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Abstract: We revisit the main result of Carmosino et al [11] which shows that an Ω(nω/2+γ)
size noncommutative arithmetic circuit size lower bound (where ω is the matrix multiplica-
tion exponent) for a constant-degree n-variate polynomial family (gn)n, where each gn is a
noncommutative polynomial, can be “lifted” to an exponential size circuit size lower bound
for another polynomial family ( fn) obtained from (gn) by a lifting process. In this paper, we
present a simpler and more conceptual automata-theoretic proof of their result.
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1 Introduction

Algebraic Complexity concerns itself with the complexity of algebraic computations of multivariate
polynomials. It starts with Strassen’s work on matrix multiplication from the 1960’s. In the 1970’s,
Valiant defined the algebraic complexity classes VP and VNP [19], which are analogues to P and NP,
which brings to focus the problem of proving superpolynomial arithmetic circuit size lower bounds for
an explicit polynomial family like the permanent Permn which is complete for VNP under projection
reductions. This research area has a rich history, nicely described in the text by Bürgisser et al [10]. It
is believed that separating VP from VNP is easier than the P vs NP problem. But the problem remains
open despite intense research and highly nontrivial progress in recent years [16, 15] and the Ω(n logn)
circuit size lower bound result of Baur and Strassen [8] remains the best known lower bound to this date.

Nisan [17] initiated the study on the algebraic complexity of noncommutative polynomials. The
noncommutative polynomial ring F〈X〉, where X = {x1,x2, . . . ,xn} is a set of n free noncommuting
variables, consists of noncommutative polynomials which are F-linear combinations of words over X .
Noncommutative arithmetic circuits computing polynomials in F〈X〉 are defined like their commutative
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analogs. The only difference is that multiplication gates in the circuit are not commutative. The classes
VPnc and VNPnc, which are noncommutative analogs of VP and VNP, can be defined, as has been done
by Hrubeš et al [18]. In the same article, it is shown that Permn is VNPnc-complete under projections. The
main lower bound question is to separate VPnc and VNPnc, i.e. whether the noncommutative permanent
Permn requires superpolynomial size noncommutative arithmetic circuits. Arguably, this question should
be easier in the noncommutative case. Indeed, Nisan [17] has shown an exponential lower bound on the
size of a noncommutative formula (more generally, a noncommutative algebraic branching program)
computing the noncommutative Permn. However, it remains open for noncommutative circuits. Moreover,
we do not have anything better than the Ω(n logn) lower bound result of Baur and Strassen in the
unrestricted setting. We note that, recently, Chatterjee and Hrubeš [12] have obtained a quadratic lower
bound for homogeneous noncommutative circuits.

Why is it so difficult to obtain even a quadratic lower bound for unrestricted noncommutative circuits?
A few years ago, in 2018, Carmosino et al [11] showed that an Ω(nω/2+γ) circuit size lower bound1 for
a constant-degree n variate polynomial family (gn) can be “lifted” to an exponential circuit size lower
bound for a polynomial family ( fn) (which is obtained from (gn) by the lifting process). The Carmosino
et al lifting result partly explains the lack of success in showing even superlinear (in the number of
variables) circuit size lower bounds for explicit polynomial families. The lifting result is reminiscent of
Allender and Koucky’s work in the Boolean circuit complexity setting [1], where the authors exploit the
self-reducibility structure of some NC1-complete problems to show that a superlinear TC0 circuit size
lower bound for them can be lifted to superpolynomial TC0 circuit size lower bound.

Before we present the contribution of this paper, it is worth mentioning a similar result due to Hrubeš,
Wigderson, and Yehudayoff [14] which indeed predates [11]. They show that a super-linear lower bound
on the width of an explicit degree 4 polynomial can be lifted to an exponential circuit size lower bound
for an explicit noncommutative polynomial.

This paper In this paper, we present a simple and a more structured automata-theoretic argument for
the Carmosino et al result [11] stated above. In their paper, the main idea is to use an encoding scheme
that reduces the number of variables exponentially incurring only a polynomial blow-up in the degree.
The core of the argument is to show the following:

Lemma 1.1 (Informal). A noncommutative circuit can be decoded efficiently.

