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Abstract: A multiple quantifier is a quantifier having inference rules that introduce or
eliminate arbitrary number of quantifiers by one inference. This paper introduces the lambda
calculus with negation, conjunction, and multiple existential quantifiers, and the lambda
calculus with implication and multiple universal quantifiers. Their type checking and type
inference are proved to be undecidable. This paper also shows that the undecidability
of type checking and type inference in the type-free-style lambda calculus with negation,
conjunction, and existence is reduced to the undecidability of type checking and type
inference in the type-free-style polymorphic lambda calculus.
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1 Introduction

The second-order universal quantifiers and the second-order existential quantifiers are important from
the point of view of both computer science and logic. [5] and [11] have independently established
the typed lambda calculus with polymorphic types, which correspond to the second-order universal
quantifiers in logical systems. Since their seminal papers, many papers have been devoted to investigation
on the polymorphic types. The computational meaning of the second-order existential quantifiers has
also been actively studied since the work of [8] on the abstract data types. More recently, [2] and [6]
pointed out that calculi with negation, conjunction, and existence are suitable for target calculi of the
continuation-passing-style (CPS) translations of polymorphic typed calculi.
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Type checking and type inference are important for type assignment systems. Type checking, which
we will write TC for, is the problem that asks whether a given typing judgment is derivable. Type
inference, which we will write TI for, asks whether a given term has some type under some context.
Strong type inference, which we will write STI for, asks whether, for a given term and a given context, the
term has some type under some extension of the context. STI is a generalization of TI. We will write them
as follows: TC asks Γ `M : A? for given Γ, M and A. TI asks ? `M :? for given M. STI asks Γ,? `M :?
for given Γ and M. Since TI is an instance of STI, the undecidability of TI implies the undecidability of
STI.

TC and TI in lambda calculi with polymorphic types have been actively studied. [15] proved that all
these problems are undecidable in the Curry-style polymorphic lambda calculus. It was surprising that
[12] showed that TI is undecidable even in the Church style, where we consider typability of untyped
pseudo terms. [1] and [3] independently proved that TC and STI are undecidable in the domain-free
polymorphic lambda calculus. In the domain-free style, a term contains information of applications of
quantifier rules, for example, ΛX .M for the ∀-introduction rule and MA for the ∀-elimination rule, but the
domain type of a lambda abstraction is not indicated, for example, λx.M.

On the other hand, properties of lambda calculi with existential types have not been enough studied
yet. The inhabitation problem in the negation, conjunction, and existence fragment was recently proved
to be decidable in [14]. The inhabitation, which we will write INH for, is the problem that asks `? : A for
a given type A. It was also recently that TC and STI in its domain-free-style variant was proved to be
undecidable in [10].

A multiple-quantifier introduction rule introduces several quantifiers at one step. For example, the
system M-F has the rule that derives ∀X1∀X2∀X3A from A at one step. The meaning of quantifiers is the
same as that of usual quantifiers, and only inference rules and corresponding terms are different. In a
similar way, a multiple-quantifier elimination rule eliminates several quantifiers at one step. We will call
a quantifier a multiple quantifier when the system has its multiple-quantifier rules.

We will define the multiple-quantifier lambda calculus M-λ¬∧∃ with negation, conjunction, and
existence. The system has the following inference rules for the multiple existential quantifier:

Γ ` N : A[X := B]

Γ ` 〈∃∗,N〉 : ∃X .A
(∃I) Γ1 `M : ∃X .A Γ2,x : A ` N : C

Γ1,Γ2 `M[x.N] : C
(∃E)

where X denotes a finite sequence of type variables. We will also define the multiple-quantifier lambda
calculus M-F with polymorphic types. The system has the following inference rules for the multiple
universal quantifier:

Γ `M : A
Γ ` Λ∗.M : ∀X .A

(∀I) Γ `M : ∀X .A
Γ `M•∗ : A[X := B]

(∀E)

We will discuss the type-free-style lambda calculus TF-λ¬∧∃ with negation, conjunction, and exis-
tence. The system has the following inference rules for the existential types:

Γ ` N : A[X := B]

Γ ` 〈∃,N〉 : ∃X .A
(∃I) Γ1 `M : ∃X .A Γ2,x : A ` N : C

Γ1,Γ2 `M[x.N] : C
(∃E)
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The type-free-style lambda calculus TF-F will be defined to have similar inference rules for polymorphic
types. They are discussed in [13], [14], and [4]. The name “type-free” was used in [4]. It means that
terms contain no explicit type annotations. For the notation of terms for (∃E), we will follow [13].

We will prove the following two claims: (1) TC and TI are undecidable in both M-F and M-λ¬∧∃.
(2) The undecidability of TC and TI in TF-λ¬∧∃ is reduced to the undecidability of TC and TI in TF-F .

The systems M-F and M-λ¬∧∃ are in an intermediate style between the Curry style and the Church
style. The terms in M-F or M-λ¬∧∃ have information of multiple quantifiers according to its multiple-
quantifier rules. The sequence may be empty, and the annotations in terms just express possibility of use
of quantifier rules.

The system M-λ¬∧∃ is one of the most implicitly typed systems for existential types since terms of
M-λ¬∧∃ have less type information than other sound type systems for existential types. We may consider
a type assignment system for the pure lambda terms by the following rules for existential types:

Γ ` N : A[X := B]

Γ ` N : ∃X .A
(∃I)

Γ1 `M : ∃X .A Γ2,x : A ` N : C
Γ1,Γ2 ` N[x := M] : C

(∃E)

where N[x := M] is the ordinary substitution. This system has a more implicitly typed style than M-λ¬∧∃,
but it is not sound. [4] presented a counterexample for the subject reduction property in this system.
[13] also gave a counterexample for the subject reduction property in the second-order natural deduction
with the above rules. On the other hand, we can define a sound reduction system for M-λ¬∧∃. Another
significance of M-λ¬∧∃ is that the multiple existential rules can handle mutual abstract data types even
without parameters.

In the polymorphic type system M-F , a term has more type information than a pure lambda term.
We can define an embedding bMc from the Curry-style F into M-F such that M has the type A in the
Curry-style F if and only if bMc has the type A in M-F . By this embedding, M-F can explicitly capture
the behavior of the polymorphic lambda calculus discussed by [15].

