1)v‖ ∑
S⊆[n],|S|≤d

p̂(S)〈ũ, Ã(iS1) . . . Ã(iSd)ṽ〉

≤ sup
(u,v,A)∈BBd+1

∑
S⊆[n],|S|≤d

p̂(S)〈ũ, Ã(iS1) . . . Ã(iSd)ṽ〉

≤ sup
(u′,v′,A′)∈BBd

∑
S⊆[n],|S|≤d

p̂(S)〈u′,A′(iS1) . . .A′(iSd)v′〉

= ‖p‖fcb,d ,

where in the second line we have used Eq. (2.8), and in the third line that ‖A(n+1)v‖ ≤ 1, and in the
fourth that (ũ, ṽ, Ã) has Boolean behavior of degree d. 2

The next proposition states that ‖ ·‖fcb,d does not increase after restrictions, which is a relevant feature
to ensure that Conjecture 1.5 implies Conjecture 1.1. Given a polynomial p : {−1,1}n→ R and i ∈ [n],
the restriction of p to the i-th variable being set to y ∈ {−1,1} is the polynomial q : {−1,1}n−1→ R
(whose variables we index with x(1), . . . ,x(i−1),x(i+1), . . . ,x(n) for convenience) defined by q(x) :=
p(x(1), . . . ,x(i−1),y,x(i+1), . . . ,x(n)).
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Proposition 2.7. Let p : {−1,1}n → R be a polynomial of degree at most d and let i ∈ [n]. Let q :
{−1,1}n−1→ R be the restriction of p to the i-th variable being set to y ∈ {−1,1}. Then,

‖q‖fcb,d ≤ ‖p‖fcb,d .

Proof: Consider a pair of vectors and a string of matrices (u,v,A(1), . . . ,A(i−1),A(i+1), . . . ,A(n+1))
with Boolean behavior of degree d. Define ũ := u, ṽ := v and Ã( j) for j ∈ [n+1] as

Ã( j) =
{

A( j) if j 6= i,
yA(n+1) if j = i.

It can be verified that (ũ, ṽ, Ã(1), . . . , Ã(n+1)) has Boolean behavior of degree d. Now note that for every
S⊆ [n]−{i}, it is satisfied that

q̂(S) = p̂(S)+ yp̂(S∪{i}). (2.9)

Also, for every S⊆ [n]−{i} with |S| ≤ d−1, it is satisfied that

〈ũ, Ã( jS
1) . . . Ã( jS

d)ṽ〉= y〈ũ, Ã( jS∪{i}
1 ) . . . Ã( jS∪{i}

d )ṽ〉. (2.10)

Thus,

‖q‖fcb,d = sup
(u,v,A( j))∈BBd

j∈[n+1]−{i}

∑
S⊆[n]−{i},|S|≤d

q̂(S)〈u,A( jS
1) . . .A( jS

d)v〉

= sup
(u,v,A( j))∈BBd

j∈[n+1]−{i}

∑
S⊆[n]−{i},|S|≤d

p̂(S)〈u,A( jS
1) . . .A( jS

d)v〉

+ ∑
S⊆[n]−{i},|S|≤d−1

yp̂(S∪{i})〈u,A( jS
1) . . .A( jS

d)v〉

= sup
(u,v,A( j))∈BBd

j∈[n+1]−{i}

∑
S⊆[n]−{i},|S|≤d

p̂(S)〈ũ, Ã( jS
1) . . . Ã( jS

d)ṽ〉

+ ∑
S⊆[n]−{i},|S|≤d−1

p̂(S∪{i})〈ũ, Ã( jS∪{i}
1 ) . . . Ã( jS∪{i}

d )ṽ〉

≤ sup
(u′,v′,A′( j))∈BBd

j∈[n+1]

