
CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 7, pages 1–20
http://cjtcs.cs.uchicago.edu/

SPECIAL ISSUE FOR CATS 2009

An Efficient Algorithm
to Test Square-Freeness of Strings

Compressed by Balanced Straight Line
Programs

Wataru Matsubara Shunsuke Inenaga Ayumi Shinohara

Received: January 15, 2009; revised: October 14, 2009; published: June 22, 2010.

Abstract: In this paper we study the problem of deciding whether a given compressed
string contains a square. A string x is called a square if x = zz and z = uk implies k = 1 and
u = z. A string w is said to be square-free if no substrings of w are squares.

However, very little is known for testing square-freeness of a given compressed string.
In this paper, we give an O(max(n2,n log2 N))-time O(n2)-space solution to test square-
freeness of a given compressed string, where n and N are the size of a given compressed
string and the corresponding decompressed string, respectively. Our input strings are com-
pressed by balanced straight line program (BSLP). We remark that BSLP has exponential
compression, that is, N = O(2n). Hence no decompress-then-test approaches can be better
than our method in the worst case.

1 Introduction

Analyzing repetitive structure of strings has a wide range of applications, including bioinformatics [11, 12],
formal language theory [13] and combinatorics on words [25]. The most basic repetitive structure is zz,
where z is a non-empty string. Such a string zz is called a repetition. In particular, when z is primitive
(z = uk implies k = 1 and u = z), repetition zz is said to be a square.

A string w is said to be square-free or repetition-free if w contains no squares. It is easy to see that
any string of length greater than three over a binary alphabet contains a square. However, there exists a
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square-free string over an alphabet of size greater than two. For instance, abcacbabcb is a square-free
string over alphabet Σ = {a,b,c}. It was shown by Thue [30, 31] that there exist square-free strings of
infinite length over a ternary alphabet.

Since then, there have been extensive studies on testing square-freeness of a string as well as finding
squares in a string. Main and Lorentz [26] presented an O(N)-time algorithm to test if a given string of
length N is square-free. Crochemore [7] also proposed an O(N)-time algorithm for the same problem.

On the other hand, it is known that the maximum number of squares in a string of length N is
Θ(N logN) [6, 9]. Optimal O(N logN) algorithms that detect all occurrences of squares of a given string
have been proposed [6, 7, 3]. Kolpakov and Kucherov [21] showed that any string of length N can contain
O(N) syntactically distinct squares, i.e., the size of the set of squares included in the string is O(N). They
also developed an O(N)-time algorithm to find all syntactically distinct squares from a given string.

There are also several efficient parallel algorithms for the above problems. Crochemore and Rytter [8]
discovered a parallel algorithm to test square-freeness of a string, which runs in O(logN) time using
N processors. Apostolico [1] showed an algorithm that can find all occurrences of squares with the
same time bound and the number of processors. Then, Apostolico and Breslauer [2] presented parallel
algorithms working in O(log logN) time using N logN/ log logN processors, which test square-freeness
and find all occurrences of squares of a given string.

However, very little is known in the case where the input strings are given in compressed forms. To
our knowledge, the only relevant result is an O(n6 log5 N) solution to find all occurrences of squares by
Gasieniec et al. [10]. Their input is a string compressed by composition systems, and n in the above
complexity is the size of the compressed input string. The matter about their solution is that no details of
the algorithm have ever been appeared.

In this paper, we present an O(max(n2,n log2 N))-time O(n2)-space algorithm to test square-freeness
of a given compressed string. Our input string is compressed by balanced straight line program (BSLP)
proposed by Hirao et al. [14]. BSLP is a variant of straight line program (SLP) which has widely been
studied [17, 18, 29, 24, 23, 5]. SLP is regarded as a kind of context-free grammar (CFG) which generates
a single string. SLP is a CFG in the Chomsky normal form, that is, the production rules are in either of
the form X → Y Z or X → a. We remark that BSLP has exponential compression, that is, N = O(2n) [14].
For instance, consider a BSLP T consisting of n variables such that X1→ a, X2→ b, X3→ X1X2 and
Xi → Xi−1Xi−1 for every 4 ≤ i ≤ n. Note that BSLP T derives a string (ab)2n−3

of length N = 2n−2.
Therefore, our algorithm is more efficient than any algorithms that decompress a given BSLP-compressed
string in the worst case.