This paper will discuss M-λ¬∧∃ in two ways. Our first proof shows that TC is undecidable in M-λ¬∧∃

by a direct reduction of the semi-unification problem to TC of M-λ¬∧∃. The semi-unification problem
has been proved to be undecidable in [7]. Our second proof shows the undecidability of TC and TI in
M-λ¬∧∃, by first proving that TC and TI are undecidable in M-F by the embedding from the Curry-style
F to M-F , and then proving that TC and TI in M-F is reduced to TC and TI in M-λ¬∧∃ by the method in
[10] with some modification.

This paper will also show that the undecidability of TC and TI in TF-λ¬∧∃ is reduced to the
undecidability of TC and TI in TF-F . In order for this, we will adapt the method of [10] to TF-λ¬∧∃.
[10] showed that TC and TI in the domain-free F , denoted by DF-F , is reduced to TC and TI in the
domain-free λ¬∧∃, denoted by DF-λ¬∧∃, by means of a CPS translation from DF-F to DF-λ¬∧∃. By
adapting this method to TF-λ¬∧∃, we will give a CPS translation from TF-F to TF-λ¬∧∃, which reduces
TC and TI in TF-F to TC and TI in TF-λ¬∧∃.

Figure 1 summarizes related results about the decidability of TC, STI, TI, and INH. In the figure,
the problem marked by “no” means that the problem is undecidable, and the problems marked by “NO”
denote the main results of this paper. The result (1) is proved by [15]. The result (2) is proved by [1]
and [3] independently. The result (3) is proved by [9]. The result (4) is proved by [10]. The result (5) is
proved by [14].
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F TC STI TI INH λ¬∧∃ TC STI TI INH
Curry- no(1) no no(1) no
M- NO NO NO M- NO NO NO yes(5)

TF- ? ? ? TF- ? ? ?
DF- no(2) no(2) no(3) DF- no(4) no no(3)

Figure 1: Decidability of TC, STI, TI and INH

This paper is an extended version of the paper [9] by the same authors, particularly focusing on the
decision problems in the calculi with multiple-quantifier rules and the type-free-style calculi.

This paper is organized as follows. Section 2 defines M-λ¬∧∃ and M-F , and proves that their TC and
TI are undecidable. Section 3 shows that the undecidability of TC and TI in TF-λ¬∧∃ is reduced to the
undecidability of TC and TI in TF-F .

2 Multiple-Quantifier Rules

In this section, we will introduce lambda calculi with multiple-quantifier rules, and prove that type
checking and type inference in them are undecidable.

In Subsection 2.1, we define a negation, conjunction, and existence fragment M-λ¬∧∃ with the
multiple-quantifier rules. In Subsection 2.2, we will show the undecidability of TC in M-λ¬∧∃ by
reducing the semi-unification problem to TC in the system. In Subsection 2.3, we will define M-F and a
translation from Curry-F to M-F , and show TC and TI are undecidable in M-F . In Subsection 2.4, we
will define a CPS-translation from M-F to M-λ¬∧∃, and show the undecidability of TC and TI in M-λ¬∧∃

by the CPS translation with the undecidability of TC and TI in M-F .

2.1 Multiple Existential Rules

In this subsection, we define the system M-λ¬∧∃.

Definition 2.1 (M-λ¬∧∃). (1) The types are denoted by A, B,. . . , and called ¬∧∃-types. The terms are
denoted by M, N,. . . . They are defined by

A ::= X | ⊥ | ¬A | A∧A | ∃X .A,
M ::= x | λx.M | 〈M,M〉 | 〈∃∗,M〉 |MM |Mπ1 |Mπ2 |M[x.M],

where X and x denote a type variable and a term variable, respectively. In the type ∃X .A, the variable X
is bound in A. In the term λx.M, the variable x is bound in M. In the term N[x.M], the variable x is bound
in M. We use ≡ to denote the syntactic identity modulo renaming of bound variables.

(2) We use X and A to denote a finite list of type variables and a finite list of types, respectively. When
X denotes (X1, · · · ,Xn) and B denotes (B1, · · · ,Bn), ∃X .A denotes the type ∃X1 · · ·∃Xn.A, and A[X := B]
denotes the simultaneous substitution A[X1 := B1, · · · ,Xn := Bn]. X and B may denote the empty list.
When they are empty, both ∃X .A and A[X := B] denote the same type A. When X denotes (X1, · · · ,Xn),
XY denotes (X1, · · · ,Xn,Y ).

(3) Γ denotes a context, which is a finite set of type assignments in the form of (x : A). We require the
variable condition for every context Γ by stipulating that each term variable occurs at most once in Γ. We
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write Γ,x : A for Γ∪{(x : A)}. We also write Γ1,Γ2 for Γ1∪Γ2. ¬Γ is defined as {(x : ¬A)|(x : A) ∈ Γ}.
dom(Γ) is defined as {x|(x : A) ∈ Γ}. The typing rules of M-λ¬∧∃ are the following:

Γ,x : A ` x : A
(Ax)

Γ,x : A `M :⊥
Γ ` λx.M : ¬A (¬I) Γ1 `M : ¬A Γ2 ` N : A

Γ1,Γ2 `MN :⊥ (¬E)

Γ1 `M : A Γ2 ` N : B
Γ1,Γ2 ` 〈M,N〉 : A∧B (∧I)

Γ `M : A1∧A2
Γ `Mπ1 : A1

(∧E1) Γ `M : A1∧A2
Γ `Mπ2 : A2

(∧E2)

Γ ` N : A[X := B]

Γ ` 〈∃∗,N〉 : ∃X .A
(∃I) Γ1 `M : ∃X .A Γ2,x : A ` N : C

Γ1,Γ2 `M[x.N] : C
(∃E)

In the rule (∃E), Γ2 and C do not contain any free occurrence of any type variable from X . We write
Γ `M-λ¬∧∃ M : A when Γ `M : A is derivable by the typing rules above.

The terms of M-λ¬∧∃ have enough type annotations to enjoy the generation lemma in the following
proposition. We will implicitly use this proposition in the rest of this paper.