In this paper, we prove this using ideas from algebraic automata theory. The main two ingredients of
our proof are to show (a) an efficient representation of a decoder using a weighted automaton, and (b) the
use of the Hadamard product to construct the decoded circuit. Our proof is not only short and simple but
also conceptually more satisfying. We highlight two consequences for different choices of parameters
(details in Section 3.3):

• Let (gN) be an explicit noncommutative p-family, where deg(gN) = t for some constant t for each
N, such that C(gN) ≥ Ω(Nω/2+γ), where γ > 0 is a constant. Then there is an explicit p-family
(hn)n in VNPnc such that (hn) requires circuits of size nΩ(n).

1Here ω is the matrix multiplication exponent.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2025, Article 01, pages 1–12 2

http://dx.doi.org/10.4086/cjtcs


• Suppose (gN) is an explicit noncommutative p-family, where each deg(gN) = (logN)O(1), and gN

requires circuits of size ω(Nω/2 · logN). Then there is an explicit p-family (hn) in VNPnc such that
C(hn) = nω(1).

2 Preliminaries

We recall some algebraic complexity definitions for noncommutative computation. Further details on
these definitions and basic results can be found in Nisan’s seminal paper [17].

Definition 2.1 (Noncommutative Arithmetic Circuit). Let F be a field. A noncommutative arithmetic
circuit C over F and noncommuting indeterminates x1,x2, . . . ,xn is a directed acyclic graph (DAG) with
each node of indegree zero labeled by a variable or a scalar constant from F: the indegree 0 nodes are
the input nodes of the circuit. Internal nodes are gates of the circuit, and are of indegree two. They are
labeled either by a + or a × (indicating the gate type). Furthermore, the two inputs to each × gate are
designated as left and right inputs prescribing the order of gate gate multiplication. Each internal gate
computes a polynomial (by adding or multiplying its input polynomials), and the polynomial computed
at an input node is just its label. A special gate of C is designated the output. The polynomial computed
by the circuit C is the polynomial computed at its output gate. An arithmetic circuit is a formula if the
fan-out of every gate is at most one. For a polynomial f ∈ F〈X〉 we denote by C( f ) its optimal circuit
size.

We recall some more definitions from Bürgisser’s text [10, 18, 3].

Definition 2.2 (p-family). Let F be a field. A sequence of multivariate noncommutative polynomials
( fn) over F is called a p-family if there is a polynomial nc that bounds both the degree and number of
variables in fn for each n. Suppose fn ∈ F〈Xn〉 for each n. Following [10], we say, the p-family ( fn) is
explicit if there is a polynomial-time algorithm that takes as input a monomial m ∈ X∗n and computes its
coefficient in fn, for all n, in time polynomial in n. For example, the permanent polynomial (Permn)n is
an explicit p-family.

Remark 2.3. In the definition of an explicit p-family, the running time of the algorithm that computes
the coefficient of a monomial m ∈ X∗n is polynomial in the length of m encoded in some fixed alphabet
like, for example, the binary alphabet. This point is important when we consider p-families –as indeed we
will need to for the lower bound lifting result– (gn)n of constant degree polynomials where deg(gn)≤ t
for t independent of n.

Some notation that we will use in this paper: for a polynomial f ∈ F〈X〉 its support supp( f ) = {w ∈
X∗ | coefficient of w is 6= 0} is the set of monomials with nonzero coefficient in f . Thus, letting fw denote
the coefficient of w in f , we can write f = ∑w∈supp( f ) fww.

Definition 2.4 (Formal Power Series). Let X be a set of free noncommuting variables and F be any field.
A formal power series is a function f : X∗→F, where X∗ is the free monoid of all words (i.e. monomials)
over X . We can equivalently denote the power series f by the formal infinite sum ∑w∈X∗ f (w)w. The set
of formal power series form a ring F⟪X⟫ over F known as the power series ring. Ring addition here is
coefficient-wise and ring multiplication is the standard convolution product.
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We recall the definition of a weighted automata [13] with some basic details.

Definition 2.5 (Weighted Automaton). Let A be a finite state automaton with state set Q with designated
start state s and final state t. Let R be any ring. Then A is an R-weighted automaton if the transition
function

δ : Q×Y ×Q→ R

assigns to every transition (q1,y,q2) a weight ry ∈ R. Equivalently, we can replace the parallel edges
between q1 and q2 by a single edge

∑
δ (q1,y,q2)=ry

ry · y.