2 Preliminaries

2.1 Notation

For any set S of integers and an integer k, let

S⊕ k = {i+ k | i ∈ S} and

S	 k = {i− k | i ∈ S}.

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of a string w is denoted by
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|w|. The empty string ε is a string of length 0, namely, |ε|= 0. For a string w = xyz, x, y and z are called
a prefix, substring, and suffix of w, respectively.

The i-th character of a string w is denoted by w[i] for 1≤ i≤ |w|, and the substring of a string w that
begins at position i and ends at position j is denoted by w[i : j] for 1≤ i≤ j ≤ |w|. Let w[d] denote the
prefix of length |w|−d of w, that is, w[d] = w[1 : |w|−d]. For any string w, let wR denote the reversed
string of w, namely, wR = w[|w|] · · ·w[2]w[1].

For any strings w, x, and integer k, we define the set Occ4(w,x,k) of all occurrences of x that cover
or touch the position k of w, namely,

Occ4(w,x,k) = {s | w[s : s+ |x|−1] = x,k−|x| ≤ s≤ k+1}.

We will heavily use the following lemma.

Lemma 2.1 ([28]). For any strings w, x, and integer k, Occ4(w,x,k) forms a single arithmetic progres-
sion.

The above lemma implies that the set of all occurrences of x in w that touch or cover position k forms
a single arithmetic progression.

Example 2.2. Consider string w= aaababababab and x= ababa and integer k= 7. We have Occ4(w,x,k)=
{3,5,7} which forms a single arithmetic progression.

In what follows, we assume that Occ4(w,x,k) is represented by a triple of the first element, the
common difference, and the number of elements of the progression, which takes O(1) space.

A non-empty string of the form xx is called a repetition. A string w is said to be repetition-free if no
substrings of w are repetitions.

A string of x is said to be primitive if x = uk for some integer k implies that k = 1 and x = u. A
repetition xx is called a square if x is primitive. A string w is said to be square-free if no substrings of w
are squares. By definition, any string w is square-free if and only if w is repetition-free.

A repetition xx, which is a substring of a string w starting at position i, is said to be centered at
position i+ |x|−1.

2.2 Straight Line Program

Definition 2.3. A straight line program T is a sequence of assignments such that

X1 = expr1,X2 = expr2, . . . ,Xn = exprn,

where each Xi is a variable and each expri is an expression in either of the following forms:

• expri = a (a ∈ Σ) or

• expri = X`Xr (`,r < i).
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Since the straight line program (SLP) T has no recursive structure, it describes exactly one string.
That is, an SLP can be seen as a context free grammar in the Chomsky normal form which generates
exactly one string. Denote by T the string derived from the last variable Xn of the program T.

The size of the program T is the number n of assignments in T.
We define the height of a variable Xi by

height(Xi) =

{
1 if X = a ∈ Σ,

1+max(height(X`),height(Xr)) if Xi = X`Xr.

For any variable Xi of T, we define XR
i as follows:

XR
i =

{
a if Xi = a (a ∈ Σ),

XR
r XR

` if Xi = X`Xr (`,r < i).

Let TR be the SLP consisting of variables XR
i for 1≤ i≤ n.

Lemma 2.4 ([27]). For any SLP T which derives string T , SLP TR derives string T R and can be computed
in O(n) time from SLP T.

When it is not confusing, we identify a variable Xi with the string derived from Xi. Then, |Xi| denotes
the length of the string derived from Xi.

2.3 Balanced Straight Line Program

We define a balanced straight line program (BSLP), which is a variant of an SLP of Definition 2.3.

Definition 2.5. A balanced straight line program T is a sequence of assignments such that

X1 = expr1,X2 = expr2, . . . ,Xn = exprn,

where each Xi is a variable and each expri is an expression in one of the following forms:

• expri = a (i < n, a ∈ Σ) or

• expri = X`Xr with |X`|= |Xr| (`,r ≤ i < n), and

• exprn = X [d]
` Xr with X`[|X`|−d +1 : |X`|] = Xr[1 : d] (`,r < n, d ≥ 0).

Note that the derivation tree of any BSLP variable of the form Xi = X`Xr is a complete binary tree.
BSLP is a compression scheme which has exponential compression, that is, O(N) = O(2n), where N is
the length of the decompressed string (for a concrete example, see the last paragraph of Section 1).