∑
S⊆[n],|S|≤d

p̂(S)〈u′,A′( jS
1) . . .A

′( jS
d)v
′〉

= ‖p‖fcb,d ,

where in the second line we have used Eq. (2.9), in the fourth line Eq. (2.10), and in the sixth line that
(ũ, ṽ, Ã) has Boolean behavior. 2

3 Quantum query algorithms are Fourier completely bounded polynomi-
als

Now we are ready to prove Theorem 1.4, that fully characterizes quantum query algorithms in terms of
the Fourier completely bounded d-norms.
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Theorem 1.4. Let p : {−1,1}n→ R. Then, p is the output of a d-query quantum algorithm if and only if
its degree is at most 2d and ‖p‖fcb,2d ≤ 1.

To prove Theorem 1.4 we just have to reinterpret the semidefinite programs by Gribling and Laurent,
based on the work of Arunachalam et al. [17, 6].

Theorem 3.1 (Gribling-Laurent). Let p : {−1,1}n → R. Then, p is the output of d-query quantum
algorithm if and only if its degree is at most 2d and the value of the following semidefinite program is at
most 0,

max −w+ ∑
x∈{−1,1}n

p(x)φ(x)
2n (3.1)

s.t. w≥ 0, m ∈ N, As ∈ (Bm)
n+1, u,v ∈ Rm, s ∈ [2d],

‖φ‖1 = 1, ‖u‖2 = ‖v‖2 = w,

φ̂(Si) = 〈u,A1(i1) . . .A2d(i2d)v〉, i ∈ [n+1]2d ,

where ‖φ‖1 = ∑x∈{−1,1}n
|φ(x)|

2n .

Remark 3.2. Theorem 3.1 corresponds to [17, Equation (24)]. There, the authors not only ask for the
As(i) to be contractions, but also unitaries. However, that extra restriction does not change the value of
the semidefinite program because we can always block-encode a contraction in the top left corner of
an unitary (see for instance [3, Lemma 7]). We also want to remark that As(i) can be taken to be equal
to As′(i) for every s,s′ ∈ [2d] and every i ∈ [n+1], as this extra restriction does not change value of the
semidefinite program. Indeed, let (u,v,As,w,φ) be part of feasible instance of Eq. (3.1). Define now

ũ := u⊗ e1,

ṽ := v⊗ e2d+1,

A(i) := ∑
s∈[2d]

As(i)⊗ eseT
s ,

where {es}s∈[2d+1] is an orthonormal basis of R2d+1. Then,

〈u,A1(i1) . . .Ad(i2d)v〉= 〈ũ, Ã(i1) . . . Ã(i2d)ṽ〉,

for every i ∈ [n+1]2d . Hence, (ũ, ṽ, Ã,w,φ) is a feasible instance for Eq. (3.1) that attains the same value
as (u,v,As,w,φ).

Proof of 1.4: Thanks to Theorem 3.1 and Theorem 3.2, we know that p is the output of d-query quantum
algorithm if and only if its degree is at most 2d and the following constraint is satisfied

∑
x∈{−1,1}n

p(x)φ(x)
2n ≤ w (3.2)

s.t. w≥ 0, m ∈ N, A ∈ (Bm)
n+1, u,v ∈ Rm,

‖φ‖1 = 1, (3.3)

‖u‖2 = ‖v‖2 = w,

φ̂(Si) = 〈u,A(i1) . . .A(i2d)v〉, i ∈ [n+1]2d .
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Now, note that if (u,v,A,φ ,w) satisfies all conditions of Eq. (3.2) except for Eq. (3.3), then (u/
√
‖φ‖1,

v/
√
‖φ‖1,A,φ/‖φ‖1,w/‖φ‖1) would be a feasible instance. Furthermore, given that

∑
x∈{−1,1}n

p(x)φ(x)
2n ≤ w ⇐⇒ 1

‖φ‖1
∑

x∈{−1,1}n

p(x)φ(x)
2n ≤ w

‖φ‖1
,

we can write Eq. (3.2) forgetting about the normalization condition of Eq. (3.3). In other words, Eq. (3.2)
is equivalent to

∑
x∈{−1,1}n

p(x)φ(x)
2n ≤ w (3.4)

s.t. w≥ 0, m ∈ N, A ∈ (Bm)
n+1, u,v ∈ Rm,

‖u‖2 = ‖v‖2 = w, (3.5)

φ̂(Si) = 〈u,A(i1) . . .A(i2d)v〉, i ∈ [n+1]2d .