Consequently, every monomial w = y1y2 · · ·yr ∈ Y ∗ along an s to t transition path P in the automaton A

is assigned a weight rP ∈ R (which is the product of the individual weights for each transition step). The
actual weight rw associated with monomial w is rw = ∑P rP, where the sum is over all s to t transition
paths P for the monomial w (and rw = 0 if there are no such paths). We define the formal power series

∑
w∈Y ∗

rww

to be the power series computed by the weighted automaton A. Equivalently, for each variable y ∈ Y we
have its |Q|×|Q| state transition matrix My ∈M|Q|(R). The (i, j)th entry of My is the element δ (i,y, j)∈R.
Then, corresponding monomial w = y1y2 · · ·yd ∈ Y ∗, the transition matrix is the matrix product

Mw =
d

∏
j=1

My j ,

and the coefficient rw of monomial w in the power series computed by A is the (s, t)th coefficient Mw[s, t]
of Mw.

3 Lower Bounds via Efficient Decoding

The proof of the lower bound lifting result [11] can be described quite simply using some automata
theoretic arguments. It is based on a simple encoder and decoder which can be described using a weighted
automata. We present the details in this section.

3.1 Hadamard Product Computation

The notion of Hadamard product is well-studied in algebraic automata theory [9, Theorem 5.5]. It has
also been used for noncommutative polynomials to obtain some algebraic complexity results [4, 5, 6].

For the purpose of this paper, we define the Hadamard product of a noncommutative polynomial
computed by a circuit and a formal series computed by a small automaton.
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Definition 3.1. Let f ∈ F〈X〉 be a degree-d polynomial and S be a formal power series in F⟪X⟫, where
X is a finite set of free noncommuting variables. The Hadamard product of f and S is the noncommutative
polynomial

f ◦S = ∑
w∈X≤d

fw ·Sw ·w,

where fw and Sw denote the coefficients of the word w in f and in S, respectively.

We recall the following result showing efficient Hadamard product computation when the polynomial
is computable by a small circuit and the series by a small automaton.

Theorem 3.2. [7] Given a circuit C and an automaton B computing a homogeneous degree-k polynomial
f ∈ F〈X〉 and a formal series S ∈ F⟪X⟫ respectively, the Hadamard product polynomial f ◦S can be
evaluated at any point (a1,a2, . . . ,an)∈Fn by evaluating C(a1M1,a2M2, . . . ,anMn) where M1,M2, . . . ,Mn

are the transition matrices of B, and the dimension of each Mi is the size of B.

If C is given by black-box access then ( f ◦S)(a1, . . . ,an) for ai ∈ F,1 ≤ i ≤ n can be evaluated by
evaluating C on matrices defined by the automaton B [7] as follows: For each i ∈ [n], the transition matrix
Mi in Ms(F) are computed from the automaton B (which is of size s) that encodes layers. We define
Mi[k, `] = αi,k,`, where αi,k,` is the sum of the weights of the xi-transitions from k to ` (see Definition 2.5).

Now to compute ( f ◦ S)(a1,a2, . . . ,an) where ai ∈ F for each 1 ≤ i ≤ n, we compute
C(a1M1,a2M2, . . .anMn). The value ( f ◦ S)(a1,a2, . . . ,an) is the (1,s)th entry of the matrix
f (a1M1,a2M2, . . . ,anMn).

Theorem 3.2 can be used to efficiently compute a circuit for the Hadamard product polynomial
f ◦S. Replace each xi by yixi in the automaton B. Let M1, . . . ,Mn be the transition matrices where each
entry is a linear form in Y variables. We can now compute f ◦ S by evaluating C(M1, . . . ,Mn) on the
matrices Mi,1≤ i≤ n. In this evaluation each multiplication gate of the circuit C actually denotes matrix
multiplication. Hence we have the following.

Theorem 3.3. Given a noncommutative circuit of size s′ computing a degree k polynomial f ∈ F〈X〉
and an automaton of size s computing a formal series S ∈ F⟪X⟫, we can compute a noncommutative
circuit of size s′sω for the noncommutative polynomial f ◦S in deterministic time s′sω ·poly(n,k), where
ω denotes the matrix multiplication exponent.2

3.2 An Efficient Decoder using Weighted Automata

We first define the encoding scheme. Let X = {x0,x1, . . . ,xn−1}, Y = {y0,y1, . . . ,ym−1} be disjoint sets
of noncommuting variables and let X∗ and Y ∗ denote the free monoids of words/monomials in X and Y ,
respectively.