Example 2.6. Consider BSLP T = {Xi}10
i=1 with X1 = a, X2 = b, X3 = X1X2, X4 = X1X1, X5 = X3X3, X6 =

X3X4, X7 = X4X3, X8 = X5X6, X9 = X7X6, and X10 = X [2]
8 X9 that generates string T = abababaaababaa.

The derivation graph of BSLP T is shown in Figure 1.
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Figure 1: The derivation graph of BSLP T of Example 2.6 that generates string T = abababaaababaa.
Recall that X [2]

8 denotes the prefix of X8 of length |X8|−2.

3 Apostolico and Breslauer’s Algorithm

In this section we recall a parallel algorithm of [2] that checks square-freeness of a string, on which our
algorithm will be based.

For any strings X ,Y , and any integer k with 1≤ k ≤ |X |, we define the function FM(X ,Y,k) which
returns the length of the longest common prefix of X [k : |X |] and Y , that is,

FM(X ,Y,k) = LCP(X [k : |X |],Y ), (3.1)

where LCP(X [k : |X |],Y ) denotes the length of the longest common prefix of X [k : |X |] and Y .

Example 3.1. Let X = aaabbabba, Y = abbaba, and k = 3. Then FM(X ,Y,k) = 6. The longest common
prefix abbab of X [3 : |X |] and Y is underlined above.

Let w be any string of length N, where N is a power of 2. For each t with 0≤ t ≤ log2 N−1, partition
w into consecutive blocks of length m = 2t . Now, for any t, let B = w[k : k+m−1] be any block of length
m = 2t with some k = 1,m,2m, . . . ,N−m+1. A repetition zz, which is a substring of w, is said to be
hinged on B if repetition zz satisfies the following conditions:

• 2m−1≤ |z|< 4m−1 and

• the first z of the repetition fully contains B, that is, zz = w[h : h+2|z|−1] and k−|z|+m≤ h≤ k.

Let P1 and P2 be the sets of positions where a copy of B occurs in w[k + 2m : k + 4m− 1] and
w[k+3m : k+5m−1], respectively. Let p ∈ P1∪P2, and let

α = FM(w,w[k+m : p−1], p+m),

γ = FM(wR,wR[N−k+1:N−k+m],N−p+1).
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Repetitions hinged on B can be detected based on the following lemma.

Lemma 3.2 ([2]). There exist repetitions zz which are hinged on B with |z| = p− k, if and only if
p− γ ≤ k+m+α .

The above lemma is useful when the size of P1∪P2 is at most two. In other cases, the next lemma is
helpful:

Lemma 3.3 ([2]). If |P1∪P2|> 2, then w is not repetition-free.

A function to test if there is a square in string w hinged on a block B = w[k : k+m−1] is shown in
Algorithm 1.

Algorithm 1. Function HingedSq(w,k,m) to test if there is a square in w hinged on w[k : k+m−1].

Input: String w of length N and integers k, m.
Output: Whether there exists a square in w hinged on w[k : k+m−1] or not.
1: B= w[k : k+m−1];
2: P1 = the set of occurrence positions of B in [k+2m : k+4m−1]);
3: P2 = the set of occurrence positions of B in [k+3m : k+5m−1]);
4: if P1∪P2 > 2 then return true;
5: for each p ∈ P1∪P2 do
6: α = FM(w,w[k+m : p−1],p+m);
7: γ = FM(wR,wRN−k+1 : N−k+m],N−p+1);
8: if p− γ ≤ k+m+α then return true;
9: return false;

The algorithm of [2] consists of log2 N stages, and in the stage number t (0 ≤ t ≤ log2 N− 1) it
looks for repetitions hinged on any block of length 2t = m, based on Lemma 3.2 and Lemma 3.3.
Their algorithm tests if a given string is square-free or not in O(log logN) time using N logN/ log logN
processors.

4 Testing Square-freeness of BSLP-Compressed Strings

In this section, we present our algorithms to test square-freeness of a given BSLP-compressed strings.

4.1 Testing Square-freeness of Variables Forming Complete Binary Trees

We begin with testing whether or not a string described by a variable forming a complete binary tree
contains a square.

Problem 4.1. Given a variable Xi = X`Xr with |X`|= |Xr|, determine whether the string derived by Xi is
square-free (or equivalently, repetition-free).
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Xi

Y

z z

Figure 2: Illustration of Observation 1. Repetition zz is a substring of Y and covers the boundary of Y .