In addition, by homogeneity we can assume w = 1, as if (u,v,A,φ ,w) is a feasible instance, then
(u/
√

w,v/
√

w,A,φ/w,1) also is, and Eq. (3.4) is satisfied for the first instance if and only if is satisfied
for the second instance. Also note, that if (u,v,A) are part of a feasible instance of Eq. (3.4), then it
automatically has Boolean behavior of degree 2d, and any (u,v,A) defines a feasible instance for Eq. (3.4).
Finally, by Parseval’s identity we can rewrite ∑x∈{−1,1}n

p(x)φ(x)
2n as ∑S⊆[n] p̂(S)φ̂(S). Putting altogether

we get that p is the output of d-query quantum algorithm if and only if its degree is at most 2d and

∑
S⊆[n],|S|≤2d

p̂(S)〈u,A(iS1) . . .A(iS2d)v〉 ≤ 1

s.t. (u,v,A) has Boolean behavior of degree 2d,

which is the same as saying that ‖p‖fcb,2d ≤ 1. 2

4 Aaronson and Ambainis conjecture for (Fourier) completely bounded
polynomials

In this section we prove Theorem 1.6 and Theorem 1.8. Both are based on the construction used by
Varopoulos to disprove a degree-3 von Neumann’s inequality [33]. First of all, we recall the expressions
of variance and influences of a polynomial p : {−1,1}n→ R. The variance is given by

Var[p] = ∑
|S|≥1

p̂(S)2,

and the influence of the i-th variable by

Infi[p] = ∑
S3i

p̂(S)2.

The maximum influence of p is MaxInf[p] := maxi∈[n] Infi[p]. Var[p] measures how much p deviates
from its expectation, because Var[p] = Ex[( f (x)−Ey f (y))2]. By contrast, Infi[p] amounts for how much
p changes the i-th variable variable is flipped, because Infi[p] = Ex[(p(x)− p(x⊕i)2/2], where x⊕i is
obtained by flipping the i-th entry of x.
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4.1 AA conjecture for block-multilinear completely bounded polynomials

Before proving Theorem 1.8, we shall specify what is a block-multilinear completely bounded polynomial.
A block-multilinear polynomial of degree d is a polynomial p : {−1,1}n×d → R such that if we divide
the variables x ∈ {−1,1}n×d in d blocks of n coordinates each, then the every of the monomials of p has
at most one coordinate from each of the blocks. In other words, the block-multilinear polynomials of
degree d are those that can be written as

p(x1, · · · ,xd) = p̂( /0)+ ∑
s∈[d]

∑
b∈[d]s

b1<···<bs

∑
i∈[n]s

p̂({(b1, i1), · · · ,(bs, is)})xb1(i1) · · ·xbs(is), (4.1)

for every (x1, · · · ,xd)∈ ({−1,1}n)d . For this kind of polynomials, there is a very natural way of evaluating
them in matrix inputs,

p(A1, · · · ,Ad) = p̂( /0) Idm+ ∑
s∈[d]

∑
b∈[d]s

b1<···<bs

∑
i∈[n]s

p̂({(b1, i1), · · · ,(bs, is)})Ab1(i1) · · ·Abs(is), (4.2)

for every As ∈ (Mm)
n, s∈ [d] and m∈N. The completely bounded norm of a block-multilinear polynomial

is defined as
‖p‖cb := sup{‖p(A1, · · · ,Ad)‖ : m ∈ N, As ∈ (Bm)

n, s ∈ [d]}. (4.3)

Concerning these polynomials, we can show the following.