Proposition 2.2 (Generation Lemma). Suppose Γ `M-λ¬∧∃ M : A.
(1) If M is x, then Γ contains (x : A).
(2) If M is λx.N, then A is of the form ¬B and we have Γ,x : B `M-λ¬∧∃ N :⊥.
(3) If M is M1M2, then A is ⊥ and there exists B such that both Γ `M-λ¬∧∃ M1 : ¬B and Γ `M-λ¬∧∃

M2 : B hold.
(4) If M is 〈M1,M2〉, then A is of the form A1∧A2 and we have Γ `M-λ¬∧∃ M1 : A1 and Γ `M-λ¬∧∃

M2 : A2.
(5) If M is Nπ1, then there exists B such that Γ `M-λ¬∧∃ N : A∧B holds.
(6) If M is Nπ2, then there exists B such that Γ `M-λ¬∧∃ N : B∧A holds.
(7) If M is 〈∃∗,N〉, then A is of the form of ∃X .B and we have Γ `M-λ¬∧∃ N : B[X := C] for some

sequence C of types.
(8) If M is M1[x.M2], then there exists ∃X .B such that no type variable from X occurs freely in Γ nor

A, and we have both Γ `M-λ¬∧∃ M1 : ∃X .B and Γ,x : B `M-λ¬∧∃ M2 : A.

2.2 Undecidability of TC in M-λ¬∧∃

In this subsection, we will show the undecidability of type checking by reducing the semi-unification
problem to TC in M-λ¬∧∃.

Definition 2.3 (Semi-Unification Problem). (1) A ∧-type is defined as a ¬∧∃-type which contains neither
¬ nor ∃. A ∧-substitution is defined as a simultaneous type substitution Θ = [X := A] where each element
in A is a ∧-type.

(2) A pair (A1 ≤ B1,A2 ≤ B2) of inequalities between two ∧-types is called an instance of the
semi-unification problem. An instance I = (A1 ≤ B1,A2 ≤ B2) has a solution if there exist ∧-substitutions
Θ, Θ1, and Θ2 such that A1ΘΘ1 ≡ B1Θ and A2ΘΘ2 ≡ B2Θ.
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[7] considered the semi-unification problem for first-order expressions with the binary function
symbol →. Since their discussion did not depend on the semantics of the implication, the choice of
the binary function symbol is arbitrary. By replacing→ by ∧ in their proof, the undecidability of the
semi-unification problem on ∧-types is proved.

Theorem 2.4 ([7]). It is not possible to effectively decide whether a given instance of the semi-unification
problem has a solution.

The next lemma shows that the semi-unification problem is reduced to TC in M-λ¬∧∃. The proof is
done by adapting the technique by [15] to M-λ¬∧∃.

Lemma 2.5. For any instance I of the semi-unification problem, there exist Γ, M, and A such that I has a
solution if and only if Γ `M-λ¬∧∃ M : A holds.

Proof: In this proof, we use the abbreviation A∧B∧C for A∧ (B∧C) and 〈M,N,L〉 for 〈M,〈N,L〉〉
respectively.

Let I = (A1 ≤ B1,A2 ≤ B2) be an instance of the semi-unification problem, and X be the free type
variables in I. Suppose that c is a fresh term variable, and Z1 and Z2 are fresh type variables. Take C to be
¬∃XZ1Z2.C

′ and M to be 〈∃∗,λk.(kπ2)[k′.c〈∃∗,〈P,P,k′〉〉]〉, where C′ and P are defined by
C′ ≡ ¬(¬B1∧Z2)∧¬(¬Z1∧B2)∧ (¬A1∧A2),
P≡ λk′′.(kπ1)〈∃∗,k′′〉.

We can show that I has a solution if and only if c : C `M-λ¬∧∃ M : ∃Y.¬(¬Y ∧Y ) holds.
We suppose that I has a solution (Θ,Θ1,Θ2). Let W include the union of domains of Θ1 and Θ2, D′

be ¬A1Θ∧A2Θ, D be ∃W .D′, and Γ denote the context {c : C,k : ¬D∧D}. For any substitution Ξ whose
domain is included in W , we have the following:

....
Γ ` kπ1 : ¬D

k′′ : D′Ξ ` k′′ : D′Ξ
k′′ : D′Ξ ` 〈∃∗,k′′〉 : D

Γ,k′′ : D′Ξ ` (kπ1)〈∃∗,k′′〉 :⊥
Γ ` P : ¬D′Ξ .

Since AiΘΘi ≡ BiΘ holds for i = 1 and 2, we have D′Θ1 ≡¬B1Θ∧A2ΘΘ1 and D′Θ2 ≡¬A1ΘΘ2∧B2Θ.
So we have Γ `M-λ¬∧∃ P :¬(¬B1Θ∧A2ΘΘ1) and Γ `M-λ¬∧∃ P :¬(¬A1ΘΘ2∧B2Θ). Therefore, under the
context Γ∪{k′ : D′}, the term 〈P,P,k′〉 has the type ¬(¬B1Θ∧A2ΘΘ1)∧¬(¬A1ΘΘ2∧B2Θ)∧ (¬A1Θ∧
A2Θ), which is identical to C′Θ[Z1 := A1ΘΘ2][Z2 := A2ΘΘ1]. Therefore the term 〈∃∗,〈P,P,k′〉〉 has the
type ∃XZ1Z2.C

′, and c〈∃∗,〈P,P,k′〉〉 has the type ⊥. Hence we have the following:
....

Γ ` kπ2 : D

....
Γ,k′ : D′ ` c〈∃∗,〈P,P,k′〉〉 :⊥

Γ ` (kπ2)[k′.c〈∃∗,〈P,P,k′〉〉] :⊥
c : C ` λk.(kπ2)[k′.c〈∃∗,〈P,P,k′〉〉] : ¬(¬D∧D)

c : C `M : ∃Y.¬(¬Y ∧Y ) .

Conversely, we suppose that c : C `M-λ¬∧∃ M : ∃Y.¬(¬Y ∧Y ) holds. Then c : C,k : ¬E∧E `M-λ¬∧∃

(kπ2)[k′.c〈∃∗,〈P,P,k′〉〉] :⊥ holds for some E. Since this judgment is a conclusion of (∃E), the type E
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of the term kπ2 must be of the form ∃W .E′ for some W and E′ such that E′ is the type of k′. Moreover,
〈∃∗,〈P,P,k′〉〉 has the type ∃XZ1Z2.C

′, so we have
(1) k : ¬E∧E `M-λ¬∧∃ P : ¬(¬B1Θ∧Z2Θ),
(2) k : ¬E∧E `M-λ¬∧∃ P : ¬(¬Z1Θ∧B2Θ),
(3) k′ : E′ `M-λ¬∧∃ k′ : ¬A1Θ∧A2Θ,

for some substitution Θ whose domain is included in XZ1Z2. From (3), E′ is identical to ¬A1Θ∧A2Θ.
From (1), we have

....
k : ¬E∧E ` kπ1 : ¬E

k′′ : ¬B1Θ∧Z2Θ ` k′′ : ¬B1Θ∧Z2Θ

k′′ : ¬B1Θ∧Z2Θ ` 〈∃∗,k′′〉 : E
(∗)

k : ¬E∧E,k′′ : ¬B1Θ∧Z2Θ ` (kπ1)〈∃∗,k′′〉 :⊥
k : ¬E∧E ` P : ¬(¬B1Θ∧Z2Θ) .