For any variable Xi = X`Xr, we define the boundary of Xi to be the position |X`| in string Xi. We say
that a string v touches the boundary of Xi if v = Xr[1 : |v|]. We say that a string s covers the boundary of
Xi if v = Xi[s : s+ |v|−1] = v for some |X`|− |v| ≤ s≤ |X`|.

Observation 1. For any variable Xi = X`Xr and a repetition zz which is a substring of Xi, there always
exists a descendant Y of Xi such that

• zz is a substring of Y and

• zz touches or covers the boundary of Y .

See Figure 2 that illustrates the above observation.
Due to Observation 1, Problem 4.1 is reduced to the following sub-problem.

Problem 4.2. Given a variable Xi = X`Xr with |X`|= |Xr|, determine whether or not there is a repetition
that touches or covers the boundary of Xi.

In the sequel, we present our algorithm to solve Problem 4.2. The algorithm is based on the parallel
algorithm of [2] summarized in Section 3.

Lemma 4.3. Any repetition, which touches or covers the boundary of variable Xi, is hinged on some
descendant of Xi. Moreover, there are at most 10 such descendants of height h for each 1 ≤ h ≤
height(Xi)−2. (See also Figure 3.)

Proof. Recall that repetition zz is hinged on a substring of length 2h−1 only if 2×2h−1−1 = 2h−1≤
|z| < 4× 2h−1− 1 = 2h+1− 1. Hence repetition zz is of length at least 2h+1− 2 and at most 2h+2− 4.
Therefore, for repetition zz to touch or cover the boundary of Xi, the first z of the repetition has to occur
in Xi[|X`|−2h+2 +5 : |X`|+2h+1−1]. It is clear that the substring contains 10 variables of length 2h−1,
each being of height h. That is, for the beginning position s of each such variable Y in Xi we have

|Xi|− |X`|−7|Y | ≤ s≤ |X`|+2|Y |.

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 7, pages 1–20 7

http://dx.doi.org/10.4086/cjtcs


WATARU MATSUBARA, SHUNSUKE INENAGA, AND AYUMI SHINOHARA

A LKJFEDCB IG H

A A

B B

C C

D D

F F

G G

E E

H H

L L

K K

I I

J J

Figure 3: Illustration of Lemma 4.3 for height h = height(|Xi|)−5. No repetitions zz hinged on variable
A or L can touch or cover the boundary of Xi, since repetitions zz are hinged on variable Y only if
2×|Y |−1 = 2h−1≤ |z|< 2h+1−1 = 4×|Y |−1, where |Y |= |A|= |L|.

For any variables Xi = X`Xr and X j, we abbreviate as

Occ4(Xi,X j, |X`|) = Occ4(Xi,X j).

That is, Occ4(Xi,X j) is the set of occurrences of X j that touch or cover the boundary of Xi.
The following theorem is critical to our algorithm, which shows the complexity of computing

Occ4(Xi,X j) for variables Xi and X j both forming complete binary trees.

Theorem 4.4 ([14]). For every pair Xi and X j of variables both forming complete binary trees, Occ4(Xi,X j)
can be computed in total of O(n2) time and space.
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Xi
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Y
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Z

Y

Y

Xi
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Y

V

Z

Y
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Figure 4: Illustration of Lemma 4.5. The left is Case 1, and the right is Case 2.

We are ready to state the next lemma.

Lemma 4.5. Problem 4.2 can be solved in O(log2 |Xi|) time with O(n2) preprocessing.

Proof. We process a given variable Xi in height(Xi)−2 stages, where each stage is associated with height
h, such that 1 ≤ h ≤ height(Xi)− 2. In each stage with height h, there are at most 10 descendants to
consider by Lemma 4.3. Let Y be one of such descendants, and let s be the beginning position of Y in Xi,
that is, Y = Xi[s : s+ |Y |−1]. Also, let V and Z be a variable whose boundary is at position s+3|Y |−1
and at position s+4|Y |−1, respectively. It is easy to see that |V | ≥ 2|Y | and |Z| ≥ 2|Y |. It follows from
Lemma 2.1 that Occ4(V,Y ) and Occ4(Z,Y ) form a single arithmetic progression. Due to Lemma 3.3,

1. If |Occ4(V,Y )∪Occ4(Z,Y )|> 2, then Xi is not repetition-free (see the left of Figure 4).

2. If |Occ4(V,Y )∪Occ4(Z,Y )| ≤ 2, then we compute the values of α and γ according to Lemma 3.2
and test if the conditions in the lemma is satisfied or not (see the right of Figure 4).