Theorem 1.8. Let d ∈ N. Let p : {−1,1}n×d → R be a block-multilinear degree d polynomial with
‖p‖cb ≤ 1. Then, p has a variable of influence at least (Var[p]/d)2. In addition, if p is homogeneous of
degree d, then it has a variable of influence at least Var[p]2.

Remark 4.1. With our proof of the homogeneous case of Theorem 1.8 we can show that for the case of
p : {−1,1}n×d → R being a homogeneous degree d block-multinear polynomial we have the following
non-commutative root influence inequality

‖p‖cb ≥ ∑
i∈[n]

√
Infs,i[p], (4.4)

for any s ∈ [d]. This improves [9, Theorem 1.4] in two ways. First, we can allow s to be any number in
[d], while they only prove the result of s ∈ {1,d}. Second, they prove a weaker statement that depends on
d, namely,

‖p‖cb ≥ ∑
i∈[n]

√
Infs,i[p]√
e(d +1)

,

for s ∈ {1,d}.

Remark 4.2. Given that p(x1, · · · ,xd) = x1(1) . . .xd(1) is a homogeneous degree d block-multilinear
completely bounded polynomial with Var[p]2 = MaxInf[p] = 1, we have that the homogeneous case of
Theorem 1.8 is optimal.
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Proof of the homogeneous degree d case of Theorem 1.8: Let p be a homogeneous degree d block-multilinear
polynomial. Let s ∈ [d]. We label the coordinates by (r, i), where r ∈ [d] indicates the block, and i ∈ [n].
Our goal is defining A ∈ (Bm)

n and f /0,e /0 ∈ Sm−1 such that

〈 f /0,A(i1) . . .A(id)e /0〉=
p̂({(1, i1), . . . ,(d, id)})√

Infs,is [p]
. (4.5)

Once we are there, we can prove the announced root-influence inequality Eq. (4.4). Indeed,

‖p‖cb ≥ ∑
i1,...,id∈[n]

p̂({(1, i1), . . . ,(d, id)})〈 f /0,A(i1) . . .A(id)e /0〉

= ∑
i1,...,id∈[n]

p̂({(1, i1), . . . ,(d, id)})
p̂({(1, i1), . . . ,(d, id)})√

Infs,is [p]

= ∑
is∈[n]

1√
Infs,is [p]

∑
i1,...,is−1,is+1,id∈[n]

p̂({(1, i1), . . . ,(d, id)})2

︸ ︷︷ ︸
Infs,i[p]

= ∑
i∈[n]

√
Infs,i[p].

Finally, the statement about the maximal influence quickly follows from the root-influence inequality

‖p‖cb ≥ ∑
i∈[n]

√
Infs,i[p]≥ ∑

i∈[n]

Infs,i[p]√
MaxInf[p]

=
Var[p]√

MaxInf[p]
,

which after rearranging yields

MaxInf[p]≥
(

Var[p]
‖p‖cb

)2

.

Hence, it suffices to design ( f /0,e /0,A)∈ Sm−1×Sm−1×(Bm)
n satisfying Eq. (4.5). Let S := {{(r, ir), . . . ,(d, id)} :

ir, . . . , id ∈ [n], s+ 1 ≤ r ≤ d} and S′ := {{(1, i1), . . . ,(r, ir)} : i1, . . . , ir ∈ [n], r ≤ s− 1}. Let m :=
2+ |S|+ |S′|. Let {e /0,eS, f /0, fS′ : S ∈ S, S′ ∈ S′} be an orthonormal basis of Rm, and define A(i) ∈Mm by

A(i)eS := eS∪{(d−|S|,i)}, for 0≤ |S| ≤ d− s−1, S ∈ S,

A(i)eS := ∑
S′∈S′
|S′|=s−1

p̂(S′∪S∪{(s, i)})√
Infs,i(p)

fS′ , for |S|= d− s, S ∈ S,

A(i) fS′ := δ(|S′|,i)∈S′ fS′−{(|S′|,i)}, S′ ∈ S′.