Since the rule (*) is (∃I) and E is identical to ∃W .E′ ≡ ∃W .(¬A1Θ∧A2Θ), we have ¬B1Θ∧Z2Θ ≡
E′Θ1 ≡ ¬A1ΘΘ1∧A2ΘΘ1 for some substitution Θ1 whose domain is included in W . Hence we have
B1Θ≡ A1ΘΘ1. Similarly, we have B2Θ≡ A2ΘΘ2 from (2).

Since Θ, Θ1 and Θ2 may contain ¬ and ∃, we have to construct ∧-substitutions from them. Following
the idea of [15], we define the erase function with a fresh type variable Z as follows:

e(X) = X ,
e(A∧B) = e(A)∧ e(B),
e(¬A) = e(A),
e(∃X .A) = e(A[X := Z]).
We prove e(AΘ)≡ e(e(A)Θ) for any ¬∧∃-type A and any substitution Θ by induction on the size of

A as follows.
(Case X) Both the sides are equal to e(XΘ).
(Case B∧C) The left-hand side is e(BΘ)∧ e(CΘ), which is identical to e(e(B)Θ)∧ e(e(C)Θ) by the

induction hypothesis. The right-hand side is e((e(B)∧ e(C))Θ)≡ e(e(B)Θ)∧ e(e(C)Θ).
(Case ¬B) The left-hand side is e(BΘ), which is identical to e(e(B)Θ) by the induction hypothesis.

The right-hand side is e(e(¬B)Θ)≡ e(e(B)Θ).
(Case ∃X .B) By renaming bound variables, we suppose that X does not occur in Θ. The left-hand

side is e(BΘ[X := Z]), which is identical to e(B[X := Z]Θ) since Z is fresh. By the induction hypothesis,
this type is identical to e(e(B[X := Z])Θ), which is equal to the right-hand side.

Define the ∧-substitutions (Ξ,Ξ1,Ξ2) by XΞ = e(XΘ) and XΞi = e(XΘi). Since AiΘΘi ≡ BiΘ holds,
we have e(AiΘΘi)≡ e(BiΘ)≡ Ξ(Bi). By the claim proved above, we have e(AiΘΘi)≡ e(e(AiΘ)Θi)≡
AiΞΞi, so the triple (Ξ,Ξ1,Ξ2) is a solution of I.

Theorem 2.6. Type checking is undecidable in M-λ¬∧∃.

Proof: By Theorem 2.4 and Lemma 2.5.

2.3 Polymorphic Lambda Calculus with Multiple-Quantifier Rules

In this subsection, we prove that TC and TI are undecidable in M-F by showing that it is reduced to the
undecidability of TC and TI in the Curry-style polymorphic lambda calculus.
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Definition 2.7 (M-F). (1) The types are denoted by A, B,. . . , and called→∀-types. The terms are denoted
by M, N,. . . . They are defined by

A ::= X | A→A | ∀X .A,
M ::= x | λx.M | Λ∗.M |MM |M•∗.

In the type ∀X .A, the variable X is bound in A. In the term λx.M, the variable x is bound in M. In M-F ,
we use ⊥ to denote the type ∀X .X .

(2) The typing rules of M-F are the following:

Γ,x : A ` x : A
(Ax)

Γ,x : A `M : B
Γ ` λx.M : A→B

(→I)
Γ1 `M : A→B Γ2 ` N : A

Γ1,Γ2 `MN : B
(→E)

Γ `M : A
Γ ` Λ∗.M : ∀X .A

(∀I) Γ `M : ∀X .A
Γ `M•∗ : A[X := B]

(∀E)

In the rule (∀I), Γ does not contain any free occurrence of any type variable from X .

The Curry-style F is defined as follows.

Definition 2.8 (Curry-F). The types of Curry-F are→∀-types. The terms of Curry-F are defined by
M ::= x | λx.M |MM.

The typing rules of Curry-F are the same as those of M-F except for the rules of the universal quantifiers
given as follows.

Γ `M : A
Γ `M : ∀X .A

(∀I) Γ `M : ∀X .A
Γ `M : A[X := B]

(∀E)

[15] showed the following INST-before-GEN generation lemma for Curry-F . INST and GEN mean
(∀E) and (∀I), respectively.

Definition 2.9 (INST-before-GEN Property). A derivation in Curry-F is defined to satisfy the INST-
before-GEN property if any premise of (∀E) is not the conclusion of (∀I) in the derivation.

Proposition 2.10 ([15]). (1) If Γ `M : A is derivable in Curry-F, then there is a derivation of Γ `M : A
which satisfies the INST-before-GEN property.

(2) (INST-before-GEN Generation Lemma) Assume a derivation of Γ `M : A satisfies the INST-before-
GEN property. We have the following.

(i) If M is a variable x, then Γ contains x : B for some B such that the derivation has the following
form.

Γ ` x : B.... (∀E) (zero or more times)
.... (∀I) (zero or more times)

Γ ` x : A
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(ii) If M is a λ -abstraction λx.N, then the derivation has the following form for some B and C.

Γ,x : B ` N : C
Γ ` λx.N : B→C.... (∀I) (zero or more times)

Γ ` λx.N : A

(iii) If M is an application N1N2, then the derivation has the following form for some B and C.

Γ ` N1 : C→B Γ ` N2 : C
Γ ` N1N2 : B.... (∀E) (zero or more times)

.... (∀I) (zero or more times)
Γ ` N1N2 : A

A term of M-F contains more type annotations than that of Curry-F , so M-F seems more restricted
when we type terms of M-F . However, we can define an embedding from Curry-F into M-F . The em-
bedding shows that the system M-F explicitly captures the behavior of the INST-before-GEN generation
lemma.

Definition 2.11. The embedding map b·c from the Curry-F-terms to the M-F-terms is defined by
bxc ≡ Λ∗.x•∗,
bλx.Mc ≡ Λ∗.λx.bMc,
bMNc ≡ Λ∗.bMcbNc•∗.

Proposition 2.12. Γ `Curry-F M : A holds if and only if Γ `M-F bMc : A.

