
An Algorithm for Affine Approximation

of Binary Decision Diagrams

Kevin Henshall∗ Peter Schachte∗ Harald Søndergaard∗ Leigh Whiting∗

Abstract

This paper is concerned with the problem of Boolean approximation in the following sense:
given a Boolean function class and an arbitrary Boolean function, what is the function’s best
proxy in the class? Specifically, what is its strongest logical consequence (or envelope) in the
class of affine Boolean functions. We prove various properties of affine Boolean functions and
their representation as ROBDDs. Using these properties, we develop an ROBDD algorithm to
find the affine envelope of a Boolean function.

1 Introduction

Various classes of Boolean functions play important roles in computer science. The classes of
interest include all of the co-clones [8] (such as the Horn and Krom classes) and others. In this
paper we focus on the affine class.

For any particular way of representing Boolean functions, and any particular class, a number
of algorithmic problems suggest themselves. One is identification: How does one decide whether a
given function belongs to the class? Another problem is Boolean approximation: Given a Boolean
function, how does one find its best proxy from the given class; for example, how to find its strongest
Horn consequence?

Boolean approximation finds use in diverse areas such as abstract interpretation, circuit verifi-
cation, and machine learning. The bulk of research in Boolean approximation has arguably sprung
from areas of artificial intelligence. One recurrent quest has been the efficient inference from possi-
bly large propositional formulas, or knowledge-bases. An important approach, which was initially
proposed by Selman and Kautz [13], is to query (and perform deductions from) upper and lower ap-
proximations of the given formula. By choosing approximations that allow more efficient inference,
it is often possible to quickly determine that some logical consequence of the knowledge-base entails
the query, and therefore so does the original knowledge-base, avoiding the costly inference from the
original. When this fails, it may be possible to quickly show that the query is not entailed by some
implicant, and therefore not entailed by the full knowledge-base. Only when both of these fail must
the full knowledge-base be used for inference. This approach to deduction is particularly attractive
if the knowledge-base is relatively stable (that is, many queries are handled between changes to
the knowledge-base), because in that case, the amortised cost of calculating the approximations is
small.

In the field of artificial intelligence it is usually assumed that Boolean functions are represented
in clausal form, and that approximations are Horn [13, 5]. In this setting, inference from Horn

∗Department of Computer Science and Software Engineering, The University of Melbourne, Vic. 3010, Australia

formulas may be exponentially more efficient than from unrestricted formulas. However, it has
been noted that there are many other well-understood classes that have computational properties
that include some of the attractive properties of the Horn class.

Zanuttini [15, 16] discusses the use of other classes of Boolean functions for approximation
and points out that affine approximations have certain advantages over Horn approximations,
most notably the fact that they do not blow out in size. This is certainly the case when affine
functions are represented in the form of modulo-2 congruence equations. The more general sets-of-
models representation is also considered by Zanuttini. In this paper, we consider a third, general,
representation, namely reduced ordered binary decision diagrams (ROBDDs). We prove some
important properties of affine functions and their ROBDD representation. Utilising these properties
we design a new ROBDD algorithm for deriving strongest affine consequences (also known as
affine envelopes). Schachte and Søndergaard [10, 11] have previously given ROBDD algorithms for
finding monotone, Krom, and Horn envelopes, but also noticed that while those algorithms could
be expressed as instances of a common scheme, the same scheme did not apply to affine functions.
A different, less compositional, approach is needed in this case.

This paper is an extended version of [6] and it proceeds as follows. In Section 2 we recapitulate
the definition of the Boolean affine class, and we establish some of its important properties. We also
briefly introduce ROBDDs, but mainly to fix our notation, as we assume that the reader is familiar
with Boolean functions and their representation as decision diagrams. Section 3 recalls the model-
based affine envelope algorithm, and develops an ROBDD-based algorithm, whose correctness rests
on results established in Section 2.2. Section 4 describes our testing methodology, including our
algorithm for generating random ROBDDs, and presents our results. Section 5 discusses related
work and applications, and concludes.

2 Boolean Approximation and ROBDDs

We use ROBDDs [1, 2] to represent Boolean functions. Our choice of ROBDDs as a data structure
is due to the fact that it offers a canonical representation for any Boolean function—a representation
that is highly suitable for inductive reasoning.

Zanuttini [15] suggests using modulo 2 congruence equations to represent affine Boolean func-
tions, and proves a polynomial complexity bound for computing affine envelopes in this repre-
sentation. However, using a specialised representation has a cost in implementation complexity
where affine and non-affine Boolean functions must be used together. Certainly the algorithm for
evaluating whether one ROBDD entails another is straightforward. Similarly, systems which re-
peatedly construct an affine approximation, manipulate it as a general Boolean function, and then
approximate the result again, have much simpler implementations with a single universal represen-
tation than with the combination of a specialised affine representation and a universal one. For
our purposes, computing envelopes as ROBDDs permits us to use the same representation for ap-
proximation to many different Boolean classes. Additionally, ROBDD-based inference is fast, and
in particular, checking whether a valuation is a model, or finding a model, of an n-place function
given by an ROBDD requires a path traversal of length no more than n.

2

2.1 Boolean functions

Let B = {0, 1} and let V be a denumerable set of variables. A valuation µ : V → B is a (total)
assignment of truth values to the variables in V. Let I = V → B denote the set of V-valuations. A
partial valuation µ : V → B ∪ {∗} assigns truth values to some variables in V, and ∗ to others. Let
Ip = V → B ∪ {∗}. We use the notation µ[x 7→ i], where x ∈ V and i ∈ B, to denote the valuation
µ updated to map x to i, that is,

µ[x 7→ i](v) =

{

i if v = x

µ(v) otherwise.

A Boolean function over V is a function ϕ : I → B. We let B denote the set of all Boolean functions
over V. The ordering on B is the usual: x ≤ y iff x = 0 ∨ y = 1. B is ordered pointwise, so that
the ordering relation corresponds exactly to classical entailment, |=. It is convenient to overload
the symbols for truth and falsehood. Thus we let 1 denote the largest element of B (that is, λµ.1)
as well as of B. Similarly 0 denotes the smallest element of B (that is, λµ.0) as well as of B. A
valuation µ is a model for ϕ, denoted µ |= ϕ, if ϕ(µ) = 1. We let models(ϕ) denote the set of models
of ϕ. Conversely, the unique Boolean function that has exactly the set M as models is denoted
fn(M). A Boolean function ϕ is said to be independent of a variable x when for all valuations µ,
µ[x 7→ 0] |= ϕ iff µ[x 7→ 1] |= ϕ; otherwise it is said to be dependent on x.