A monoid homomorphism is a mapping

h : X∗→ Y ∗

such that h(ε) = ε and h(ww′) = h(w)h(w′), where we denote the empty word universally by ε .

2The current best algorithm for matrix multiplication, which is due to Alman and Williams [2], shows ω < 2.373.
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A mapping h : X → Y ∗ is prefix-free if for any x,x′ ∈ X h(x) is not a proper prefix of h(x′). Any such
prefix-free mapping h can be uniquely extended to an injective monoid homomorphism h : X∗→ Y ∗, and
we refer to it as an encoder. We will first consider the following simple encoder.

Definition 3.4 (Encoder). Let X = {x0,x1, . . . ,xn−1}, Y = {y0,y1, . . . ,ym−1} be disjoint sets of noncom-
muting variables where n = m3. For each i ∈ {0,1, . . . ,n−1} let jiki`i denote the base-m representation
of i, where each ji,ki, `i ∈ {0,1, . . . ,m−1}. The encoder is the monoid homomorphism E : X∗→ Y ∗ that
uniquely extends the substitution map E(xi) = y jiykiy`i .

The encoder E : X∗ → Y ∗ of Definition 3.4 naturally extends by linearity to polynomials. Thus,
E : F〈X〉 → F〈Y 〉 encodes noncommutative polynomials in X into noncommutative polynomials in Y .

The decoder automaton

A decoder D : Y ∗→ X∗ is a map such that D(E(m)) = m for all monomials m ∈ Y ∗. By linearity, for any
polynomial h ∈ F〈X〉 we have D(E(h)) = h.

As summarized in the following lemma, it is convenient to formally use weighted automata to
describe the decoder corresponding to E. Let the ring R be the free noncommutative polynomial ring
F〈X〉. Assume that the elements of F〈X〉 commute with variables in Y . Then the formal series which
defines the decoder D is ∑u∈X∗ uE(u). Notice that in this formal series, for w = E(u) we have the
coefficient of w, rw = u and rw = 0 for all w ∈ Y ∗ not in the range of the encoder E.

Lemma 3.5. The series S = ∑w∈X∗ wE(w) ∈ F〈X〉⟪Y⟫ is computable by an F〈X〉-weighted automaton
of size 2(m+1), which is the decoder D corresponding to the encoder E, and m = |Y |.

Proof. As xy = yx for all x ∈ X and y ∈ Y , we observe that the power series S = ∑u∈X∗ uE(u) has the
following simple expression:

S =

(
n

∑
i=1

xiE(xi)

)∗
.

Now, consider the following automaton A of size 2m+2 (see Figure 1).
We describe the automaton in some detail because in Section 4 we will discuss this further. The

automaton has four layers. The initial layer has just the start state s. The second and third layers each
have m states. The final layer has just the final state t from which the automaton loops back to the start
state s on an ε-transition3.

We now describe the role of the states in the second and third layers of the automaton.
Let T = {0,1, . . . ,m−1}. For each j ∈ T , we define a transition from state s to state (0, j) reading y j

(the state (0, j) encodes the symbol y j it has seen previously) and (2, j) to t reading y j (the state (2, j)
encodes the symbol y j it will see next).

The transitions between the second and third layers is where the decoding actually happens. Between
any pair of states (0, i) in the second layer and (2, j) in the third layer, i, j ∈ T , the automaton has
a weighted transition on input yk,k ∈ T which has weight xσ(i, j,k), where σ : {0,1, . . . ,m− 1}3 →
{0,1, . . . ,n−1} is the bijection

σ(i, j,k) = m2i+mk+ j.

3Strictly speaking we should remove the ε-transition and directly go to state (0, j) in the second layer on reading y j
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s

0,0 · · · · · · 0, i · · · · · · 0,m−1

2,0 · · · · · · 2, j 2,m−1

t

· · · · · ·

yi 7→ ε

y j 7→ ε

yk 7→ xσ(i, j,k)

Figure 1: The transition diagram of the automaton A

Notice that between (0, i) and (2, j) we have m transitions, one for each yk,k ∈ T . The simple
information-theoretic idea in this construction is that the states (0, i), (2, j) and the transition on yk hold
the complete information about the string yiyky j which the decoder can substitute with xσ(i, j,k).