Proof: By noting that X in (∀I) and (∀E) of M-F may be an empty sequence, it is easily proved that
Γ `M-F bMc : A implies Γ `Curry-F M : A. We will prove the converse direction by induction on M.
Suppose that we have a derivation of Γ `Curry-F M : A. By Proposition 2.10 (1), we can assume that the
derivation enjoys the INST-before-GEN property.

(Case M ≡ x) By Proposition 2.10 (2) (i), the derivation of Γ `Curry-F x : A is of the following form,
where Γ′,x : B is identical to Γ.

Γ′,x : B ` x : B.... (∀E) (zero or more times)
Γ′,x : B ` x : B′.... (∀I) (zero or more times)
Γ′,x : B ` x : A

Hence we have Γ′,x : B `M-F x•∗ : B′, so Γ′,x : B `M-F Λ∗.x•∗ : A.
(Case M≡ λx.N) By Proposition 2.10 (2) (ii), the derivation of Γ `Curry-F λx.N : A is of the following

form.
Γ,x : B ` N : C

Γ ` λx.N : B→C.... (∀I) (zero or more times)
Γ ` λx.N : A
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By the induction hypothesis, we have Γ,x : B `M-F bNc : C, so we have Γ `M-F λx.bNc : B→C. Hence
we have Γ `M-F Λ∗.λx.bNc : A.

(Case M≡N1N2) By Proposition 2.10 (2) (iii), the derivation of Γ`Curry-F N1N2 : A is of the following
form.

Γ ` N1 : C→B Γ ` N2 : C
Γ ` N1N2 : B.... (∀E) (zero or more times)
Γ ` N1N2 : B′.... (∀I) (zero or more times)
Γ ` N1N2 : A

By the induction hypotheses, we have Γ `M-F bN1c : C→B and Γ `M-F bN2c : C, so we have Γ `M-F
bN1cbN2c : B. We have Γ `M-F bN1cbN2c•∗ : B′, so Γ `M-F Λ∗.bN1cbN2c•∗ : A.

Proposition 2.13. Type checking and type inference are undecidable in M-F.

Proof: By Proposition 2.12, the undecidability of TC and TI in M-F is reduced to the undecidability of
TC and TI in Curry-F , which has been proved in [15].

2.4 Undecidability of TI in M-λ¬∧∃

We will prove that TC and TI in M-λ¬∧∃ is reduced to those in M-F .
In order for the reduction, we will borrow the idea of the contraction translation on types from [10].

However, we cannot directly apply the original definition of the translation, and some modification is
needed. Along the lines of the proof in [10], we will define a negative translation (·)• from the→∀-types
to the ¬∧∃-types, a CPS translation [[·]] from M-F to M-λ¬∧∃, and a subsystem M-λ¬∧∃cps of M-λ¬∧∃,
which is the image of the CPS translation. Then we will prove that M has a type A in M-F if and only if
[[M]] has the type ¬A• in M-λ¬∧∃cps . Furthermore, we will show that M-λ¬∧∃ is a conservative extension of
M-λ¬∧∃cps , that is, for any term of the form [[M]], if [[M]] has a type ¬A• in M-λ¬∧∃, then [[M]] has the type
¬A• in M-λ¬∧∃cps . By these facts, we will conclude that M has a type A in M-F if and only if [[M]] has the
type ¬A• in M-λ¬∧∃. Hence TC and TI in M-F will be reduced to those in M-λ¬∧∃.

Definition 2.14 (CPS Translation). (1) The negative translation from the→∀-types to the ¬∧∃-types is
defined by

X• ≡ X ,
(A→B)• ≡ ¬A•∧B•,
(∀X .A)• ≡ ∃X .A•.

Γ• is defined as {(x : A•)|(x : A) ∈ Γ}.
(2) The CPS translation from the terms in M-F to the terms in M-λ¬∧∃ is defined by
[[x]]≡ λk.xk,
[[λx.M]]≡ λk.(λx.[[M]](kπ2))(kπ1),
[[MN]]≡ λk.[[M]]〈[[N]],k〉,
[[Λ∗.M]]≡ λk.k[k′.[[M]]k′],
[[M•∗]]≡ λk.[[M]]〈∃∗,k〉,

where k and k′ are supposed to be fresh variables.
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Proposition 2.15. Γ `M-F M : A implies ¬Γ• `M-λ¬∧∃ [[M]] : ¬A•.

Proof: The proposition is proved by induction on the derivation of Γ `M-F M : A.
Case (Ax). When the derivation is

Γ,x : A ` x : A

we have the following in M-λ¬∧∃.

¬Γ•,x : ¬A•,k : A• ` x : ¬A• ¬Γ•,x : ¬A•,k : A• ` k : A•

¬Γ•,x : ¬A•,k : A• ` xk :⊥
¬Γ•,x : ¬A• ` λk.xk : ¬A•

Case (→I). Suppose that the last rule of the derivation is the following.

Γ,x : A `M : B
Γ ` λx.M : A→B

By the induction hypothesis, we have ¬Γ•,x : ¬A• `M-λ¬∧∃ [[M]] : ¬B•, so we have ¬Γ•,k : ¬A•∧B•,x :
¬A• `M-λ¬∧∃ [[M]](kπ2) :⊥. We have the following in M-λ¬∧∃.

....
¬Γ•,k : ¬A•∧B•,x : ¬A• ` [[M]](kπ2) :⊥
¬Γ•,k : ¬A•∧B• ` λx.[[M]](kπ2) : ¬¬A•

....
k : ¬A•∧B• ` kπ1 : ¬A•

¬Γ•,k : ¬A•∧B• ` (λx.[[M]](kπ2))(kπ1) :⊥
¬Γ• ` λk.(λx.[[M]](kπ2))(kπ1) : ¬(¬A•∧B•)

Case (→E). Suppose that the last rule of the derivation is the following.

Γ1 `M : A→B Γ2 ` N : A
Γ1,Γ2 `MN : B

By the induction hypotheses, we have ¬Γ•1 `M-λ¬∧∃ [[M]] : ¬(¬A•∧B•) and ¬Γ•2 `M-λ¬∧∃ [[N]] : ¬A•. We
have the following.

....
¬Γ•1,k : B• ` [[M]] : ¬(¬A•∧B•)

....
¬Γ•2 ` [[N]] : ¬A• k : B• ` k : B•

¬Γ•2,k : B• ` 〈[[N]],k〉 : ¬A•∧B•

¬Γ•1,¬Γ•2,k : B• ` [[M]]〈[[N]],k〉 :⊥
¬Γ•1,¬Γ•2 ` λk.[[M]]〈[[N]],k〉 : ¬B•

Case (∀I). Suppose that the last rule of the derivation is the following.