Existential quantification is defined as follows. Let ϕ be a Boolean function andM = models(ϕ),
then

∃v(ϕ) = fn({µ[v 7→ 0] | µ ∈M} ∪ {µ[v 7→ 1] | µ ∈M}).

Clearly ∃v(ϕ) is independent of v.
In the context of an ordered set of n variables of interest, x1, . . . , xn, we may identify with µ

the binary sequence bits(µ) of length n:

µ(x1), . . . , µ(xn)

which we will write simply as a bit-string of length n. Similarly we may think of, and write, the
set of valuations M as a set of bit-strings:

bits(M) = {bits(µ) | µ ∈M}.

As it could hardly create confusion, we shall present valuations variously as functions or bitstrings.
We denote the zero valuation, which maps xi to 0 for all 1 ≤ i ≤ n, by ~0.

We use the Boolean connectives ¬ (negation), ∧ (conjunction), ∨ (disjunction) and + (exclusive
or, or “xor”). These connectives operate on Boolean functions, that is, on elements of B. Tradi-
tionally they are overloaded to also operate on truth values, that is, elements of B. However, we
deviate at this point, as the distinction between xor and its “bit-wise” analogue will be critical
in what follows. Hence we denote the B (bit) version by ⊕. We extend this to valuations and
bit-strings in the natural way:

(µ1 ⊕ µ2)(x) = µ1(x)⊕ µ2(x)

and we let ⊕3 denote the “xor of three” operation λµ1µ2µ3.µ1 ⊕ µ2 ⊕ µ3. We follow Zanuttini [15]
in further overloading ‘⊕’, using the notation

Mµ = µ⊕M = {µ⊕ µ′ | µ′ ∈M}.

3

We read Mµ as “M translated by µ”. The function tµ : B→ B similarly performs translation of a
Boolean function:

tµ(ϕ) = fn(Mµ)

where M = models(ϕ). Note that for any set M , the function λµ.Mµ is an involution: (Mµ)µ = M ,
and hence tµ is an involution too.

A final overloading results in the following definition. For ϕ ∈ B, and µ ∈ I, let ϕ⊕µ = fn(Mµ)
where M = models(ϕ). We also use a distributed version of ⊕:

⊕

{ϕ1, . . . , ϕn} = ϕ1 ⊕ · · · ⊕ ϕn.
Since we shall make frequent use of existential quantification, it is worth noting that ∃v does

not distribute over +, as for example,

∃x(¬x+ (x ∧ ¬y)) = 1 6= y = ∃x(¬x) + ∃x(x ∧ ¬y).

However, it is easy to verify that ∃v(ϕ) + ∃v(ψ) |= ∃v(ϕ+ ψ) for all functions ϕ and ψ.

2.2 The affine class

An affine function is one whose set of models is closed under pointwise application of ⊕3 [12].
Affine functions have a number of attractive properties, as we shall see. Syntactically, a Boolean
function is affine iff it can be written as a conjunction of affine equations

c1x1 + c2x2 + . . .+ cnxn = c0

where ci ∈ {0, 1} for all i ∈ {0, .., n}.1 This is well known, but for completeness we prove it below,
as Proposition 2.

The affine class contains 1 and is closed under conjunction. Hence the concept of a unique
best affine upper-approximation is well defined, and the function that takes a Boolean function and
returns its best affine upper-approximation is an upper closure operator, that is, it is monotone,
increasing, and idempotent [7, 14]. For convenience, let us introduce a name for this operator:

Definition 1. Let ϕ be a Boolean function. The affine envelope, aff(ϕ), of ϕ is defined:

aff(ϕ) =
∧

{ψ | ϕ |= ψ and ψ is affine}.

There are numerous other classes of interest, including isotone, antitone, Krom, Horn, contra-
dual Horn and all other co-clones [8], k-Horn [4], and k-quasi-Horn functions. For all of these, the
concept of an envelope is well-defined, as each class contains 1 and is closed under conjunction.2

Zanuttini [15] exploits the close connection between vector spaces and the sets of models of
affine functions. A set S ⊆ Bk of bitstrings is a vector space iff ~0 ∈ S and S is closed under ⊕. The
set of vector spaces also contains 1 and is closed under conjunction (intersection), so the concept
of a tightest enclosing vector space, given a set of valuations (or bit vectors), is well defined.

1In some circles, such as the cryptography/coding community, the term “affine” is used only for a function that
can be written c1x1 + c2x2 + . . .+ cnxn + c0, with n ≥ 0 (the latter is what Post [9] called an “alternating” function).
The resulting set of “affine” functions is not closed under conjunction. Our more common use agrees with the use in
linear algebra, where an affine space is a vector space translated by some vector.

2Other classes that are commonly considered in AI are not closed under conjunction and therefore do not have
well-defined concepts of (unique) envelopes. Examples are the unate functions (a unate function is one that can be
turned into an isotone function by systematic negation of zero or more variables) and the renamable Horn functions
(a renamable Horn function is similarly one that can be turned into a Horn function by systematic negation of zero
or more variables). For example, x → y and x ← y both are unate, while x ↔ y is not, so the “unate envelope” of
the latter is not well-defined.

4

Definition 2. Let ϕ be a Boolean function. The linear envelope, lin(ϕ), of ϕ is defined:

lin(ϕ) =
∧

{ψ | ϕ |= ψ and models(ψ) is closed under ⊕}.

Note that by this, aff(0) = lin(0) = 0. Also note that for a satisfiable ϕ, the models of lin(ϕ)
form a vector space.

The next proposition suggests how one can simplify the task of doing model-closure under ⊕3.

Proposition 1. [15] Given a non-empty set of models M and a valuation µ ∈ M , M is closed
under ⊕3 iff Mµ is a vector space.

Proof: Let µ be an arbitrary element of M . Clearly Mµ contains ~0, so the right-hand side of the
claim amounts to Mµ being closed under ⊕.

For the ‘if’ direction, assume Mµ is closed under ⊕ and consider µ1, µ2, µ3 ∈ M . Since µ⊕ µ2

and µ⊕µ3 are in Mµ, so is µ2⊕µ3. And since furthermore µ⊕µ1 is in Mµ, so is µ⊕µ1⊕µ2⊕µ3.
Hence µ1 ⊕ µ2 ⊕ µ3 is in M .