We claim that ( f /0,e /0,A(i)) satisfies Eq. (4.5). This is because the first applications of the A(i)’s act
like a creation operator and the last as annihilation operators. The first d− s−1 of the matrices on e /0
create a vector that stores the indices of these first d− s−1 applications, namely

A(s+1) . . .A(d)e /0 = e{((s+1,is+1),...,(d,id))}.
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The d− s application has a unique behavior, as it maps the previous vector to a superposition of f· vectors,
namely

A(is)e{((s+1,is+1),...,(d,id))} = ∑
S′∈S′
|S′|=s−1

p̂(S′∪ ((s, is), . . . ,(d, id)))√
Infs,i(p)

fS′ .

Finally, the last s−1 applications of the matrices act like annihilation operators, meaning that

A(i1) . . .A(is−1) fS′ = δS′,((1,i1),...,(s−1,is−1)) f /0.

Putting everything together we conclude that indeed Eq. (4.5) is satisfied.
Finally, we claim that A(i) are contractions. Given that {eS : 0≤ |S| ≤ d− s−1, S ∈ S}, {eS : |S|=

d− s, S ∈ S} and { fS′ : S′ ∈ S′} are mapped to orthogonal spaces, we just have to check than when A(i)
is a contraction when it is restricted to the span of each of these 3 sets. For the first and third sets of
vectors that is clear. For the second is true because for any λ ∈ [n]d−s

‖A(i) ∑
S∈S
|S|=d−s

λSeS‖= ‖ ∑
S∈S
|S|=d−s

∑
S′∈S′
|S′|=s−1

p̂(S′∪S∪{(s, i)})√
Infs,i[p]

λS fS′‖

=

√√√√√√∑ S′∈S′
|S′|=s−1

(
∑ S∈S
|S|=d−s

p̂(S′∪S∪{(s, i)})λS

)2

Infs,i[p]

≤

√√√√√∑ S′∈S′
|S′|=s−1

(
∑ S∈S
|S|=d−s

p̂(S′∪S∪{(s, i)})2

)(
∑ S∈S
|S|=d−s

λ 2
S

)
Infs,i[p]

=

√
Infs,i[p]
Infs,i[p]

√√√√ ∑
S∈S
|S|=d−s

λ 2
S

= ‖ ∑
S∈S
|S|=d−s

λSeS‖,

where in the inequality we have used Cauchy-Schwarz. 2

Proof of the general case of Theorem 1.8: Let p : {−1,1}n×d →R be a block-multilinear degree d poly-
nomial. For every s ∈ [d], let p=s be its degree s part. Let D ∈ [d] be such that Var[p=D] ≥ Var[p]/d,
which exists because Var[p] = ∑s∈[d] Var[p=s]. We will now divide the proof in two parts. One is showing
that

‖p=D‖cb ≤ ‖p‖cb, (4.6)

and the other is proving that

MaxInf(p=D)≥
(

Var[p=D]

‖p=D‖cb

)2

. (4.7)
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Once we had done that, the result will easily follow:

MaxInf(p)≥MaxInf(p=D)≥
(

Var[p=D]

‖p=D‖cb

)2

≥
(

Var[p]
d‖p‖cb

)2

,

where in the second inequality we have used Eq. (4.7), and in the third we have used Eq. (4.6) and that
Var[p=D]≥ Var[p]/d.