Γ `M : A
Γ ` Λ∗.M : ∀X .A
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By the induction hypothesis, we have ¬Γ• `M-λ¬∧∃ [[M]] : ¬A•, so we have ¬Γ•,k : A• `M-λ¬∧∃ [[M]]k :⊥.
Since Γ does not contain any free type variable from X by the variable condition of (∀I), ¬Γ• does not
contain any free type variable from X either. We have the following.

k : ∃X .A• ` k : ∃X .A•

....
¬Γ•,k′ : A• ` [[M]]k′ :⊥

¬Γ•,k : ∃X .A• ` k[k′.[[M]]k′] :⊥
¬Γ• ` λk.k[k′.[[M]]k′] : ¬∃X .A•

Case (∀E). Suppose that the last rule of the derivation is the following.

Γ `M : ∀X .A
Γ `M•∗ : A[X := B]

By the induction hypothesis, we have ¬Γ• `M-λ¬∧∃ [[M]] : ¬∃X .A•. We have the following.

....
¬Γ• ` [[M]] : ¬∃X .A•

k : A•[X := B•] ` k : A•[X := B•]

k : A•[X := B•] ` 〈∃∗,k〉 : ∃X .A•

¬Γ•,k : A•[X := B•] ` [[M]]〈∃∗,k〉 :⊥
¬Γ• ` λk.[[M]]〈∃∗,k〉 : ¬A•[X := B•]

where B• denotes the sequence (B•1, · · · ,B•n) for B = (B1, · · · ,Bn). Note that (A[X := B])• ≡ A•[X := B•]
is easily proved by induction on A.

Definition 2.16 (M-λ¬∧∃cps ). (1) The continuation types, denoted by A, B,. . . , are defined by
A ::= X | ¬A∧A | ∃X .A.

A CPS type is define as a type of the form ¬A for some continuation type A. The CPS terms, denoted by
P, Q,. . . , are defined by

P ::= λk.xk | λk.(λx.P(kπ2)(kπ1)) | λk.P〈Q,k〉 | λk.P〈∃∗,k〉 | λk.k[k′.Pk′],
where occurrences of k and k′ denote those of the same variable, for example, λk.xk denotes λk1.xk1 but
does not denote λk1.xk2 for k1 6≡ k2. We define the subsystem M-λ¬∧∃cps of M-λ¬∧∃ by restricting their
terms and their types to the CPS terms and the CPS types, respectively. The judgments of M-λ¬∧∃cps are
restricted to those of the form ¬Γ ` P : ¬A, where each type assignment in ¬Γ is of the form (x : ¬B)
for some continuation type B. The typing rules of M-λ¬∧∃cps are the following.

¬Γ,x : ¬A ` λk.xk : ¬A

¬Γ,x : ¬A ` P : ¬B
¬Γ ` λk.(λx.P(kπ2))(kπ1) : ¬(¬A∧B)

¬Γ1 ` P : ¬(¬A∧B) ¬Γ2 ` Q : ¬A
¬Γ1,¬Γ2 ` λk.P〈Q,k〉 : ¬B

¬Γ ` P : ¬(∃X .B)

¬Γ ` λk.P〈∃∗,k〉 : ¬B[X :=A]

¬Γ ` P : ¬B
¬Γ ` λk.k[k′.Pk′] : ¬∃X .B
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In the last rule, Γ does not contain any type variable in X freely. We write ¬Γ `cps P : ¬A when the
judgment is derivable by the rules above.

(2)The inverse translation (·)◦ from the continuation types to the→∀-types is defined by
X◦ ≡ X ,
(¬A∧B)◦ ≡A◦→B◦,
(∃X .A)◦ ≡ ∀X .A◦.
(3) The inverse translation (·)# from the CPS terms to the terms of M-F is defined by
(λk.xk)# ≡ x,
(λk.(λx.P(kπ2))(kπ1))

# ≡ λx.P#,
(λk.k[k′.Pk′])# ≡ Λ∗.P#,
(λk.P〈Q,k〉)# ≡ P#Q#,
(λk.P〈∃∗,k〉)# ≡ P#•∗.

Lemma 2.17. (1) For any→∀-type A, A• is a continuation type, and A•◦ ≡ A holds.
(2) For any M-F-term M, [[M]] is a CPS term, and [[M]]# ≡M holds.

Proof: (1) By induction on A.
(2) By induction on M.

Proposition 2.18. (1) If ¬Γ `cps P : ¬A holds, then Γ◦ `M-F P# : A◦ holds.
(2) If ¬Γ• `cps [[M]] : ¬A•, then Γ `M-F M : A holds.

Proof: (1) By induction on the derivation of ¬Γ `cps P : ¬A.
(2) By (1), we have Γ•◦ `M-F [[M]]# : A•◦. By Lemma 2.17, we have the claim.

In order to prove the conservativeness of M-λ¬∧∃ over M-λ¬∧∃cps , that is, ¬Γ• `M-λ¬∧∃ [[M]] : ¬A•

implies ¬Γ• `cps [[M]] : ¬A•, we define the contraction translation on types, which has been introduced in
[10]. A type derivation of a CPS term in M-λ¬∧∃ may contain a ¬∧∃-type that is not a CPS type. For
example, a CPS term Q≡ λk′.xk′ may have an arbitrary negation type ¬A under the context {x : ¬A},
and then P≡ λk.(λx.Q(kπ2))(kπ1) may have the type ¬(¬A∧A) under the empty context. If A is not a
continuation type, the type derivation of P : ¬(¬A∧A) is not in M-λ¬∧∃cps . However, such a type A cannot
be consumed in type derivations of CPS terms, so we can replace A by some continuation type without
changing the form of the derivation. The contraction translation formally realizes this replacement, and
derivations in M-λ¬∧∃ are translated to those in M-λ¬∧∃cps . The contraction translation (·)c is defined as
follows so that Γc `cps P : Ac holds for any type derivation of Γ `M-λ¬∧∃ P : A for a CPS term P.

Definition 2.19 (Contraction Translation). Let S be a fixed closed continuation type, for example, ∃X .X .
The contraction translation (·)c from the ¬∧∃-types to the CPS types, and the auxiliary translation (·)d

from the ¬∧∃-types to the continuation types are defined by
(¬A)c ≡ ¬Ad,
Ac ≡ ¬Ad (A is not a negation),
Xd ≡ X ,
⊥d ≡ S,
(¬A)d ≡ Ad,
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(A∧B)d ≡ Ac∧Bd,
(∃X .A)d ≡ ∃X .Ad.