For the ‘only if’ direction, assume M is closed under ⊕3, and consider µ1, µ2 ∈ Mµ. All of
µ, µ ⊕ µ1 and µ ⊕ µ2 are in M , and so µ ⊕ (µ ⊕ µ1) ⊕ (µ ⊕ µ2) = µ ⊕ µ1 ⊕ µ2 ∈ M . Hence
µ1 ⊕ µ2 ∈Mµ.

Proposition 2. A Boolean function is affine iff it can be written as a conjunction of equations

c1x1 + c2x2 + . . .+ cnxn = c0

where ci ∈ B for all i ∈ {0, .., n}.

Proof: Assume the Boolean function ϕ is given as a conjunction of equations of the indicated form
and let µ1, µ2 and µ3 be models. That is, for each equation we have

c1µ1(x1) + c2µ1(x2) + . . .+ cnµ1(xn) = c0
c1µ2(x1) + c2µ2(x2) + . . .+ cnµ2(xn) = c0
c1µ3(x1) + c2µ3(x2) + . . .+ cnµ3(xn) = c0

Adding left-hand sides and adding right-hand sides, making use of the fact that ‘·’ distributes over
‘+’, we get

c1µ(x1) + c2µ(x2) + . . .+ cnµ(xn) = c0 + c0 + c0 = c0

where µ = µ1 ⊕ µ2 ⊕ µ3. As µ thus satisfies each equation, µ is a model of ϕ. This establishes the
‘if’ direction.

For the ‘only if’ part, note that by Proposition 1, we obtain a vector space Mµ from any non-
empty set M closed under ⊕3 by translating each element of M by µ ∈M . Now form a basis B for
Mµ by taking one non-~0 vector at a time from Mµ and adding it to the set of basis vectors collected
so far iff it is linearly independent of that set. Let j = n − |B| (note that 0 ≤ j ≤ n). B can be
extended to a basis for Bn by bringing B (read as a |B| × n matrix) into echelon form and adding
j vectors V = {~v1, . . . , ~vj} (these can be chosen from the natural basis for Bn). From B and V we
can compute a set of j linear equations

a11x1 ⊕ · · · ⊕ a1nxn = 0
a21x1 ⊕ · · · ⊕ a2nxn = 0

...
...

aj1x1 ⊕ · · · ⊕ ajnxn = 0

(1)

5

that have exactly Mµ as their set of models. For each i ∈ {1, . . . , j}, the coefficients ~ai =
(ai1, . . . , ain) are uniquely determined by the set of n equations

~ai · ~vi = 1
~ai · ~vk = 0 1 ≤ k ≤ j, k 6= i

~ai ·~b = 0 ~b ∈ B.

This construction guarantees that ~x = (x1, . . . , xn) satisfies the conjunction of equations (1) iff ~x

is in the span of B (that is, in Mµ). Each function

fi = λ~x.~ai · ~x

is linear, so for ν ∈Mµ, fi(ν ⊕ µ) = fi(ν) + fi(µ) = fi(µ). Hence M can be described by the set of
j affine equations

a11x1 ⊕ · · · ⊕ a1nxn = f1(µ)
a21x1 ⊕ · · · ⊕ a2nxn = f2(µ)

...
...

aj1x1 ⊕ · · · ⊕ ajnxn = fj(µ)

as desired.

Example 1. In B4, the set of models M = {0100, 0111, 1001, 1010} is closed under ⊕3 and so deter-
mines an affine function. Choosing µ = 0100 as translation, we have Mµ = {0000, 0011, 1101, 1110}.
One basis for Mµ is {0011, 1101}, which can be extended to a basis for B4 by adding V =
{0100, 0001}. Hence Mµ can be described by the conjunction

a11x1 ⊕ · · · ⊕ a14x4 = 0
a21x1 ⊕ · · · ⊕ a24x4 = 0

where the coefficients are determined by solving

0 0 1 1
1 1 0 1
0 1 0 0
0 0 0 1

a11

a12

a13

a14

=

0
0
1
0

0 0 1 1
1 1 0 1
0 1 0 0
0 0 0 1

a21

a22

a23

a24

=

0
0
0
1

In other words, Mµ is described by

x1 ⊕ x2 = 0

x1 ⊕ x3 ⊕ x4 = 0

In the case of (x1, x2, x3, x4) = µ = (0, 1, 0, 0), the left-hand sides evaluate to 1 and 0, respectively.
Hence M is described by

x1 ⊕ x2 = 1

x1 ⊕ x3 ⊕ x4 = 0

6

Zanuttini [15] shows that the complexity of generating the equational form from an affine function’s
set of models is O(n4). Also note that it follows from the syntactic characterisation that the number
of models possessed by an affine function is either 0 or a power of 2.

Lemma 3. Let ϕ be a satisfiable Boolean function with set M of models, and let µ |= aff(ϕ). Then
there is an odd positive integer k and a subset M ′ of M , such that |M ′| = k and µ =

⊕

M ′.

Proof: Define

M0 = M

Mi = Mi−1 ∪ {µ1 ⊕ µ2 ⊕ µ3 | µ1, µ2, µ3 ∈Mi−1}

for i > 0. Then {Mi}i≥0 is an increasing sequence of sets of models, stabilising in a finite number
of steps, that is, for some non-negative j,

Mi = Mj = models(aff(ϕ))

for all i ≥ j.
An induction on i now shows that for all i and all µ ∈ Mi, µ can be written as a sum

⊕

M ′

of an odd number of models of M0 = M (“odd plus odd plus odd equals odd”). In particular this
holds for µ in Mj , that is, for each model of aff(ϕ).

Proposition 4. Let ϕ be a satisfiable Boolean function and let µ be a model. Then tµ(aff(ϕ)) =
lin(tµ(ϕ)).

Proof: As ϕ is satisfiable, so is lin(tµ(ϕ)), so let ν be a model of lin(tµ(ϕ)). Then ν = ν1⊕· · ·⊕νm,
with each ν1, . . . , νm satisfying tµ(ϕ). So each of ν1⊕µ, . . . , νm⊕µ satisfies ϕ. Since ~0 |= tµ(ϕ), we
can assume that m is odd: if m is even, ~0 can be added to {ν1, . . . , νm} (or removed from the set, as
appropriate) without changing the sum. And for oddm, clearly ν1⊕· · ·⊕νm⊕µ = ν1⊕µ⊕· · ·⊕νm⊕µ
is a model of aff(ϕ). Hence ν satisfies tµ(aff(ϕ)).