Remark 3.6. We refer to the above encoder as the 1-to-3 encoder. In Section 4, where we discuss
possibilities of improvements to the lower bound lifting result, we will consider the more general 1-to-r
encoder.

3.3 The Lower Bound Lifting Result

We are now ready to present the automata-theoretic proof of the lower bound lifting result of [11]: namely,
that a circuit size lower bound of Ω(nω/2+γ) for an explicit p-family (gn) of degree-t polynomials can
be “lifted” to obtain an exponential circuit size lower bound for an explicit p-family (hn). Notice that
the definition of explicit p-families applies to the constant-degree p-family (gn) in the sense explained in
Remark 2.3.

The result is an easy consequence of Theorem 3.3. In fact we will show stronger result, as the simple
analysis in the proof goes through for the choice of t = O(logn) and γ = O(log logn/ logn). This yields
the two consequences stated in the abstract.

We begin with showing that the decoder D preserves circuit size quite efficiently.

Lemma 3.7 (efficient decoding). For a noncommutative polynomial h ∈ F〈X〉 suppose its encoding
E(h)∈F〈Y 〉 has a noncommutative circuit of size s. Then h has a noncommutative circuit of size bounded
by mω · s, where m = |Y |. More precisely,

C(h)≤ O(mω) ·C(E(h)).
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Proof. The idea is to use the weighted automaton of Lemma 3.5 which defines the decoder D which
computes the formal series S. We first observe the following easy claim, that the Hadamard product
E(h)◦S evaluated at y j = 1,0≤ j ≤ m−1 is precisely h(X).

Claim 3.8. h(X) = (E(h)◦S)(1,1, . . . ,1).

Writing h = ∑w∈supp(h) hw ·w, notice that we have E(h) = ∑w∈supp(h) hw ·E(w). Thus we have

E(h)◦S = ∑
w∈supp(h)

hw ·w ·E(w),

noting that we are considering S as a formal series in the Y variables with coefficients as polynomials
in the X variables. Thus, the evaluation of E(h) ◦ S for Y variables substituted with 1 will yield h =

∑w∈supp(h) hw ·w. This proves the claim.
As the size of the decoder automaton in Lemma 3.5 is 2m+2, the proof of the lemma follows from

Theorem 3.3 which gives the claimed bound on the circuit size of the Hadamard product of a circuit with
a weighted automaton.

Theorem 3.9. Let (gn)n be an explicit noncommutative p-family, where deg(gn) = t for some constant t
for each n, such that C(gn)≥Ω(nω/2+γ), where γ > 0 is a constant. Then there is an explicit p-family
(hn)n in VNPnc where hn is n-variate with deg(hn) = poly(n) such that C(hn) = nΩ(n).

Proof. Set d = dlog3 ne and N = n3d
. By assumption we have C(gN) = Ω(Nω/2+γ), where deg(gN) = t.

By a d-fold application of the encoder E to the polynomial gN , we obtain the polynomial

hn = Ed(gN),

where hn ∈F〈Yd〉, letting Yd denote the set of noncommuting variables in the output polynomial produced
by d applications of the encoder E.

In general, for 1≤ k≤ d notice that Ek(gN)∈F〈Yk〉, where Yk is a set of Nk = n3d−k
many noncommut-

ing variables, and the degree of Ek(gN) is t ·3k. Notice that N3
k+1 = Nk for each k ≥ 1 and |Yd |= Nd = n.

Therefore, hn(Yd) is an n-variate polynomial of degree precisely t3d = tn.

Claim 3.10. C(hn) = nΩ(n).

We will prove the claim by an inductive argument. More precisely, note that E0(gN) = gN and
Ed(gN) = hn. Let nk = γ ·3k,0≤ k ≤ d. For the base case we have, by assumption

C(E0(gN)) = C(gN) = Ω(Nω/2+γ) = Ω(Nω/2+n0).

Suppose, as induction hypothesis that C(Ek(gN)) = Ω(Nω/2+nk
k ). Then, by Lemma 3.7 we have

C(Ek(gN))≤ α ·C(E(Ek(gN))) ·Nω
k+1,

for some constant α > 1. That implies

C(Ek+1(gN))≥
Nω/2+nk

k
αNω

k+1
=

Nω/2+nk
k

αNω/3
k

=
Nω/2+nk+1

k+1

α
= Ω(Nω/2+nk+1

k+1 ).
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Putting it together, therefore, hn =Ed(gN) is n-variate in the variables Yd of degree t3d = t ·n= poly(n)
and

C(hn) = C(Ed(gN)) = Ω(nω/2+3dγ) = nΩ(n).