Γc is defined as {(x : Ac)|(x : A) ∈ Γ}.

In [10], Ac for a non-negation type A was defined as S, and it worked well for the domain-free calculi.
For the calculi with multiple-quantifier rules, we have to change the definition for the following reason.
The contraction translation is expected to have the following property: Γ `M-λ¬∧∃ P : A implies Γc `cps P :
Ac for any CPS term P. In the case of P≡ λk.Q〈∃∗,k〉, Q must have a type of the form ¬∃X .C, and P has
a type A≡¬C[X :=B] for some B, so we must show that P has the type (¬C[X := B])

c ≡¬(C[X := B])
d

from the fact that Q has the type (¬∃X .C)
c ≡ ¬∃X .Cd. In order to prove it, it is sufficient to show the

commutativity of the contraction and the substitution, that is, (C[X := B])
d ≡ Cd[X := B

d
]. However, the

original contraction does not have this property.
We note that, in the case of the domain-free λ¬∧∃, we needed only the restricted form of commutativity,

that is, (C[X :=B])d ≡ Cd[X := B], because the CPS term corresponding to P above is λk.Q〈B,k〉,
where the type abstracted by the ∃-introduction is restricted to the continuation type B. The restricted
commutativity is proved more easily, since any continuation type is not a negation.

Lemma 2.20. (1) For any continuation type A, (¬A)c ≡ ¬A and Ad ≡A hold.
(2) For ¬∧∃-types A and B, we have (i) (B[X := A])c ≡ Bc[X := Ad] and (ii) (B[X := A])d ≡

Bd[X := Ad].

Proof: (1) It is easily proved by induction on A.
(2) By induction on B. In the following, we write B[A] for B[X := A]. We will prove (i) (B[A])c ≡

Bc[Ad] and (ii) (B[A])d ≡ Bd[Ad] simultaneously by induction on B.
(i) Case B≡ X . We have (X [A])c ≡ Ac and Xc[Ad]≡ ¬Ad. If A is not a negation, these are the same

type by the definition. Otherwise, by letting A≡ ¬C, we have (¬C)c ≡ ¬Cd and ¬(¬C)d ≡ ¬Cd.
The other cases are proved by (ii).
(ii) Case B≡⊥. In this case, both the sides are S.
Case B≡ X . In this case, both the sides are Ad.
Case B≡ Y (Y 6≡ X). Both the sides are Y .
Case B≡¬C. We have (¬C[A])d ≡ (C[A])d, which is identical to Cd[Ad] by the induction hypothesis.

On the other hand, we have (¬C)d[Ad]≡ Cd[Ad] by the definition.
Case B≡ C∧D. If C is a negation, C[A] is a negation, so this case is easily proved by the induction

hypothesis. If C[A] is not a negation, C is not a negation either, so this case is also easily proved by the
induction hypothesis. The remaining case is the case where C is not a negation and C[A] is a negation,
that is, C ≡ X and A ≡ ¬E. Then we have (X [¬E]∧B[¬E])d ≡ ¬Ed∧ (B[¬E])d, which is identical to
¬Ed∧Bd[Ed] by the induction hypothesis. On the other hand, we have (X ∧B)d[(¬E)d]≡ (¬X ∧Bd)[Ed],
so both the sides are the same type.

Case B≡ ∃Y.C. This case is proved by the induction hypothesis.

Lemma 2.21. For any CPS term P, Γ `M-λ¬∧∃ P : A implies Γc `cps P : Ac.
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Proof: By induction on P. In this proof, we implicitly use the generation lemma (Proposition 2.2). Any
type of P is a negation, since any CPS term is a λ -abstraction. We will show that Γ `M-λ¬∧∃ P : ¬A
implies Γc `cps P : ¬Ad.

Case P≡ λk.xk. Any derivation of Γ `M-λ¬∧∃ P : ¬A has the following form.

Γ ` x : ¬A k : A ` k : A
Γ,k : A ` xk :⊥
Γ ` λk.xk : ¬A

We have (x : ¬A) ∈ Γ, so (x : ¬Ad) ∈ Γc holds.
Case P≡ λk.(λx.Q(kπ2))(kπ1). Any derivation of Γ `λ¬∧∃ P : ¬A has the following form:

Γ,x : B ` Q : ¬C
Γ′ ` k : A

Γ′ ` kπ2 : C
Γ′,x : B ` Q(kπ2) :⊥
Γ′ ` λx.Q(kπ2) : ¬B

Γ′ ` k : A
Γ′ ` kπ1 : B

Γ′ ` (λx.Q(kπ2))(kπ1) :⊥
Γ ` λk.(λx.Q(kπ2))(kπ1) : ¬A ,

where A is B∧C and Γ′ = Γ,k : A. By the induction hypothesis, we have Γc,x : Bc `cps Q : ¬Cd, so we
have Γc `cps P : ¬(Bc∧Cd), where Ad ≡ (B∧C)d ≡ Bc∧Cd.

Case P≡ λk.Q〈R,k〉. Any derivation of Γ `M-λ¬∧∃ P : ¬A has the following form:

Γ ` Q : ¬(B∧A)
Γ ` R : B k : A ` k : A
Γ,k : A ` 〈R,k〉 : B∧A

Γ,k : A ` Q〈R,k〉 :⊥
Γ ` λk.Q〈R,k〉 : ¬A .

By the induction hypotheses, we have Γc `cps Q : ¬(Bc∧Ad) and Γc `cps R : Bc, so we have Γc `cps P :
¬Ad.

Case P≡ λk.k[k′.Qk′]. Any derivation of Γ `M-λ¬∧∃ P : ¬A has the following form:

k : A ` k : A
Γ ` Q : ¬B k′ : B ` k′ : B

Γ,k′ : B ` Qk′ :⊥
Γ,k : A ` k[k.Qk′] :⊥
Γ ` λk.k[k′.Qk′] : ¬A

where A is ∃X .B, and Γ does not contain any type variable in X freely. By the induction hypothesis, we
have Γc `cps Q : ¬Bd. Since Γc does not contain any variable of X freely, we have Γc `cps P : ¬∃X .Bd

where ∃X .Bd ≡ (∃X .B)
d.