Conversely, if ν satisfies tµ(aff(ϕ)) then ν ⊕ µ satisfies aff(ϕ), and hence, by Lemma 3 ν ⊕ µ
can be written as ν1 ⊕ · · · ⊕ νm, for some odd m, with each of ν1, . . . , νm satisfying ϕ. That is,
ν = ν1 ⊕ µ⊕ · · · νm ⊕ µ, with each of ν1 ⊕ µ, . . . , νm ⊕ µ satisfying tµ(ϕ). It follows that ν satisfies
lin(tµ(ϕ)).

To express a number of interesting properties of affine Boolean functions, it is convenient to intro-
duce a concept of a “characteristic” valuation for a variable.

Definition 3. In the context of a set of variables V , let v ∈ V . The characteristic valuation for v,
χv, is defined by

χv(x) =

{

1 if x = v

0 otherwise.

Note that µ ⊕ χv is the valuation which agrees with µ for all variables except v. Moreover, if
µ |= ϕ, then both of µ and µ⊕ χv are models of ∃v(ϕ).

Existential quantification is also an upper closure operator, that is, ∃v is monotone, increasing,
and idempotent. Moreover, existential quantification commutes with translation:

7

Proposition 5. Let ϕ be a Boolean formula, µ a valuation, and v a variable. Then tµ(∃v(ϕ)) =
∃v(tµ(ϕ)).

Proof: If ϕ is unsatisfiable, the statement clearly holds, so assume that ϕ, and hence tµ(∃v(ϕ)) is
satisfiable. Let ν |= tµ(∃v(ϕ)). Then µ ⊕ ν |= ∃v(ϕ), and so µ ⊕ ν satisfies ϕ, or µ ⊕ ν ⊕ χv does
(or both do). For reasons of symmetry we can assume that µ⊕ ν |= ϕ. Hence ν |= tµ(ϕ) and, since
∃v is increasing, ν |= ∃v(tµ(ϕ)).

Conversely, if ν |= ∃v(tµ(ϕ)) then µ ⊕ ν or µ ⊕ ν ⊕ χv satisfies ϕ (or both do). It follows that
ν |= tµ(∃v(ϕ)).

Existential quantification also commutes with lin and with aff:

Proposition 6. Let ϕ be a Boolean function and v a variable. Then

(a) lin(∃v(ϕ)) = ∃v(lin(ϕ))

(b) aff(∃v(ϕ)) = ∃v(aff(ϕ))

Proof: Clearly lin(∃v(ϕ)) = 0 iff ϕ = 0 iff ∃v(lin(ϕ)) = 0. So assume lin(∃v(ϕ)) is satisfiable and
let µ |= lin(∃v(ϕ)). Then µ = µ1⊕· · ·⊕µk for some non-empty subset {µ1, . . . , µk} of models(∃v(ϕ)),
and this set in turn is a subset of models(∃v(lin(ϕ))), as ∃v is monotone and lin is increasing. Hence
µ |= ∃v(lin(ϕ)).

Conversely, let µ |= ∃v(lin(ϕ)). Then either µ or µ ⊕ χv is a model of lin(ϕ) (or both are).
Hence µ (or µ⊕ χv as the case may be) can be written as a sum µ1 ⊕ · · · ⊕ µk of k models of ϕ. It
follows that both µ1 ⊕ · · · ⊕ µk and µ1 ⊕ · · · ⊕ µk ⊕ χv are models of ∃v(ϕ). Hence µ |= lin(∃v(ϕ)).
This establishes item (a).

For item (b), note that aff(∃v(ϕ)) = 0 iff ϕ = 0 iff ∃v(aff(ϕ)) = 0. So assume that ϕ is satisfiable
and let µ |= ϕ. From item (a) we have

lin(∃v(tµ(ϕ))) = ∃v(lin(tµ(ϕ)))

so that by Proposition 5,
lin(tµ(∃v(ϕ))) = ∃v(lin(tµ(ϕ))).

Hence
tµ(lin(tµ(∃v(ϕ)))) = tµ(∃v(lin(tµ(ϕ))))

so that by Proposition 5,

tµ(lin(tµ(∃v(ϕ)))) = ∃v(tµ(lin(tµ(ϕ)))).

That is, by Proposition 4, aff(∃v(ϕ)) = ∃v(aff(ϕ)).

Proposition 6 shows that neither linear nor affine approximation introduce variables.

Corollary 7. If the Boolean function ϕ is independent of variable v, so are lin(ϕ) and aff(ϕ).

8

As mentioned, both aff and ∃v are upper closure operators, but there was no a priori reason
to assume that they commute [7]. Indeed, there are natural classes of Boolean functions for which
envelopes are well-defined, but where approximation into the class does not commute with existen-
tial quantification. As an example take the class of 1-valid functions [12]. A function is 1-valid iff
it evaluates to 1 when all variables are 1 . This class contains 1 and is closed under conjunction,
so we can define η(ϕ) to be the 1-valid envelope of ϕ. The reader can now verify that in B2, for
example,

η(∃x(¬x ∧ ¬y)) = η(¬y) = x ∨ ¬y 6= 1 = ∃x(x↔ y) = ∃x(η(¬x ∧ ¬y)).

Hence 1 -valid approximation and variable elimination do not commute.
While Proposition 6 is interesting, the justification of Section 3’s affine envelope algorithm

requires some stronger results, which we now establish. In particular, independence follows from a
weaker property which we call somewhere-redundancy.

Definition 4. Let ϕ be a Boolean function, v be a Boolean variable, and µ be a model of ϕ. We
say v is redundant for ϕ and µ iff µ⊕ χv |= ϕ. We say v is somewhere-redundant for ϕ iff there is
some model ν of ϕ such that v is redundant for ϕ and ν.

We now show that if the Boolean function ϕ has two models that differ for exactly one variable
v, then both its linear and affine envelopes are independent of v.

Proposition 8. Let ϕ be a Boolean function whose set of models M forms a vector space, and
assume that for some valuation µ and some variable v, µ and µ ⊕ χv both satisfy ϕ. Then ϕ is
independent of v.

Proof: The set M of models contains at least two elements, and since it is closed under ⊕, χv is
a model. Hence for every model ν of ϕ, ν ⊕ χv is another model. It follows that ϕ is independent
of v.

Proposition 9. Let ϕ be a Boolean function. If v is somewhere-redundant for ϕ then lin(ϕ) =
∃v(lin(ϕ)) = lin(∃v(ϕ)).