First, we prove Eq. (4.6). Let B ∈ Bd+1 be defined by B := ∑s∈[D] eseT
s+1, where {es}s∈[D+1] is an

orthonormal basis of RD+1. Note that 〈e1,BseD+1〉= δs,D for all s ∈ [d]0. Hence,

‖p=D‖cb = sup
u,v∈Sm−1, A∈(Bm)

n

m∈N

∑
b∈[d]D

b1<···<bD

∑
i∈[n]D

p̂=D({(b1, i1), . . . ,(bD, iD)})〈u,Ab1(i1) . . .AbD(iD)v〉

= sup
u,v∈Sm−1, A∈(Bm)

n

m∈N

∑
s∈[d]

∑
b∈[d]s

b1<···<bs

∑
i∈[n]s

p̂({(b1, i1), . . . ,(bs, is)})

· 〈u⊗ e1,(Ab1(i1)⊗B) . . .(Abs(is)⊗B)v⊗ eD+1〉
≤ ‖p‖cb.

Second, we prove Eq. (4.7). Let S := {{(b1, i1), . . . ,(bD−1, iD−1)} : bs ∈ [d], b1 < · · ·< bD−1, is ∈ [n], s∈
[D− 1]}. Let m := 2+ |S|. Let {v, f /0, fS : S ∈ S} be an orthonormal basis of Rm. For b ∈ [d], i ∈ [n],
define Ab(i) ∈Mm by

Ab(i)v := ∑
S∈S

|S|=D−1

p̂=D(S∪{(b, i)})√
MaxInf[p=D]

fS,

Ab(i) fS := δ(b,i)∈S fS−{(b,i)}, for S ∈ S∪ /0.

Ab(i) are contractions because they map the vectors of an orthonormal basis to orthogonal vectors without
increasing their norms. Note that for b1 < · · ·< bD and i ∈ [n]D we have that

〈 f /0,Ab1(i1) . . .AbD(iD)v〉=
p̂=D({(b1, i1), . . . ,(bD, iD)})√

MaxInf[p=D]
.

Thus,

‖p=D‖cb ≥ ∑
b∈[d]D

b1<···<bD

∑
i∈[n]D

p̂=D({(b1, i1), . . . ,(bD, iD)})〈 f /0, p(A1, . . . ,Ad)v〉=
Var[p=D]√

MaxInf[p=D]
,

which after rearranging yields Eq. (4.7). 2
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4.2 AA conjecture for homogeneous Fourier completely bounded polynomials

Finally, we prove a new case of the AA conjecture.

Theorem 1.6. Let d ∈ N. Let p : {−1,1}n → R be a homogeneous polynomial of degree d and with
‖p‖fcb,d ≤ 1. Then, the maximum influence of p is at least Var[p]2.

Proof: Let m := 1+
(n

0

)
+ · · ·+

( n
d−1

)
. Let {v, f /0, fS : S⊆ [n], 1≤ |S| ≤ d−1} be an orthonormal basis

of Rm. Define the matrices A(i) ∈Mm as

A(i)v := ∑
S3i
|S|=d

p̂(S)√
MaxInf[p]

fS−{i},

A(i) fS := δS3i fS−{i}, for S⊆ [n], 0≤ |S| ≤ d−1,

for i ∈ [n] and A(n+1) := 0. We claim that ( f /0,v,A(i)) has Boolean behavior of degree d. A(n+1) is
clearly a contraction. For i ∈ [n], A(i) is a contraction, as it maps vectors of the orthonormal basis to
orthogonal vectors without increasing the norm, because

‖A(i)v‖2 = ∑
S3i

p̂(S)2

MaxInf[p]
=

Infi[p]
MaxInf[p]

≤ 1.

On the other hand, if S⊆ [n] satisfies |S| ≤ d−1, then any i ∈ [n+1]d with Si = S either has a repeated
element of [n] or has an appearance of the index n+1, which implies that 〈 f /0,A(i1) . . .A(id)〉= 0 = p̂(S).
If |S|= d, then any i ∈ [n+1]d with Si = S has d different indices in [n] (corresponding to the elements
of S), so in that case

〈 f /0,A(i1) . . .A(id)v〉=
p̂(S)√

MaxInf[p]
. (4.8)

Putting everything together we conclude that ( f /0,v,A(i)) has Boolean behavior of degree d, so

‖p‖fcb,d ≥ ∑
S⊆[n]

p̂(S)〈 f /0,A(i1) . . .A(id)v〉= ∑
S⊆[n]

p̂(S)2√
MaxInf[p]

=
Var[p]√

MaxInf[p]
,

where in the first equality we have used Eq. (4.8). After rearranging, the above expression yields

MaxInf[p]≥
(

Var[p]
‖p‖fcb,d

)2

.