Let us analyze the time complexity. Computing Occ4(·, ·) for each pair of variables takes O(n2)
time by Theorem 4.4. The variables V and Z can be found in O(height(Xi)) time by a binary search.
Since p− s ≤ 3|Y | and Xi[s+ |Y | : s+ 4|Y | − 1] can be represented by at most two BSLP variables,
α = FM(Xi,Xi[s + |Y | : p− 1], p + |Y |) can be computed by at most two calls of the FM function.
The value of γ can be computed similarly by at most two calls of the FM function, provided that
{XR

i | 1≤ i < n} and Occ4(XR
i ,X

R
j ) for every 1≤ i, j < n are already computed. By Lemma 2.4, these

reversed variables can be precomputed in O(n) time. As to be shown in Section 5, the FM function can
be answered in O(log |Xi|) time. There are height(Xi)− 2 stages. Since height(Xi) = log2 |Xi|+ 1, the
total time complexity is O(log2 |Xi|).

Our algorithm to solve Problem 4.2 is shown in Algorithms 2 and 3.
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Algorithm 2. Function HingedSqBSLP(X,Y) to test if there exists a square in X hinged on Y.

Input: BSLP variables X and Y.
Output: Whether there exists a square in X which is hinged on Y.
1: V = a variable whose boundary is at position s+3|Y|−1 in X;
2: Z= a variable whose boundary is at position s+4|Y|−1 in X;
3: if |Occ4(V,Y)∪Occ4(Z,Y)|> 2 then return true;
4: for each p ∈ Occ4(V,Y)∪Occ4(Z,Y) do
5: compute α by at most two calls of FM;
6: compute γ by at most two calls of FM;
7: if p− γ ≤ s+ |Y|+α then return true;
8: return false;

Algorithm 3. Function TestSqBSLPVar(Xi) to test square-freeness of a BSLP variable Xi.

Input: BSLP variable Xi with i 6= n.
Output: Whether there exists a square in Xi.
1: for each h= 1 to height(X)−2 do
2: for each descendant Y of X such that height(Y) = h,

Y = X[s : s+2h−1−1], and |X|/2−7|Y| ≤ s≤ |X|/2+2|Y| do
3: if HingedSqBSLP(X,Y) =true then return true;
4:

5: return false;

4.2 Testing Square-freeness of BSLP-compressed Strings

Here, we consider the next problem, which is the main problem of this paper.

Problem 4.6 (Square-freeness Test for BSLP). Given BSLP T that describes string T , determine whether
T is square-free.

The two following lemmas are useful for establishing Theorem 4.9, which is the main result of this
subsection.

Lemma 4.7 ([16]). For any variables Xi and X j forming complete binary trees and integer k, Occ4(Xi,X j,k)
can be computed in O(log |Xi|) time, provided that Occ4(Xi′ ,X j′) is already computed for every 1≤ i′ ≤ i
and 1≤ j′ ≤ j.

For any variable Xi = X`Xr with |X`|= |Xr|, we recursively define the leftmost descendant lmd(Xi,h)
and the rightmost descendant rmd(Xi,h) of Xi with respect to height h (≤ height(Xi)), as follows:

lmd(Xi,h) =

{
lmd(X`,h) if height(Xi)> h,
Xi if height(Xi) = h,

rmd(Xi,h) =

{
rmd(Xr,h) if height(Xi)> h,
Xi if height(Xi) = h.
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For each variable Xi (1 ≤ i < n) and height h (< height(Xi)), we pre-compute two tables of size
O(n logN) storing lmd(Xi,h) and rmd(Xi,h) respectively. By looking up these tables, we can refer to
any lmd(Xi,h) and rmd(Xi,h) in constant time. These tables can be constructed in O(n logN) time in a
bottom-up manner [14].

Lemma 4.8. For the last variable Xn =X [d]
` Xr and any variable X j =XsXt with |Xs|= |Xt |, Occ4(Xn,X j, |X`|)

can be computed in O(log2 N) time, provided that Occ4(Xi′ ,X j′) is already computed for every 1≤ i′ ≤ n
and 1≤ j′ ≤ n.