Proof: Note that ϕ is satisfiable, by assumption. Let µ be a model of ϕ, with µ⊕χv also a model.
For every model ν of ϕ, we have that ν ⊕ µ ⊕ (µ ⊕ χv) satisfies lin(ϕ), that is, ν ⊕ χv |= lin(ϕ).
Now since both ν and ν ⊕ χv satisfy lin(ϕ), it follows that ∃v(lin(ϕ)) cannot have a model that is
not already a model of lin(ϕ) (and the converse holds trivially). Hence lin(ϕ) = ∃v(lin(ϕ)). The
second equation follows immediately from Proposition 6(a).

Corollary 10. Let ϕ be a Boolean function. If v is somewhere-redundant for ϕ then aff(ϕ) =
∃v(aff(ϕ)) = aff(∃v(ϕ)).

Proof: Note that ϕ is satisfiable, by assumption. Let µ |= ϕ. Note that since v is somewhere-
redundant for ϕ, v is somewhere-redundant for tµ(ϕ) as well. So by Proposition 9,

lin(tµ(ϕ)) = ∃v(lin(tµ(ϕ))).

But then, by Proposition 6(a),

tµ(lin(tµ(ϕ))) = ∃v(tµ(lin(tµ(ϕ))))

and so, by Proposition 4, aff(ϕ) = ∃v(aff(ϕ)). The second equation follows immediately from
Proposition 6(b).

9

These results justify an aggressive approach to the elimination of variables in an affine envelope
algorithm. We shall utilise this in the next section.

2.3 ROBDDs

We briefly recall the essentials of ROBDDs [3]. Let the set V of propositional variables be equipped
with a total ordering ≺. Binary decision diagrams (BDDs) are defined inductively as follows:

• 0 is a BDD.

• 1 is a BDD.

• If x ∈ V and R1 and R2 are BDDs then ite(x,R1, R2) is a BDD.

Let R = ite(x,R1, R2). We say a BDD R′ appears in R iff R′ = R or R′ appears in R1 or R2. We
define vars(R) = {v | ite(v, ,) appears in R}.

The meaning of a BDD is given as follows.

[[0]] = 0
[[1]] = 1

[[ite(x,R1, R2)]] = (x ∧ [[R1]]) ∨ (¬x ∧ [[R2]]).

A BDD is an Ordered binary decision diagram (OBDD) iff it is 0 or 1 or if it is ite(x,R1, R2), R1

and R2 are OBDDs, and ∀x′ ∈ vars(R1) ∪ vars(R2) : x ≺ x′.
An OBDD R is a Reduced Ordered Binary Decision Diagram (ROBDD [2, 3]) iff for all BDDs

R1 and R2 appearing in R, R1 = R2 when [[R1]] = [[R2]]. Practical implementations [1] use a
function mknd(x,R1, R2) to create all ROBDD nodes as follows:

1. If R1 = R2, return R1 instead of a new node, as [[ite(x,R1, R2)]] = [[R1]].

2. If an identical ROBDD was previously built, return that one instead of a new one; this is
accomplished by keeping a hash table, called the unique table, of all previously created nodes.

3. Otherwise, return ite(x,R1, R2).

This ensures that ROBDDs are strongly canonical: a shallow equality test is sufficient to determine
whether two ROBDDs represent the same Boolean function.

Figure 1 shows an example of an ROBDD. In general we depict the ROBDD ite(x,R1, R2) as
a directed acyclic graph rooted in x, with a solid arc from x to the dag for R1 and a dashed line
from x to the dag for R2. However, to avoid unnecessary clutter, we omit the 0 node (sink) and
all arcs leading to that sink. The ROBDD in Figure 1 denotes the function which has five models:
{00011, 00110, 01001, 01101, 10101}.

As a typical example of an ROBDD algorithm, Algorithm 1 generates the disjunction of two
given ROBDDs. This operation will be used by the affine approximation algorithm presented in
Section 3. (Most of our algorithms are presented in a functional programming style, using Haskell-
style pattern matching and guarded equations.)

Algorithm 2 is used to extract a model from an ROBDD. For an unsatisfiable ROBDD (that
is, 0) we return ⊥. Although presented here in recursive fashion, it is better implemented in an
iterative manner whereby we traverse through the ROBDD, one pointer moving down the “else”

10

v

w

x

y

z

1

y

w

x

y

z

Figure 1: An example of our diagrammatic representation of an ROBDD. Our diagrams leave out
the 0 sink and all arcs to it.

Algorithm 1 The “or” operator for ROBDDs

or(1,) = 1
or(0, R) = R
or(, 1) = 1
or(R, 0) = R
or(ite(x, T,E), ite(x′, T ′, E′))
| x ≺ x′ = mknd(x, or(T, ite(x′, T ′, E′)), or(E, ite(x′, T ′, E′)))
| x′ ≺ x = mknd(x′, or(ite(x, T,E), T ′), or(ite(x, T,E), E′))
| otherwise = mknd(x, or(T, T ′), or(E,E′))

branch at each node, a second pointer trailing immediately behind. If a 1 sink is found, we return
the path traversed thus far and note that any further variables which we are yet to encounter may
be assigned any value. If a 0 sink is found, we use the trailing pointer to step up a level, follow the
“then” branch for one step and continue searching for a model by following “else” branches. This
method relies on the fact that ROBDDs are “reduced”, so that if no 1 sink can be reached from a
node, then the node itself is the 0 sink.

We shall use the following obvious corollary of Proposition 8:

Corollary 11. Let ROBDD R represent a function whose set of models forms a vector space.
Then every path from R’s root node to the 1 sink contains the same sequence of variables, namely
vars(R) listed in variable order.

It is important to take advantage of fan-in to create efficient ROBDD algorithms. Often some
ROBDD nodes will appear multiple times in a given ROBDD, and algorithms that traverse that
ROBDD will meet these nodes multiple times. Many algorithms can avoid repeated work by keeping
a cache of previously seen inputs and their corresponding outputs, called a computed table [1]. We
silently use computed tables for the recursive ROBDD algorithms presented here.

11

Algorithm 2 get model algorithm for ROBDDs

get model(0) = ⊥
get model(1) = λv.∗
get model(ite(x, T,E)) =

let µ = get model(T) in

if µ = ⊥ then get model(E)[x 7→ 0] else µ[x 7→ 1]

Algorithm 3 The sets-of-models based affine envelope algorithm

Input: The set M of models for function ϕ.
Output: aff(M) — the set of models of ϕ’s affine envelope.

if M = ∅ then

return M

end if

N ← ∅

choose µ ∈M
New←Mµ

repeat

N ← N ∪New
New← {µ1 ⊕ µ2 | µ1, µ2 ∈ N} \N

until New = ∅

return Nµ

3 Finding Affine Envelopes for ROBDDs

Zanuttini [15] gives an algorithm, here presented as Algorithm 3, for finding the affine envelope,
assuming a Boolean function ϕ is represented as a set of models. This algorithm is justified by
Proposition 1.