This completes the proof.

In the above proof, if we let t be a function of N, notice that choosing t(N) = (logN)c with other
parameters remaining the same, still guarantees (hn)n to be an explicit p-family with deg(hn) = poly(n)
and the lower bound holds for C(hn) as well. Furthermore, suppose we allow γ to be a variable quantity
and set γ = ω

(
log logN

logN

)
.4 Then the lower bound assumption becomes

C(gN) = Ω(Nω/2+γ(N)) = ω(Nω/2 · logN),

where gN is of degree (logN)c. In particular, this assumption is weaker than that of Theorem 3.9.
Following the analysis in the proof of Theorem 3.9 we obtain the following

Corollary 3.11. Let (gN)N be an explicit noncommutative p-family, where deg(gN) = (logN)c for con-
stant c > 0 and each n, such that C(gN) = ω(Nω/2 · logN). Then there is an explicit p-family (hn)n in
VNPnc where hn is n-variate with deg(hn) = poly(n) such that C(hn) = nω(1).

4 Discussion

Can this lower bound lifting result be improved? As noted in [11], the hardness assumption becomes
C(gN) = N1+γ if the matrix multiplication exponent ω = 2. Furthermore, the hardness assumption in
Corollary 3.11 becomes ω(N logN) for a degree (logN)O(1) polynomial. Baur and Strassen’s lower
bound is Ω(N logd) for an explicit degree-d N-variate polynomial. Compared to that the ω(N logN)
lower bound assumption translates to ω(Ndα) for some α > 0. Can the degree bound of (logN)O(1) be
relaxed in Corollary 3.11?

We crucially use the Hadamard product construction described in Lemma 3.3, for which the circuit
upper bound is O(s′ωs) where s′ and s are the given automaton and circuit sizes respectively. Matrix
multiplication is inherent here. For, suppose there was a Hadamard product construction with circuit upper
bound O(s′αsβ ). Now, we can easily reduce the multiplication of two s′× s′ matrices to the Hadamard
product of an automaton of size O(s′) and a circuit of size s = O(1). Hence, it follows that α = ω .

Another place where there is arguably some room for improvement is in the choice of the encoder
function and decoder automaton construction (Lemma 3.5). We note that the decoder automaton of size
2m+2 for the 1-to-3 decoder is already optimal to a constant factor. This is because we cannot have
a o(m) size automaton for D due to simple information-theoretic reasons. To see this, we observe that
the decoder has to output a variable xσ(i, j,k) ∈ X on a single transition edge, call it e = (s1,s2). But that
means the information in the states s1,s2 and the input read on the transition must contain the complete
information about the triple (i, j,k), where i, j,k ∈ {0,1, . . . ,m−1} which is impossible if there are only
o(m) many states as the number of edges need to be Ω(m2).

4Here ω(·) is the standard asymptotic notation and not the matrix multiplication exponent.
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The one-shot decoder and directly lifted lower bound Finally, we note that instead of using 1-to-3
decoder d times we can directly decode Ed which uniquely encodes each xi,1≤ i≤ N = n3d

into a string
in Y 3d

, where Y = {y1,y2, . . . ,yn}. Let Dd denote the corresponding decoder. An automaton for Dd of
size 2n(3

d−1)/2 +2 can be constructed exactly on the same lines as Lemma 3.5. The automaton has four
layers. The first has the start state s and the last has the final state t. The second and the third layers
have n(3

d−1)/2 states each. From the start state the automaton reads a prefix of length (3d − 1)/2 and
remembers it in the state s1 that it reaches in the second layer. Likewise, each state s2 in the third layer
corresponds to a suffix of length (3d−1)/2. The transition (s1,s2) reads the middle letter which, together
with s1 and s2, describes the entire word over Y of length 3d . This automaton has M = 2n(3

d−1)/2 +2
states. Now, applying Lemma 3.3 we get

C(gN)≤ O(Mω) ·C(Ed(gN)) = O(Mω) ·C(hn).

As N = n3d
, by substituting we obtain C(hn)≥ n3dγ+ω/2 = nΩ(n) for constant γ , which proves Theorem 3.9.
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