Proof. Let Xa = rmd(X`,height(X j)). We can compute Occ4(Xn,X j, |X`|) using the following recursion
(see also Figure 5).

Occ4(Xn,X j, |X`|)=

{
Occ4(Xr,X j,d)⊕ (|X`|−d) if |X j| ≤ d,
p1∪ p2 if |X j|> d,

where

p1 = (Occ4(Xa,Xs)⊕ (|X`|−|Xa|)∩Occ4(Xn,Xt , |X`|)	|Xs|),
p2 = (Occ4(Xn,Xs, |X`|)∩Occ4(Xr,Xt , |Xs|+d)⊕(|X`|−d−|Xs|).

It can be shown in a similar way to Lemma 5 of [14] that the intersection operations can be performed
in O(1) time and each of the resulting sets contains at most one element. This also implies that the union
operation between the two resulting sets can be performed in O(1) time. It follows from Lemma 4.7
that each of Occ4(Xr,X j,d), Occ4(Xn,Xt , |X`|), Occ4(Xn,Xs, |X`|), and Occ4(Xr,Xt , |Xs|+d) can be
computed in O(logN) time. Since the depth of the recursion is at most height(X j), the overall complexity
is O(log2 N).

Theorem 4.9. Problem 4.6 can be solved in O(max(n2,n log2 N)) time using O(n2) space.

Proof. By Lemma 4.5, square-freeness of the n−1 variables forming complete binary trees can be tested
in total of O(max(n2,n log2 N)) time using O(n2) space.

What remains to show is how to test square-freeness of the last variable Xn = X [d]
` Xr. We for now

assume that no repetitions that touch or cover the boundary of Xi are found for every 1 ≤ i < n, since
otherwise there is no way for the last variable Xn to be repetition-free. Note that there is no repetition
zz of length not greater than d in Xn, since such a repetition must touch or cover the boundary of some
descendant of Xn, but this contradicts the above assumption. Hence all we need is to test whether there
exists a repetition zz such that zz = Xn[s : s+2|z|−1] with some |X`|−2|z|+1 < s≤ |X`|−d.

The testing algorithm is a modification of that of Lemma 4.5. We process Xn with at most
max(height(X`),height(Xr))−2 stages. Let us focus on some variable Y of height

h≤max(height(X`),height(Xr))−2

on which a repetition satisfying the above condition may be hinged. See also Figure ??. We can compute
Occ4(Xn,Y, |X`|) in O(log2 N) time by Lemma 4.8 (the left arithmetic progression in Figure ??). By
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d

Xa

Xn

Xj
Xs Xt

Xl Xr

d

Xn

Xj
Xs Xt

Xl Xr

Figure 5: Illustration of Lemma 4.8. If |X j|> d, Occ4(Xn,X j, |X`|) is equal to the union of p1 (the left)
and p2 (the right).

Lemma 4.7, Occ4(Xr,Y, |Y |+ d) can be computed in O(logN) time (the right arithmetic progression
in Figure ??). As to be shown by Lemma 5.2 and Lemma 5.3 in Section 5, the FM function can be
computed in O(log2 N) time when testing square-freeness of the last variable Xn. Hence the values of
α and γ can also be computed in O(log2 N) time. Since max(height(X`),height(Xr))< log2 N +1, we
can test square-freeness of the last variable Xn in O(log3 N) time. Therefore, the overall time cost stays
O(max(n2,n log2 N)). The space requirement remains O(n2) as we only used the precomputed values of
Occ4(Xi,X j) and Occ4(XR

i ,X
R
j ) for each 1≤ i < n and 1≤ j < n.

Our algorithm to solve Problem 4.6 is shown in Algorithms 4 and 5.

Algorithm 4. Function HingedSqBSLPLast(Xn,Y) to test if there exists a square in Xn hinged on Y.

Input: BSLP variables X and Y.
Output: Whether there exists a square in last variable Xn which is hinged on Y.
1: compute Occ4(Xn,Y, |X`|);
2: compute Occ4(Xr,Y, |Y|+d);
3: if |Occ4(Xn,Y, |X`|)∪Occ4(Xr,Y, |Y|+d)|> 2 then return true;
4: for each p ∈ Occ4(Xn,Y, |X`|)∪Occ4(Xr,Y, |Y|+d) do
5: compute α by at most two calls of FM;
6: compute γ by at most two calls of FM;
7: if p− γ ≤ s+ |Y|+α then return true;
8: return false;
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Algorithm 5. Algorithm TestSqBSLP(T) to test square-freeness of string T given as BSLP T.