Example 2. To see Algorithm 3 in action, refer to Figure 2. Assume that ϕ has four models,
M = {01011, 01100, 10111, 11001}. We randomly pick µ = 01100 and obtain Mµ as shown. The
first round of completion under ‘⊕’ adds three bit-strings: {11100, 10010, 01110}, and another round
adds 01001 to produce N . Finally, “adding back” µ = 01100 yields the affine envelope Nµ = aff(M).

We are interested in developing an algorithm for ROBDDs. We can improve on Algorithm 3
and at the same time make it more suitable for ROBDD manipulation. The idea is to build the
result N step by step, by picking the models ν of Mµ one at a time and computing N := N ∪Nν

at each step. We can start from N = {~0}, as ~0 has to be in Mµ. This leads to Algorithm 4.
This formulation is well suited to ROBDDs, as the operation Nν , that is, taking the xor of

a model ν with each model of the ROBDD N can be implemented by traversing N and, for
each v-node with ν(v) = 1, swapping that node’s children. And we can do better, utilising two
observations.

First, during its construction, there is no need to traverse the ROBDD N for each individual
model ν. A full traversal of N will find all its models systematically, eliminating a need to remove
them one by one.

12

M =

01011
01100
10111
11001

µ = 01100 Mµ =

00111
00000
11011
10101

N =

00111
00000
11011
10101
11100
10010
01110
01001

Nµ = aff(M) =

01011
01100
10111
11001
10000
11110
00010
00101

Figure 2: Steps in Algorithm 3

Algorithm 4 A variant of Algorithm 3

Input: The set M of models for function ϕ.
Output: aff(M) — the set of models of ϕ’s affine envelope.

if M = ∅ then

return M

end if

N ← {~0}
choose µ ∈M
M ′ ←Mµ \ {~0}
for all ν ∈M ′ do

N ← N ∪Nν

end for

return Nµ

Second, the ROBDD being constructed can be simplified aggressively during its construction,
by utilising Propositions 9 and 6(a). Namely, as we traverse ROBDD R systematically, paths from
the root to the 1 sink may be found that do not contain every variable in vars(R). Each such path
corresponds to a model set of cardinality 2k, k being the number of “skipped” variables, and each
skipped variable is what was termed “somewhere-redundant” in Section 2.2. Proposition 9 tells
us that, eventually, the linear (and hence also the affine) envelope will be independent of all such
“skipped” variables, and Proposition 6 guarantees that variable elimination can be interspersed
arbitrarily with the process of “xor-ing” models, that is, we can eliminate variables aggressively.

This leads to Algorithm 5. The algorithm combines several operations in an effort to amortise
their cost. In what follows we step through the details of the algorithm.

The to aff function finds an initial model µ of R, before translating R by calling translate. This
initial call has the effect of “xor-ing” µ with all of the models of R. Once translated, the xor closure
is taken, before translating again using the initial model µ to obtain the affine closure.

translate is the function that is responsible for computing the xor of a model with an ROBDD.

13

Algorithm 5 Affine envelopes for ROBDDs

Input: An ROBDD R.
Output: The affine envelope of R.

to aff(0) = 0
to aff(R) = let µ = get model(R) in translate(xor close(translate(R,µ)), µ)

translate(0,) = 0
translate(1,) = 1
translate(ite(x, T,E), µ)
| (µ(x) = 0) = cons(x, translate(T, µ), translate(E, µ), µ)
| (µ(x) = 1) = cons(x, translate(E, µ), translate(T, µ), µ)

xor close(R) = trav(R, λv.∗,
∧

{v̄ | v ∈ vars(R)})

trav(0, , S) = S

trav(1, µ, S)
| (µ |= S) = S

| otherwise = extend(S, S, µ)
trav(ite(x, T,E), µ, S) = trav(T, µ[x 7→ 1], trav(E, µ[x 7→ 0], S))

cons(x, T,E, µ)
| (µ(x) = ∗) = or(T,E)
| otherwise = mknd(x, T,E)

extend(1, ,) = 1
extend(, 1,) = 1
extend(0, S, µ) = translate(S, µ)
extend(ite(x, T,E), 0, µ) = cons(x, extend(T, 0, µ), extend(E, 0, µ), µ)
extend(ite(x, T,E), ite(x, T ′, E′), µ)
| (µ(x) = 1) = mknd(x, extend(T,E′, µ), extend(E, T ′, µ))
| otherwise = cons(x, extend(T, T ′, µ), extend(E,E′, µ), µ)

As mentioned above, its operation relies on the observation that for a given node v in the ROBDD,
if µ(v) = 1, then the operation is equivalent to exchanging the “then” and “else” branches of v.

xor close is used to compute the xor-closure of an ROBDD R. The third argument passed to
trav is an accumulator in which the result is constructed. As in Algorithm 4, we know that ~0 will
be a model of the result, so we initialise the accumulator as (the ROBDD for)

∧

{v̄ | v ∈ vars(R)}.
trav implements a recursive traversal of the ROBDD, and when a model is found in µ, we

“extend” the affine envelope to include the newly found model. Namely, extend(R,S, µ) produces
(the ROBDD for) R ∨ Sµ. Note that once a model is found during the traversal, trav checks if µ
is already present within the xor-closure, and if it is not, invokes extend accordingly. This simple
check avoids making unnecessary calls to extend.

The cons function represents a special case of mknd. It takes an additional argument in µ and

14

(a) (b) (c)

v

w

x

y

z

1

y

w

x

y

z

v

w

x

y

z

1

y

w

x

y

z

v

w

x

y

z

1

y

z

Figure 3: (a): The ROBDD R from Figure 1. (b): The translated version Rµ. (c): The vector
space S that has been extended to cover 00101.

uses it to determine whether to restrict away the corresponding node being constructed. It is the
correctness of this function that rests on Propositions 9 and 6, as discussed (showing that affine
approximation can be interspersed with variable elimination).

Finally, once a model is found during a traversal, extend is used to build up the affine closure
of the ROBDD. The last equation requires some explanation. In the context of the initial call
extend(S, S, µ), Corollary 11 ensures that the pattern of the last equation for extend is sufficient: If
neither argument is a sink, the two will have the same root variable. If µ(x) = 0, we simply build
the x-node and recurse. If µ(x) = 1, we build the x-node but swap the branches of the second
ROBDD before we recurse (recall that we are building an ROBDD for R∨Sµ, and S is the second
argument to extend). Finally, if µ(x) = ∗, the x node should not be created, as we wish to take the
existential quantification over x; the call to cons will achieve this.