2

Remark 4.3. Sadly, we could not extend the proof of Theorem 1.6 to the general case. Now, we aim to
illustrate what would go wrong with our technique.
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For example, consider a polynomial p : {−1,1}3→ R with deg(p) = 1 and ‖p‖fcb,3 ≤ 1. Ideally, we
would want to define unit vectors u and v and contractions A(i) such that for every S ⊆ [3] and every
i ∈ [iS] they satisfied

〈u,A(i1)A(i2)A(i3)v〉=
p̂(S)√

MaxInf[p]
. (4.9)

If we emulated the strategy of the proof of Theorem 1.6, then A(1)v should be a normalized superposition
of orthogonal vectors whose amplitudes are all possible p̂(Si) that have i3 = 1. In particular, all p̂(S)
with |S|= 1 must be included among these amplitudes, because if S = {i}, then S = S(i,1,1). Hence, the
normalizing factor of A(1)v should be

√
Var p, instead of

√
MaxInf(p). Note that this extra normalization

comes from the fact that given that given (i1, i2, i3), it may happen that i3 /∈ S(i1,i2,i3) and p̂(S(i1,i2,i3)) 6= 0,
because p is not homogeneous of degree-3. If we mimic the rest of the proof after this first step that we
were forced to modify, we would reach

〈u,A(i1) . . .A(i3)v〉=
p̂(S)√
Var[p]

instead of Eq. (4.9), which would lead to ‖p‖fcb,3 ≥
√

Var p, that is trivially true, because ‖p‖fcb,3 ≥ ‖p‖∞

and ‖p‖∞ ≥
√

Var p.

Remark 4.4. However, there might be a different way of, given a polynomial p of degree at most d,
choosing (u,v,A) with Boolean behavior of degree d such that

〈u,A(i1) . . .A(id)v〉=
p̂(Si)

poly(d,MaxInf[p])
,

for any i ∈ [n+1]d . If that was true, one could copy and paste the proof of Theorem 1.6 and conclude
Theorem 1.5.

This reduces Theorem 1.5 to a question with flavor of tensor networks (see [13] for an introduction
to the topic). In particular, the central questions in matrix product states theory is, given a t-tensor
T ∈ Cn×···×n, to find matrices A1, . . . ,At of low dimension such that Ti = Tr[A(i1) . . .A(it)] for every
i ∈ [n]t . Thus, we are asking the same question, but with a different goal: to minimize the operator norm
of the matrices, instead of their dimensions.

It also has the flavor of almost-quantum correlations [25]. Almost-quantum correlations are a model
for multiparty quantum mechanics that eludes tensor products and commutativity of the observables: it
only imposes the commutativity on the correlations. For example, in a bipartite scenario, valid correlations
would be those determined by observables {Ax}x∈X and {By}y∈Y and a state |ψ〉 such that

〈ψ|AxBy|ψ〉= 〈ψ|ByAx|ψ〉, for all x ∈ X,y ∈ Y.

In other words, almost-quatum correlations impose the commutativity conditions with respect to the
sandwiches with |ψ〉, instead of directly imposing them to the observables, Similarly, we would like to
find matrices that satisfy certain Boolean relations with respect to the product with two vectors u and v.
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Question 4.5. Given a polynomial p of degree at most d, is there (u,v,A) ∈BBd such that

〈u,A(i1) . . .A(id)v〉=
p̂(Si)

poly(d,MaxInf[p])
,

for any i ∈ [n+1]d?
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