Input: BSLP T = {Xi}ni=1 describing string T . Output: Whether there exists a square in T .
• Assume Xn = X

[d]
` Xr.

1: for each i= 1 to n−1 do
2: for eachj= 1 to n−1 do
3: compute Occ4(Xi,Xj);
4: compute Occ4(XR

i ,X
R
j );

5:

6: if IsSq f reeBSLPBin(X`) = true then return true;
7: if IsSq f reeBSLPBin(Xr) = true then return true;
8: for h= 1 to max(height(X`),height(Xr))−2 do
9: for each descendant Y of Xn such that height(Y) = h do

Y = Xn[s : s+2h−1−1], and |Xn|/2−7|Y| ≤ s≤ |Xn|/2+2|Y|;
• Lemma 4.3

10: if HingedSqBSLPLast(Xn,Y) = true then return true;
11:

12: return false;

5 Computing the FM Function

The FM function in equation (3.1) plays a central role in our algorithms to compute squares from
BSLP-compressed strings. In our problem setting, the first two inputs of the function are compressed
forms. Given general SLP variables X and Y , FM(X ,Y,k) can be answered in O(n2) time with O(n3)-
time preprocessing [28, 23]. In this section, we show that if X and Y form complete binary trees, then
FM(X ,Y,k) can be answered in O(log |X |) time with O(n2)-time preprocessing.

Lemma 5.1. For any variables Xi = X`Xr, X j = XsXt with 1 ≤ i, j < n and integer 1 ≤ k ≤ |Xi|,
FM(Xi,X j,k) can be computed in O(log |Xi|) time, provided that Occ4(Xi′ ,X j′) is already computed
for every 1≤ i′ ≤ i and 1≤ j′ ≤ j.

Proof. We can recursively compute FM(Xi,X j,k), as follows (see also Figure 6):

1. If k+ |X j| ≤ |X`|, then FM(Xi,X j,k) = FM(X`,X j,k).

2. If k > |X`|, then FM(Xi,X j,k) = FM(Xr,X j,k).

3. If k+|Xs| ≤ |X`|< k+|X j|, then we have the two following sub-cases. Let Xa = rmd(X`,height(X j)).

(a) If k−|X`|+ |Xa| /∈ Occ4(Xa,Xs), then FM(Xi,X j,k) = FM(Xa,Xs,k−|X`|+ |Xa|).
(b) If k−|X`|+ |Xa| ∈ Occ4(Xa,Xs), then FM(Xi,X j,k) = FM(Xi,Xt ,k+ |Xs|)+ |Xs|.

4. If k < |X`|< k+ |Xs|, then we have the two following sub-cases.
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Xl Xr

Xj

Case 1

k

Xi

Xl Xr

Xj

Case 2

k

Xi

Xl Xr
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Xj
Xs Xt

Case 3

k

Xi

Xl Xr

Xj
Xs Xt

Case 4

k

Xi
Case 5

Xj

XtXs

Figure 6: Five possible cases in computing FM(Xi,X j,k), where Xi and X j both form complete binary
trees (see Lemma 5.1).
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k
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Xj

Case 1

d

Xn

k

Xl

Xr

Xj

d

Case 2

Xn

k

Xl

Xr

Xj

d

Case 3

Xn

|X |-d+k+2
f

i

Figure 7: Five possible cases in computing FM(Xn,X j,k), where Xn = X [d]
` Xr is the last variable of a

BSLP (see Lemma 5.2).

(a) If k /∈ Occ4(Xi,Xs), then FM(Xi,X j,k) = FM(Xi,Xs,k).

(b) If k ∈ Occ4(Xi,Xs), then FM(Xi,X j,k) = FM(Xr,Xt ,k+ |Xs|− |X`|)+ |Xs|.

5. If |Xi|< k+ |Xs|, then FM(Xi,X j,k) = FM(Xi,Xs,k).

In each recursion, at least one of the first and second variables in the FM function decrease the height
by at least one. Since |X j| ≤ |Xi| and height(Xi) = log2 |Xi|+1, we conclude that FM(Xi,X j,k) can be
computed in O(log |Xi|) time.