Example 3. Consider the ROBDD R shown in Figure 3(a). The corresponding set of models
is {00011, 00110, 01001, 01101, 10101}. Picking µ = 00011 and translating gives Rµ, shown in
Figure 3(b). This ROBDD represents a set of vectors {00000, 00101, 01010, 01110, 10110} which is
to be extended to a vector space.

The algorithm now builds up S, the xor-closure of Rµ, by taking one vector v at a time from
Rµ and extending S to a vector space that includes v. S begins as the zero vector.

The first step of the algorithm just adds 00101 to the existing zero vector (Figure 3(c)). The
next step comes across the vector 01∗10 (which actually represents two valuations) and existentially
quantifies away the variable x (Figure 4(a)). Note that the variable z also disappears: this is due
to the extension required to include 01∗10 that adds enough valuations such that z is “covered” by
the vector space.

Extending to cover 10110 simply requires every model to be copied, with v mapped to 1 (Fig-
ure 4(b)). Finally, translating back by µ produces A, the affine closure of R, shown in Figure 4(c).

15

(a) (b) (c)

v

w

y

1

y

v

w

y

1

w

y

v

w

y

1

w

y

Figure 4: (a): The vector space S after being extended to cover 01∗10. (b): S after extending to
cover 10110. (c): S translated to give the affine closure of R.

x

y

z

1

y

z

x

y

z

1

y

z

Figure 5: An ROBDD (on the left) without skipped variables on any 1-path, and its affine envelope
(on the right).

Proposition 9 justified the elimination of what may be called “skipped” variables in the input
ROBDD: variables that were missing on some path from the root to the 1 -sink. The reader
may wonder whether the calculation of the affine envelope could be reduced to just a sequence of
existential quantifications (in which case our algorithms would be unnecessarily complex). In other
words, under the assumptions made in Corollary 10, does aff(ϕ) |= ∃v(ϕ) hold as well? Figure 5
gives an example to show that the answer is no. For the function (x∧ y ∧ z)∨ (¬x∧ (y + z)) there
are no skipped variables, but the function is not affine, as it has three models. The ROBDD for
the affine envelope, x+ y + z, is shown on the right, and is dependent on all three variables.

4 Experimental Evaluation

To evaluate Algorithms 3 and 5 we have run both algorithms on two suites of Boolean functions.
It should be stressed that Algorithm 3 was not intended as a practical proposal, but introduced for
didactic purposes—we use it here simply to have some baseline for comparison. The algorithms have
been run on both randomly generated functions and structured functions, sourced from SAT-based

16

Algorithm 6 Generation of random Boolean functions as ROBDDs

Input: The number n of variables in the random function,
pr a calibrator set so that the probability
of a valuation being a model is 2−pr.

Output: A random Boolean function represented as an ROBDD.

gen rand bdd(n, pr) = rand bdd(0, n− 1, pr)

rand bdd(m,n, pr)
| (m = n) = mknd(m, rand sink(), rand sink())
| otherwise = mknd(m,T,E)
where

T = if (m > n− pr) ∧ cointoss() then rand bdd(m+ 1, n, pr) else 0
E = if (m > n− pr) ∧ cointoss() then rand bdd(m+ 1, n, pr) else 0

rand sink()= if cointoss() then 1 else 0

cointoss() returns 1 or 0 with equal probability.

approaches to combinatorial problem solving.
The structured functions have been translated from DIMACS CNF syntax. They are: ais6, an

all-interval-series instance from SATLIB, queensN , solving the N -queens problem for N = 4, 5, 6,
and sudokuN , solving a 4× 4 sudoku instance with N squares already filled, for 1 ≤ N ≤ 5.

We generated random Boolean functions of varying arity, with an additional parameter to
control the density of the generated function, that is, to set the likelihood of each valuation being
a model.

The random Boolean functions have been generated using Algorithm 6. The function call
gen rand bdd(n, pr) builds, in the form of an ROBDD R, a random Boolean function with the
property that the likelihood of an arbitrary valuation satisfying R is 2−pr. This is done by invoking
rand bdd(0, n−1, pr). This recursive algorithm builds a ROBDD of (n−pr) variables and, at depth
(n− pr), a random choice is made as to whether to continue generating the random function or to
simply join the branch with a 0 sink. If the choice is to continue, then the algorithm recursively
applies rand bdd(m+ 1, n, pr) to the branch. Note that cointoss is non-deterministic, so the T and
E used in the algorithm are not in general equal.

To time the generation of envelopes for random functions, we generated 10,000 12-place random
Boolean functions, in each case with the probability of 1/1024 for a valuation to be a model. We
did the same for 15-, 18-, 21-, and 24-place random Boolean functions. To time the generation of
the affine envelope of each of the 10 structured Boolean functions, we repeated the generation n

times and took the average time. The parameter n was chosen between 10 and 100,000, so as to
ensure that the n repetitions took at least 3 seconds.

Table 1 shows the average times (in milliseconds) taken by each of the algorithms. Timing data
were collected on a machine running Solaris 9, with two Intel Xeon CPUs running at 2.8GHz and
4GB of memory. Only one CPU was used and tests were run under minimal load on the system.
Our implementation of Algorithm 3 uses sorted arrays of bitstrings (so that search for models is
logarithmic). As the number of models grows exponentially with the number of variables, it is not

17

Function Variables Algorithm 3 Algorithm 5

random 12 0.02 0.02
random 15 5.99 0.27
random 18 — 0.41
random 21 — 1.71
random 24 — 14.97

queens4 17 0.35 0.03
queens5 26 6826.20 2.48
queens6 37 31.32 0.11
ais6 61 > 3.6 · 106 42702.00
sudoku1 64 > 3.6 · 106 12319.20
sudoku2 64 154633.33 53.60
sudoku3 64 6291.00 6.90
sudoku4 64 106.20 0.79
sudoku5 64 4.09 0.11

Table 1: Average time in milliseconds to compute an affine envelope

surprising that memory consumption for some tests exceeded available space. As mentioned, the
comparison is not that interesting anyway.

Given a function ϕ, the number of nodes in aff(ϕ)’s ROBDD may be smaller or larger than that
of ϕ’s ROBDD. (In our experiments, we have observed that, on average, the envelope is smaller
than the original function.) Note that the ROBDD for aff(ϕ) has a depth which is no larger that of
ϕ’s ROBDD. This is because an envelope cannot introduce variables, and will often remove some.