Case P≡ λk.Q〈∃∗,k〉. Any derivation of Γ `M-λ¬∧∃ P : ¬A has the following form:

Γ ` Q : ¬∃X .C

k : A ` k : A
k : A ` 〈∃∗,k〉 : ∃X .C

Γ,k : A ` Q〈∃∗,k〉 :⊥
Γ ` λk.Q〈∃∗,k〉 : ¬A

CHICAGO JOURNAL OF THEORETICAL COMPUTER SCIENCE 2010, Article 10, pages 1–19 15

http://dx.doi.org/10.4086/cjtcs


KOJI NAKAZAWA AND MAKOTO TATSUTA

for some list of ¬∧∃-types B, where A is C[X := B]. By the induction hypothesis, Γc `cps Q : ¬∃X .Cd

holds, so we have Γc `cps P : ¬Cd[X := B
d
] by letting k : Cd[X := B

d
], which is identical to (C[X := B])

d

by Lemma 2.20 (2).

By Lemma 2.21, we reduce TC and TI of M-F to those of M-λ¬∧∃, and conclude the undecidability
of TC and TI in M-λ¬∧∃.

Proposition 2.22. (1) Γ `M-F M : A holds if and only if ¬Γ• `M-λ¬∧∃ [[M]] : ¬A• holds.
(2) Γ `M-F M : A holds for some Γ and A if and only if Γ′ `M-λ¬∧∃ [[M]] : A′ holds for some Γ′ and A′.

Proof: (1) The only-if part is Proposition 2.15. We will show the if part. If ¬Γ• `M-λ¬∧∃ [[M]] : ¬A•

holds, by Lemma 2.21, we have (¬Γ•)c `cps [[M]] : (¬A•)c, from which ¬Γ• `cps [[M]] : ¬A• follows by
Lemma 2.20 (1). By Proposition 2.18 (2), Γ `M-F M : A holds.

(2) The only-if part follows from the only-if part of (1). We will show the if part. Suppose Γ′ `M-λ¬∧∃

[[M]] : A′ holds for some Γ′ and A′. By Lemma 2.21, we have Γ′c `cps [[M]] : A′c, so [[M]]# is typable by
Proposition 2.18 (2). [[M]]# is identical to M by Lemma 2.17 (2).

Theorem 2.23. Type checking and type inference are undecidable in M-λ¬∧∃.

Proof: By Propositions 2.13 and 2.22.

3 TC and TI in Type-Free-Style λ¬∧∃

This section defines the negation, conjunction, and existence fragment TF-λ¬∧∃ in the type-free style,
and proves that the undecidability of TC and TI in TF-λ¬∧∃ is reduced to the undecidability of TC and
TI in TF-F .

The type-free-style calculi are discussed in [13], [14], and [4]. This system was called the Curry style
in [13], since the system has the least type annotations among systems that have the subject reduction
property.

Definition 3.1 (TF-λ¬∧∃). (1) The types of TF-λ¬∧∃ are ¬∧∃-types. The terms are denoted by M,
N,. . . and defined by

M ::= x | λx.M | 〈M,M〉 | 〈∃,M〉 |MM |Mπ1 |Mπ2 |M[x.M].
In the term λx.M, the variable x is bound in M. In the term N[x.M], the variable x is bound in M.

(2) The typing rules of TF-λ¬∧∃ are the same as those of M-λ¬∧∃ except for (∃ I) and (∃ E). The
rules (∃ I) and (∃ E) in this system are the following.

Γ ` N : A[X := B]

Γ ` 〈∃,N〉 : ∃X .A
(∃I) Γ1 `M : ∃X .A Γ2,x : A ` N : C

Γ1,Γ2 `M[x.N] : C
(∃E)

In the rule (∃E), Γ2 and C do not contain X freely.

The method for M-λ¬∧∃ by the CPS translation in the previous section can be adapted to TF-λ¬∧∃. By
the method we can prove that the undecidability of TC and TI in TF-λ¬∧∃ is reduced to the undecidability
in the type-free F . The proof is almost the same as that in the previous section, so here we give the
definition of TF-F and the CPS translation only.
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Definition 3.2 (TF-F). (1) The types of TF-F are the→∀-types. The terms of TF-F are defined by
M ::= x | λx.M | Λ.M |MM |M•.
(2) The typing rules of TF-F are the same as those of M-F except for the following rules of universal

quantifiers.
Γ `M : A

Γ ` Λ.M : ∀X .A
(∀I) Γ `M : ∀X .A

Γ `M• : A[X := B]
(∀E)

Definition 3.3 (CPS Translation). The CPS translation from the TF-F-terms to the TF-λ¬∧∃-terms is
defined by

[[x]]≡ λk.xk,
[[λx.M]]≡ λk.(λx.[[M]](kπ2))(kπ1),
[[MN]]≡ λk.[[M]]〈[[N]],k〉,
[[Λ.M]]≡ λk.k[k′.[[M]]k′],
[[M•]]≡ λk.[[M]]〈∃,k〉.

Theorem 3.4. (1) Type checking in TF-F is reduced to type checking in TF-λ¬∧∃. If type checking is
undecidable in TF-F, then type checking is undecidable in TF-λ¬∧∃.

(2) Type inference in TF-F is reduced to type inference in TF-λ¬∧∃. If type inference is undecidable
in TF-F, then type inference is undecidable in TF-λ¬∧∃.

4 Concluding Remarks

In this paper, we proved the undecidability of type checking and type inference in both M-F and M-λ¬∧∃.
Moreover, we proved that the undecidability of the type checking and type inference in TF-λ¬∧∃ is
reduced to the undecidability of those in TF-F .

The decidability of type checking and type inference in TF-λ¬∧∃ is an interesting question. As proved
in this paper, their undecidability directly follows from the undecidability in TF-F . We cannot adapt the
existing proofs to TF-F , although TF-F is similar to M-F and DF-F . For example, the proofs in [15]
and this paper used the undecidability of the semi-unification problem. It is essential for this approach
that the terms in the systems do not contain any information of the number of the quantifier rules. [4]
showed the undecidability of TC and TI in the type-free lambda calculus with implication and existence
by reducing the second-order unification problem to it. We expect the same idea can be adapted to show
the undecidability of TC and TI for TF-F , which will show the undecidability of TC and TI for TF-λ¬∧∃

with the result of our paper.
We have shown that the method in [10] can be used for the domain-free style calculi, the type-free

style calculi, and the calculi with multiple-quantifier rules. It would be future work to generalize this
method.
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