What remains is how to efficiently compute the FM function for the last variable of BSLPs.
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Lemma 5.2. For any BSLP variables Xn = X [d]
` Xr, X j = XsXt and integer k, FM(Xn,X j,k) can be

computed in O(logN) time, provided that Occ4(Xi′ ,X j′) is already computed for every 1 ≤ i′ < n and
1≤ j′ ≤ j.

Proof. We can recursively compute FM(Xn,X j,k), as follows (see also Figure 7):

1. If k ≤ |X`|− |X j|+1, then FM(Xn,X j,k) = FM(X`,X j,k).

2. If k ≥ |X`|−d +1, then FM(Xn,X j,k) = FM(Xr,X j,k).

3. If |X`|− |X j|+1 < k < |X`|−d +1, then we first compute f = FM(X`,X j,k).

(a) If f ≤ |X`|− k, then FM(Xn,X j,k) = f .

(b) If f > |X`|− k, then
FM(Xn,X j,k) = FM(X j,Xr, |X`|−d− k+2)+ |X`|−d− k+1.

In each recursion except for Case 3b, at least one of the first and second variables in the FM function
decrease the height by at least one. Hence it takes O(logN) time as in Lemma 5.1.

Since computing the values f and FM(X j,Xr, |X`| − d− k + 2) will fall into one of the cases of
Lemma 5.1, we can manage Case 3b in O(logN) time.

When we test square-freeness of the last variable Xn, we sometimes need to compute the extended
version of FM function for given strings X , Y , and two integers k, p, as follows:

FM(X ,Y,k, p) = LCP(X [k : |X |],Y [p : |Y |]).

Lemma 5.3. For any variables Xi, X j with 1 ≤ i, j < n and any integers k, p, FM(Xi,X j,k, p) can be
computed in O(log2 |Xi|) time.

Proof. It is not difficult to see that X j[p : |X j|] can be represented by a concatenation of variables
X j1 ,X j2 , . . . ,X jh such that |X j1 |< |X j2 |< · · ·< |X jh | and h = O(height(X j)). Find the leftmost variable X js
such that FM(Xi,X js ,k+∑

s−1
r=1 |X jr |)< |X js |. Then clearly FM(Xi,X j,k, p) = ∑

s−1
r=1 |X jr |+FM(Xi,X js ,k+

∑
s−1
r=1 |X jr |). If such variable does not exist, then FM(Xi,X j,k, p) = |X j| − p+ 1. Since each of the

variables X j1 ,X j2 , . . . ,X jh can be found in O(height(Xi)) time and each call of the FM function takes
O(log |Xi|) time by Lemma 5.1, FM(Xi,X j,k, p) can be computed in total of O(log2 |Xi|) time.

6 Conclusions and Future Work

In this paper, we presented an O(max(n2,n log2 N))-time O(n2)-space algorithm to test if a given BSLP-
compressed string is square-free. Here, n is the size of BSLP and N is the length of the decompressed
string.

Our future work includes the following.
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• Apostolico and Breslauer [2] also presented a parallel algorithm to find the set of all squares
from a given (uncompressed) string. Therefore, a natural question is if it is possible to extend our
algorithm to detecting the set of all squares from BSLP-compressed string. A major task is how to
represent the resulting set in polynomial space in the compressed size, since there are Θ(N logN)
occurrences of squares in a string of length N. It might be helpful to consider to compute the set of
all runs [21].

• It is of interest if we can detect more practical patterns such as e.g., approximate repetitions [22, 20]
and gapped repetitions [4, 19], quasiperiodic repetitions [15] from compressed strings. It might be
reasonable to start with finding such repetitions of fixed length, rather than finding repetitions of
arbitrary length.

• Is it possible to extend our algorithm to general SLPs? Gasieniec et al. [10] claimed a polynomial
time algorithm to find all squares from a given string compressed by composition systems, a
generalization of SLPs. However, unfortunately details of their algorithm have never been published.
Our algorithm is heavily dependant that the variables except for the last one form complete binary
trees. Hence dealing with general SLPs does not seem as easy.

• Can we extend our algorithm to testing if a given BSLP-compressed string is cube-free? A cube is
a string of the form xxx. If a string is square-free, then it is always cube-free. But the opposite is
not true. A cube-free string may contain squares.
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