5 Conclusion

Boolean approximation poses interesting algorithmic challenges. Envelopes for Boolean formulas
have a number of different applications and for example find use in speeding up the querying of
knowledge-bases. Previous research has focused on the use of Horn approximations represented in
conjunctive normal form (CNF). In this paper, following a suggestion by Zanuttini [15], we instead
focused on the class of affine functions. Zanuttini exemplifies the utility of this and points out that
using the affine envelope instead of the original function leads to no loss of precision at all when
the logical consequences tested are affine (as would be the case when one tests parity properties of
a circuit, say).

As could be expected, our initial (baseline) implementation using a naive sets-of-models (as
arrays of bitstrings) representation was of limited value, because, even for functions with very few
models, the affine envelope often has very many models (the affine envelope of a majority of Boolean
functions is 1). So storing sets of models as an array becomes prohibitive even for functions over
rather few variables.

ROBDDs have proved to be an appropriate representation for many applications of Boolean
functions. Functions with very many models, as well as very few, have compact ROBDD represen-
tations. Thus we have developed a new affine envelope algorithm using ROBDDs. Our approach
is based on the same principle as Zanuttini’s, but takes advantage of some useful characteristics

18

a

b b

c c c c

d d d d d d d d

e e e e

f f

1

(a)

a

d d

b

e e

c

f f

1

(b)

Figure 6: (a) shows a worst-case affine ROBDD, representing (a+d)(b+e)(c+f) under the variable
ordering a ≺ b ≺ c ≺ d ≺ e ≺ f . (b) shows the same affine function using the variable ordering
a ≺ d ≺ b ≺ e ≺ c ≺ f .

of ROBDDs, together with certain properties of affine Boolean functions. Propositions 9 and 6
establish the most important of these properties, including the fact that affine approximation com-
mutes with existential quantification. This is what allows an algorithm for the generation of affine
envelopes to eliminate variables aggressively, often significantly reducing the sizes of the represen-
tations being manipulated earlier than would happen otherwise.

Table 1 suggests that this “aggressive” approach pays off uniformly, with the benefit generally
increasing as functions grow in arity. The benefit also appears to be present across the complete
lattice of Boolean functions. The sudoku series of functions were designed to investigate that point.
As the parameter N in sudokuN grows, the functions, which all have the same number of variables,
grow stronger (as more numbers are placed on the initially empty sudoku board, more constraints
are added, and the number of models decreases). The aggressive approach has an advantage across
that sequence of functions.

We have not been able to obtain a precise complexity analysis of the algorithm, and we leave
this as an open problem. We note, however, that in the worst case, an ROBDD for an n-place
affine function can reach the maximal size for an n-place ROBDD, namely 3 · 2n/2 − 1 nodes. For
example, (x1 + y1)(x2 + y2) · · · (xn

2

+ yn

2

) (n even) gives rise to an ROBDD with 3 · 2n/2 − 1 nodes,
assuming the variable ordering is x1 ≺ x2 ≺ · · · ≺ xn

2

≺ y1 ≺ y2 ≺ · · · yn

2

. (On the other hand,
with variable ordering x1 ≺ y1 ≺ x2 ≺ y2 ≺ · · · ≺ xn

2

≺ yn

2

, the ROBDD is linear in n, as the

ROBDD has 3n
2

+ 2 nodes. Figure 6(a) exemplifies this for n = 6. On the left is the ROBDD that
uses the first ordering. With 23 nodes (as usual, we omit the 0-sink), it clearly has the greatest
number of nodes that any ROBDD for a 6-place function can have. On the right is the ROBDD,
with 11 nodes, that uses the second ordering.

Acknowledgements

We wish to thank the reviewers for their helpful suggestions which led to many improvements to
this paper.

19

References

[1] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD package. In Proceedings
of the Twenty-seventh ACM/IEEE Design Automation Conference, pages 40–45, 1990.

[2] R. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions
on Computers, C–35(8):677–691, 1986.

[3] R. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys, 24(3):293–318, 1992.

[4] R. Dechter and J. Pearl. Structure identification in relational data. Artificial Intelligence,
58:237–270, 1992.

[5] A. del Val. First order LUB approximations: Characterization and algorithms. Artificial
Intelligence, 162:7–48, 2005.

[6] K. Henshall, P. Schachte, H. Søndergaard, and L. Whiting. Boolean affine approximation with
binary decision diagrams. In R. Downey and P. Manyem, editors, Theory of Computing 2009,
volume 94 of Conferences in Research and Practice in Information Technology, pages 121–129,
2009.

[7] O. Ore. Combinations of closure relations. Annals of Mathematics, 44(3):514–533, 1943.

[8] N. Pippenger. Theories of Computability. Cambridge University Press, 1941.

[9] E. Post. The Two-Valued Iterative Systems of Mathematical Logic. Princeton University Press,
1941. Reprinted in M. Davis, Solvability, Provability, Definability: The Collected Works of
Emil L. Post, pages 249–374, Birkhaüser, 1994.

[10] P. Schachte and H. Søndergaard. Closure operators for ROBDDs. In E. A. Emerson and
K. Namjoshi, editors, Proceedings of the Seventh International Conference on Verification,
Model Checking and Abstract Interpretation, volume 3855 of Lecture Notes in Computer Sci-
ence, pages 1–16. Springer, 2006.

[11] P. Schachte and H. Søndergaard. Boolean approximation revisited. In I. Miguel and W. Ruml,
editors, Abstraction, Reformulation and Approximation: Proceedings of SARA 2007, volume
4612 of Lecture Notes in Artificial Intelligence, pages 329–343. Springer, 2007.

[12] T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing, pages 216–226. ACM Press, 1978.

[13] B. Selman and H. Kautz. Knowledge compilation and theory approximation. Journal of the
ACM, 43(2):193–224, 1996.

[14] M. Ward. The closure operators of a lattice. Annals of Mathematics, 43(2):191–196, 1942.

[15] B. Zanuttini. Approximating propositional knowledge with affine formulas. In Proceedings of
the Fifteenth European Conference on Artificial Intelligence (ECAI’02), pages 287–291. IOS
Press, 2002.

20

[16] B. Zanuttini. Approximation of relations by propositional formulas: Complexity and semantics.
In S. Koenig and R. Holte, editors, Abstraction, Reformulation and Approximation: Proceed-
ings of SARA 2002, volume 2371 of Lecture Notes in Artificial Intelligence, pages 242–255.
Springer, 2002.

21

